PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision

Size: px
Start display at page:

Download "PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision"

Transcription

1 PHY3111 Mid-Semester Test Study Lecture 2: The hierarchical organisation of vision 1. Explain what a hierarchically organised neural system is, in terms of physiological response properties of its neurones. - Hierarchical processing, this idea that you have to start with single cells in your retina that see just a small spot of the image, and then gradually be putting together images which are progressively bigger and meaningful in a way that allows you to interpret it as an object. - For e.g. this hierarchical processing of visual processing involves steps such as:: Photoreception - detecting the amount and type of light in different parts of a scene Feature detection - putting together information about the local features within a part of the image (lines, corners, simple shapes etc.) Object identification - putting together information about the combinations of features that identify an object - Each neurone has a receptive field - the receptive field is the 'window' of the visual field that the neurone is analysing. Only stimuli presented within the receptive field can change the electrical activity of that neurone. - Each stage of processing, say the 2nd stage of processing will add the information of the many neurones of the 1st stage, and then the 3rd stage will add the information of the many neurones from the 2nd stage and so on. So each stage gets a larger receptive field, and a receptive field that is more selective to what is happening. - The information seen is projected to the back of the eyes, then sent to the thalamus (LGN?) and from there to the visual cortex. The visual cortex is right at the back of the head. - Each side of your brain sees the opposite side of the visual field. However it should be noted that this does not mean that the everything from your right eye goes to your left brain, because both your left eye can also see this (eyes overlap). If you fixate on a point, everything from the left side of that point, goes to the right brain. - In the visual cortex, cells are no longer "spot readers". They code for the presence of orientated boundaries. - As seen above, orientation-selective responses can be generated by the convergence of inputs from several cells with non-oriented receptive fields, which are located along a line in space. - Within a small region of the primary visual cortex, there are neurones that are selective for every type of orientation. They all have the same receptive field (all covering the

2 same window), but they each see it from a different perspective (they detect whether their preferred orientation is present). - Feature extraction begins in the primary visual cortex (V1) - In the primate brain, different hierarchical levels of visual processing are arranged from the back of the brain (primary visual area, V1) to the front - V4 inherits the orientation selectivity from V1 but they become more explicitly selective to the SHAPE of the object. - Area V4 is an early stage of the shape and colour processing pathway (ventral stream) Cells in V4 are selective to parameters such as length and width of an object 2. Give examples of how the information becomes integrated in specific ways as the different hierarchical levels of the visual system are considered. - Once you reach the visual cortex, cells become more orientation-selective. That is, they only respond to an object that is of a specific orientation. - For example, if you look at a small region of the primary visual cortex (V1), there would be a group of neurons, each of which have the same receptive field but see it from a different perspective where they only respond if their preferred orientation is present. - As you move up the hierarchical stages, neurones become even more selective. For example, V4 inherits the orientation selectivity from V1, however becomes more explicitly selective to the SHAPE of the object. 3. The following statements are all correct, with the exception of: a) Neurones in the lateral geniculate nucleus (LGN) and the retina have very small receptive fields, which basically "read" the amount of light and the wavelength composition in a small "spot" of the visual field b) One of the first steps in creating a neural representation features such as the orientation of boundaries between surfaces reflecting different amounts of light. This process is accomplished for the first time in area V1 c) Different cells in a same visual area have receptive fields covering different sectors of the visual field. Together, they form a complete "map" of the visual field in the brain, which is systematically organised so that adjacent cells have partially overlapping receptive fields. d) In the human and monkey brain, areas corresponding to different hierarchical levels are organised in an anatomical sequence, from the frontal lobe backwards, so that the areas forming the highest levels (inferior temporal cortex) are located in the caudal (back) portion of the visual cortex. e) Cells in area V4, which is an intermediate level of the ventral visual cortex, are selective to both the length and width of an object, in addition to its orientation and colour.

3 - D) is incorrect. The hierarchical levels are actually organised from the occipital pole (V1, right at the back of the brain) forwards, so that the inferior temporal area is located in the most rostral part of the visual cortex.

4 Lecture 3: Cellular organisation and biophysical properties of the cerebral cortex 1. Distinguish the main types of neurones that form the cerebral cortex in terms of morphology, distribution in layers, and action (excitatory and inhibitory) - There are two main types of neurones that form the cerebral cortex. These are: Pyramidal cells Stellate cells - Pyramidal cells: Are the main type of cortical excitatory neurone They are the only cells that project long axons to other brain areas. However, most pyramidal cells project locally, forming intrinsic connections. They have a long apical dendrite with multiple branches, which projects towards the pia mater, as well as a complex basal dendritic tree The axons emerge towards the white matter Small pyramidal cells are found mostly in layers 2 and 3 of the cerebral cortex Large pyramidal cells are found mostly in layers 5 and 6 (layers 5 and 6 generally send information back to the thalamus) - Stellate cells: There are SMOOTH stellate cells and SPINY stellate cells and are only INTRINSIC (compared to pyramidal which is both). SMOOTH stellate cells are cortical INHIBITORY interneurons that act by modulating the activity of pyramidal cells. They are found in ALL cortical layers and use GABA as a neurotransmitter SPINY stellate cells are small cortical EXCITATORY interneurons which receive the bulk of thalamic afferents and relay these inputs to pyramidal cells. They are found primarily in layer 4 of the cortex as GRANULAR CELLS (layer 4 = granular layer) 2. Explain how vertical interactions across layers give rise to a columnar organisation 1. The main excitatory inputs arrive in the granular layer (layer 4) 2. This information is processed and integrated in the supragranular layers (2 and 3) 3. The processed data are relayed to other cortical areas (feedforward) 4. This data is also relayed to the infragranular layers (5 and 6), which then send feedback projections to "earlier" areas or to the thalamus

5 5. The feedback also modulates the processing in the granular and supragranular layers. - These interactions give rise to FUNCTIONAL COLUMNS, running from layers 1 to 6. - Every cell in a column shares some functional properties

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:.

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. Cortical Organization Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. 2. Secondary cortex: located immediately adjacent to primary cortical areas,

More information

LISC-322 Neuroscience Cortical Organization

LISC-322 Neuroscience Cortical Organization LISC-322 Neuroscience Cortical Organization THE VISUAL SYSTEM Higher Visual Processing Martin Paré Assistant Professor Physiology & Psychology Most of the cortex that covers the cerebral hemispheres is

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Photoreceptors Rods. Cones

Photoreceptors Rods. Cones Photoreceptors Rods Cones 120 000 000 Dim light Prefer wavelength of 505 nm Monochromatic Mainly in periphery of the eye 6 000 000 More light Different spectral sensitivities!long-wave receptors (558 nm)

More information

The Visual System. Cortical Architecture Casagrande February 23, 2004

The Visual System. Cortical Architecture Casagrande February 23, 2004 The Visual System Cortical Architecture Casagrande February 23, 2004 Phone: 343-4538 Email: vivien.casagrande@mcmail.vanderbilt.edu Office: T2302 MCN Required Reading Adler s Physiology of the Eye Chapters

More information

Vision II. Steven McLoon Department of Neuroscience University of Minnesota

Vision II. Steven McLoon Department of Neuroscience University of Minnesota Vision II Steven McLoon Department of Neuroscience University of Minnesota 1 Ganglion Cells The axons of the retinal ganglion cells form the optic nerve and carry visual information into the brain. 2 Optic

More information

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of

You submitted this quiz on Sun 19 May :32 PM IST (UTC +0530). You got a score of out of Feedback Ex6 You submitted this quiz on Sun 19 May 2013 9:32 PM IST (UTC +0530). You got a score of 10.00 out of 10.00. Question 1 What is common to Parkinson, Alzheimer and Autism? Electrical (deep brain)

More information

Exam 1 PSYC Fall 1998

Exam 1 PSYC Fall 1998 Exam 1 PSYC 2022 Fall 1998 (2 points) Briefly describe the difference between a dualistic and a materialistic explanation of brain-mind relationships. (1 point) True or False. George Berkely was a monist.

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 5:. Reading Assignments: None 1 Projection 2 Projection 3 Convention: Visual Angle Rather than reporting two numbers (size of object and distance to observer),

More information

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading Cognitive Neuroscience of Language 5 From eye to brain Today s goals Look at the pathways that conduct the visual information from the eye to the visual cortex Marielle Lange http://homepages.inf.ed.ac.uk/mlange/teaching/cnl/

More information

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12 Neocortex Shepherd (2004) Chapter 12 Rodney Douglas, Henry Markram, and Kevan Martin Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Cortical Structures in the Brain Bark-like (cortical) structures:

More information

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!)

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!) Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ /~ksweeney/psy260.html Lighta part of the spectrum of Electromagnetic Energy (the part that s visible to us!)

More information

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m.

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m. Normal CNS, Special Senses, Head and Neck TOPIC: CEREBRAL HEMISPHERES FACULTY: LECTURE: READING: P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center Wednesday, 16 March

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Cerebral Cortex 1. Sarah Heilbronner

Cerebral Cortex 1. Sarah Heilbronner Cerebral Cortex 1 Sarah Heilbronner heilb028@umn.edu Want to meet? Coffee hour 10-11am Tuesday 11/27 Surdyk s Overview and organization of the cerebral cortex What is the cerebral cortex? Where is each

More information

Early Stages of Vision Might Explain Data to Information Transformation

Early Stages of Vision Might Explain Data to Information Transformation Early Stages of Vision Might Explain Data to Information Transformation Baran Çürüklü Department of Computer Science and Engineering Mälardalen University Västerås S-721 23, Sweden Abstract. In this paper

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization Mechanosensation Central Representation of Touch Touch and tactile exploration Vibration and pressure sensations; important for clinical testing Limb position sense John H. Martin, Ph.D. Center for Neurobiology

More information

Lateral Geniculate Nucleus (LGN)

Lateral Geniculate Nucleus (LGN) Lateral Geniculate Nucleus (LGN) What happens beyond the retina? What happens in Lateral Geniculate Nucleus (LGN)- 90% flow Visual cortex Information Flow Superior colliculus 10% flow Slide 2 Information

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye:

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye: Problems confronting the visual system: Visual Physiology image contains a huge amount of information which must be processed quickly. image is dim, blurry and distorted. Light levels vary enormously.

More information

Pathway from the eye to the cortex

Pathway from the eye to the cortex Vision: CNS 2017 Pathway from the eye to the cortex Themes of this lecture Visual information is analyzed in more complicated ways than in the retina. One major pathway from the eye leads to the striate

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Vision: CNS 2018 Required Slide Session Objectives Visual system: CNS At the end of this session, students will be able to: 1. Understand how axons from the eyes travel through the optic nerves and tracts

More information

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What?

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What? 1 Vision 2 TRANSDUCTION Senses are transducers Change one form of energy into another Light, sound, pressure, etc. into What? Action potentials! Sensory codes Frequency code encodes information about intensity

More information

Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina

Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina The visual system Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina 0.5 mm thick The retina 0.5 mm thick The photosensors

More information

Outline of the next three lectures

Outline of the next three lectures Outline of the next three lectures Lecture 35 Anatomy of the human cerebral cortex gross and microscopic cell types connections Vascular supply of the cerebral cortex Disorders involving the cerebral cortex

More information

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ?

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ? The human brain The human brain! What is the basic physiology of this organ?! Understanding the parts of this organ provides a hypothesis space for its function perhaps different parts perform different

More information

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System Lecturer: Jitendra Malik Scribe: Ryan White (Slide: layout of the brain) Facts about the brain:

More information

9.14 Classes #21-23: Visual systems

9.14 Classes #21-23: Visual systems 9.14 Classes #21-23: Visual systems Questions based on Schneider chapter 20 and classes: 1) What was in all likelihood the first functional role of the visual sense? Describe the nature of the most primitive

More information

Biological Bases of Behavior. 6: Vision

Biological Bases of Behavior. 6: Vision Biological Bases of Behavior 6: Vision Sensory Systems The brain detects events in the external environment and directs the contractions of the muscles Afferent neurons carry sensory messages to brain

More information

2 Overview of the Brain

2 Overview of the Brain 2 Overview of the Brain 2.3 What is the brain? Vast collection of interconnected cells called neurons. o 10 12 neurons with 10 15 synapses (connections) o cortical neurons connect to roughly 3% of surrounding

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

CSE511 Brain & Memory Modeling. Lect21-22: Vision Central Pathways

CSE511 Brain & Memory Modeling. Lect21-22: Vision Central Pathways CSE511 Brain & Memory Modeling CSE511 Brain & Memory Modeling Lect02: BOSS Discrete Event Simulator Lect21-22: Vision Central Pathways Chapter 12 of Purves et al., 4e Larry Wittie Computer Science, StonyBrook

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J.

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J. The Integration of Features in Visual Awareness : The Binding Problem By Andrew Laguna, S.J. Outline I. Introduction II. The Visual System III. What is the Binding Problem? IV. Possible Theoretical Solutions

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 5: LGN and V1: Magno and Parvo streams Chapter 3 Course Information 2 Class web page: http://cogsci.ucsd.edu/

More information

Embryological origin of thalamus

Embryological origin of thalamus diencephalon Embryological origin of thalamus The diencephalon gives rise to the: Thalamus Epithalamus (pineal gland, habenula, paraventricular n.) Hypothalamus Subthalamus (Subthalamic nuclei) The Thalamus:

More information

The Visual System. Anatomical Overview Dr. Casagrande January 21, 2004

The Visual System. Anatomical Overview Dr. Casagrande January 21, 2004 The Visual System Anatomical Overview Dr. Casagrande January 21, 2004 Phone: 343-4538 Email: vivien.casagrande@mcmail.vanderbilt.edu Office: T2302 MCN How the Brain Works Useful Additional Reading: Adler,

More information

COGNITIVE SCIENCE 107A. Sensory Physiology and the Thalamus. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Sensory Physiology and the Thalamus. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Sensory Physiology and the Thalamus Jaime A. Pineda, Ph.D. Sensory Physiology Energies (light, sound, sensation, smell, taste) Pre neural apparatus (collects, filters, amplifies)

More information

Parallel streams of visual processing

Parallel streams of visual processing Parallel streams of visual processing RETINAL GANGLION CELL AXONS: OPTIC TRACT Optic nerve Optic tract Optic chiasm Lateral geniculate nucleus Hypothalamus: regulation of circadian rhythms Pretectum: reflex

More information

Basics of Computational Neuroscience

Basics of Computational Neuroscience Basics of Computational Neuroscience 1 1) Introduction Lecture: Computational Neuroscience, The Basics A reminder: Contents 1) Brain, Maps,, Networks,, and The tough stuff: 2,3) Membrane Models 3,4) Spiking

More information

Structure and Function of Neurons

Structure and Function of Neurons CHPTER 1 Structure and Function of Neurons Varieties of neurons General structure Structure of unique neurons Internal operations and the functioning of a neuron Subcellular organelles Protein synthesis

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing . Neural Mechanisms of Color Processing A. Parallel processing - M- & P- pathways B. Second

More information

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens

Systems Neuroscience Dan Kiper. Today: Wolfger von der Behrens Systems Neuroscience Dan Kiper Today: Wolfger von der Behrens wolfger@ini.ethz.ch 18.9.2018 Neurons Pyramidal neuron by Santiago Ramón y Cajal (1852-1934, Nobel prize with Camillo Golgi in 1906) Neurons

More information

Biological Process 9/7/10. (a) Anatomy: Neurons have three basic parts. 1. The Nervous System: The communication system of your body and brain

Biological Process 9/7/10. (a) Anatomy: Neurons have three basic parts. 1. The Nervous System: The communication system of your body and brain Biological Process Overview 1. The Nervous System: s (a) Anatomy, (b) Communication, (c) Networks 2. CNS/PNS 3. The Brain (a) Anatomy, (b) Localization of function 4. Methods to study the brain (Dr. Heidenreich)

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

LISC-322 Neuroscience. Visual Field Representation. Visual Field Representation. Visual Field Representation. Visual Field Representation

LISC-322 Neuroscience. Visual Field Representation. Visual Field Representation. Visual Field Representation. Visual Field Representation LISC-3 Neuroscience THE VISUAL SYSTEM Central Visual Pathways Each eye sees a part of the visual space that defines its visual field. The s of both eyes overlap extensively to create a binocular. eye both

More information

Nervous System C H A P T E R 2

Nervous System C H A P T E R 2 Nervous System C H A P T E R 2 Input Output Neuron 3 Nerve cell Allows information to travel throughout the body to various destinations Receptive Segment Cell Body Dendrites: receive message Myelin sheath

More information

Announcement. Danny to schedule a time if you are interested.

Announcement.  Danny to schedule a time if you are interested. Announcement If you need more experiments to participate in, contact Danny Sanchez (dsanchez@ucsd.edu) make sure to tell him that you are from LIGN171, so he will let me know about your credit (1 point).

More information

Relative contributions of cortical and thalamic feedforward inputs to V2

Relative contributions of cortical and thalamic feedforward inputs to V2 Relative contributions of cortical and thalamic feedforward inputs to V2 1 2 3 4 5 Rachel M. Cassidy Neuroscience Graduate Program University of California, San Diego La Jolla, CA 92093 rcassidy@ucsd.edu

More information

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp ,

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp , Normal CNS, Special Senses, Head and Neck TOPIC: FACULTY: LECTURE: READING: RETINA and CENTRAL VISUAL PATHWAYS P. Hitchcock, Ph.D. Department Cell and Developmental Biology Kellogg Eye Center Friday, 20

More information

Neuroscience Tutorial

Neuroscience Tutorial Neuroscience Tutorial Brain Organization : cortex, basal ganglia, limbic lobe : thalamus, hypothal., pituitary gland : medulla oblongata, midbrain, pons, cerebellum Cortical Organization Cortical Organization

More information

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 V1 (Chap 3, part II) Lecture 8 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Topography: mapping of objects in space onto the visual cortex contralateral representation

More information

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology Image Formation and Phototransduction By Dr. Abdelaziz Hussein Lecturer of Physiology Vision Vision is a complex process through which an image of the external environment is formed on the photosensitive

More information

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23 Neurodevelopment II Structure Formation Reading: BCP Chapter 23 Phases of Development Ovum + Sperm = Zygote Cell division (multiplication) Neurogenesis Induction of the neural plate Neural proliferation

More information

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline.

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. The Cerebellum Cerebellum Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. Gray matter is external. White matter is internal,

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

Making Things Happen: Simple Motor Control

Making Things Happen: Simple Motor Control Making Things Happen: Simple Motor Control How Your Brain Works - Week 10 Prof. Jan Schnupp wschnupp@cityu.edu.hk HowYourBrainWorks.net The Story So Far In the first few lectures we introduced you to some

More information

Physiology of Tactile Sensation

Physiology of Tactile Sensation Physiology of Tactile Sensation Objectives: 1. Describe the general structural features of tactile sensory receptors how are first order nerve fibers specialized to receive tactile stimuli? 2. Understand

More information

25/09/2012. Capgras Syndrome. Chapter 2. Capgras Syndrome - 2. The Neural Basis of Cognition

25/09/2012. Capgras Syndrome. Chapter 2. Capgras Syndrome - 2. The Neural Basis of Cognition Chapter 2 The Neural Basis of Cognition Capgras Syndrome Alzheimer s patients & others delusion that significant others are robots or impersonators - paranoia Two brain systems for facial recognition -

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

Retinotopy & Phase Mapping

Retinotopy & Phase Mapping Retinotopy & Phase Mapping Fani Deligianni B. A. Wandell, et al. Visual Field Maps in Human Cortex, Neuron, 56(2):366-383, 2007 Retinotopy Visual Cortex organised in visual field maps: Nearby neurons have

More information

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning The Cerebellum Lu Chen, Ph.D. MCB, UC Berkeley 1 Outline Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning 2 Overview Little brain 10% of the total volume of the brain,

More information

Anatomical Substrates of Somatic Sensation

Anatomical Substrates of Somatic Sensation Anatomical Substrates of Somatic Sensation John H. Martin, Ph.D. Center for Neurobiology & Behavior Columbia University CPS The 2 principal somatic sensory systems: 1) Dorsal column-medial lemniscal system

More information

3 Basic Neuroscience Based on: Lytton, From Computer to Brain, ch.3, L3 L3

3 Basic Neuroscience Based on: Lytton, From Computer to Brain, ch.3, L3 L3 3 Basic Neuroscience Based on: Lytton, From Computer to Brain, ch.3, L3 L3 3.1 Microscopic view of the nervous system Living tissue is made up of cells. A cell has a fatty membrane and is filled with liquid

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html This class n Sensation vs. Perception n How light is translated into what we see n Structure

More information

Neural Basis of Motor Control. Chapter 4

Neural Basis of Motor Control. Chapter 4 Neural Basis of Motor Control Chapter 4 Neurological Perspective A basic understanding of the physiology underlying the control of voluntary movement establishes a more comprehensive appreciation and awareness

More information

TABLE OF CONTINENTS. PSYC1002 Notes. Neuroscience.2. Cognitive Processes Learning and Motivation. 37. Perception Mental Abilities..

TABLE OF CONTINENTS. PSYC1002 Notes. Neuroscience.2. Cognitive Processes Learning and Motivation. 37. Perception Mental Abilities.. TABLE OF CONTINENTS Neuroscience.2 Cognitive Processes...21 Learning and Motivation. 37 Perception.....54 Mental Abilities.. 83 Abnormal Psychology....103 1 Topic 1: Neuroscience Outline 1. Gross anatomy

More information

Introduction to the Nervous System. Code: HMP 100/ UPC 103/ VNP 100. Course: Medical Physiology. Level 1 MBChB/BDS/BPharm

Introduction to the Nervous System. Code: HMP 100/ UPC 103/ VNP 100. Course: Medical Physiology. Level 1 MBChB/BDS/BPharm Introduction to the Nervous System. Code: HMP 100/ UPC 103/ VNP 100. Course: Medical Physiology Level 1 MBChB/BDS/BPharm Lecture 2. Functional Organisation of the Nervous System Lecture Outline 1.1 Introduction

More information

NS219: Basal Ganglia Anatomy

NS219: Basal Ganglia Anatomy NS219: Basal Ganglia Anatomy Human basal ganglia anatomy Analagous rodent basal ganglia nuclei Basal ganglia circuits: the classical model of direct and indirect pathways + Glutamate + - GABA - Gross anatomy

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones Neural circuits PSY 310 Greg Francis Lecture 05 Why do you need bright light to read? Rods and cones Photoreceptors are not evenly distributed across the retina 1 Rods and cones Cones are most dense in

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 7: Network models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

Primary Visual Pathways (I)

Primary Visual Pathways (I) Primary Visual Pathways (I) Introduction to Computational and Biological Vision CS 202-1-5261 Computer Science Department, BGU Ohad Ben-Shahar Where does visual information go from the eye? Where does

More information

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1 Announcements exam 1 this Thursday! review session: Wednesday, 5:00-6:30pm, Meliora 203 Bryce s office hours: Wednesday, 3:30-5:30pm, Gleason https://www.youtube.com/watch?v=zdw7pvgz0um M Cells M cells

More information

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410

Anatomy of the basal ganglia. Dana Cohen Gonda Brain Research Center, room 410 Anatomy of the basal ganglia Dana Cohen Gonda Brain Research Center, room 410 danacoh@gmail.com The basal ganglia The nuclei form a small minority of the brain s neuronal population. Little is known about

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

Visual Brain: The Neural Basis of Visual Perception!

Visual Brain: The Neural Basis of Visual Perception! Visual Brain: The Neural Basis of Visual Perception!?! Human Brain: Amazing Machine! Cerebral cortex! Highest level of all sensory integration Highest level of somatic motor control Memory, association

More information

Thalamocortical Dysrhythmia. Thalamocortical Fibers. Thalamocortical Loops and Information Processing

Thalamocortical Dysrhythmia. Thalamocortical Fibers. Thalamocortical Loops and Information Processing halamocortical Loops and Information Processing 2427 halamocortical Dysrhythmia Synonyms CD A pathophysiological chain reaction at the origin of neurogenic pain. It consists of: 1) a reduction of excitatory

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

-Ensherah Mokheemer. -Amani Nofal. -Loai Alzghoul

-Ensherah Mokheemer. -Amani Nofal. -Loai Alzghoul -1 -Ensherah Mokheemer -Amani Nofal -Loai Alzghoul 1 P a g e Today we will start talking about the physiology of the nervous system and we will mainly focus on the Central Nervous System. Introduction:

More information

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon

Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon Dendrites Receive impulse from the axon of other neurons through synaptic connection. Conduct impulse towards the cell body Axon Page 22 of 237 Conduct impulses away from cell body Impulses arise from

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

The How of Tactile Sensation

The How of Tactile Sensation The How of Tactile Sensation http://neuroscience.uth.tmc.edu/s2/chapter02.html Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo Objectives 1. Understand how sensory stimuli are encoded

More information

3 Basic Neuroscience Based on: Lytton, From Computer to Brain, ch.3, L3 L3 3.1 Microscopic view of the nervous system

3 Basic Neuroscience Based on: Lytton, From Computer to Brain, ch.3, L3 L3 3.1 Microscopic view of the nervous system 3 Basic Neuroscience Based on: Lytton, From Computer to Brain, ch.3, L3 L3 3.1 Microscopic view of the nervous system Living tissue is made up of cells. A cell has a fatty membrane and is filled with liquid

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa3.0/

More information

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 1 Visual System I I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 2 1 2/3/17 Window of the Soul 3 Information Flow: From Photoreceptors

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Review Kim Sweeney ksweeney@cogsci.ucsd.edu www.cogsci.ucsd.edu/~ksweeney/psy260.html Today n Discuss Final Paper Proposal (due 3/10) n General Review 1 The article

More information

Human Cognitive Developmental Neuroscience. Jan 27

Human Cognitive Developmental Neuroscience. Jan 27 Human Cognitive Developmental Neuroscience Jan 27 Wiki Definition Developmental cognitive neuroscience is an interdisciplinary scientific field that is situated at the boundaries of Neuroscience Psychology

More information

COGS 107B Week 1. Hyun Ji Friday 4:00-4:50pm

COGS 107B Week 1. Hyun Ji Friday 4:00-4:50pm COGS 107B Week 1 Hyun Ji Friday 4:00-4:50pm Before We Begin... Hyun Ji 4th year Cognitive Behavioral Neuroscience Email: hji@ucsd.edu In subject, always add [COGS107B] Office hours: Wednesdays, 3-4pm in

More information

Dorsal Cochlear Nucleus. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Dorsal Cochlear Nucleus. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Dorsal Cochlear Nucleus Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Structure Response properties Hypothesized roles in hearing Review of VCN-DCN circuits and projections Structure

More information

Computational model of MST neuron receptive field and interaction effect for the perception of selfmotion

Computational model of MST neuron receptive field and interaction effect for the perception of selfmotion Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2008 Computational model of MST neuron receptive field and interaction effect for the perception of selfmotion

More information

CYTOARCHITECTURE OF CEREBRAL CORTEX

CYTOARCHITECTURE OF CEREBRAL CORTEX BASICS OF NEUROBIOLOGY CYTOARCHITECTURE OF CEREBRAL CORTEX ZSOLT LIPOSITS 1 CELLULAR COMPOSITION OF THE CEREBRAL CORTEX THE CEREBRAL CORTEX CONSISTS OF THE ARCHICORTEX (HIPPOCAMPAL FORMA- TION), PALEOCORTEX

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

Image Processing in the Human Visual System, a Quick Overview

Image Processing in the Human Visual System, a Quick Overview Image Processing in the Human Visual System, a Quick Overview By Orazio Gallo, April 24th, 2008 The Visual System Our most advanced perception system: The optic nerve has 106 fibers, more than all the

More information

The Nervous System. B. The Components: 1) Nerve Cells Neurons are the cells of the body and are specialized to carry messages through an process.

The Nervous System. B. The Components: 1) Nerve Cells Neurons are the cells of the body and are specialized to carry messages through an process. The Nervous System A. The Divisions: 1) The Central Nervous System includes the and. The brain contains billions of nerve cells called, and trillions of support cells called. 2) The Peripheral Nervous

More information

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement?

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement? CASE 48 A 34-year-old woman with a long-standing history of seizure disorder presents to her neurologist with difficulty walking and coordination. She has been on phenytoin for several days after having

More information