Strick Lecture 3 March 22, 2017 Page 1

Size: px
Start display at page:

Download "Strick Lecture 3 March 22, 2017 Page 1"

Transcription

1 Strick Lecture 3 March 22, 2017 Page 1 Cerebellum OUTLINE I. External structure- Inputs and Outputs Cerebellum - (summary diagram) 2 components (cortex and deep nuclei)- (diagram) 3 Sagittal zones (vermal, paravermal and lateral) II. III. IV. Internal structure- wiring diagram Cell and afferent fiber types (diagram) Cerebellar disorders (Neurophysiological basis) a. Hypotonia (diagram) b. Delayed onset and termination of movement (also reduction in force) (diagram) c. Decomposition of movement (diagram) d. Tremor (diagram)(videotape segment) Examples of Cerebellar Function - Adaptive Control a. Cerebellar Adaptive Control of Posture b. Orbital Position Dependent Dysmetria c. Prism adaptation I. Cerebellum - is the mass of neurons sitting above the pons and medulla Overview - (summary diagram, Fig. 3-1) Cerebellar inputs: Diverse. Originate from multiple cortical areas and from spinal cord ascending systems. Cerebellar output: Via the ventrolateral thalamus to cortical motor areas and to areas of prefrontal and posterior parietal cortex (new concept). The Cerebellum consists of 2 components: Cerebellar Cortex and the Deep Cerebellar Nuclei External structure, Inputs and Outputs Cerebellar Cortex- (Fig. 3-2) A. Transverse Organization = Lobes - Lobules - folia 3 major lobes= anterior, posterior and flocculonodular - the primary fissure separates the anterior and posterior lobes; - the posterolateral fissure separates the posterior and flocculonodular B. Sagittal Organization (the most functionally relevant scheme) 3 zones: 1 = Vermus zone (midline zone) 2 = intermediate zone (or paravermal zone) 3 = lateral zone [Hemisphere = intermediate and lateral zones] Deep Nuclei- (Fig. 3-3)

2 Strick Lecture 3 March 22, 2017 Page 2 Each zone of cerebellar cortex projects to a different deep cerebellar nucleus (i.e., 3 zones - 3 deep nuclei) A. the vermal zone projects to the Fastigial nucleus B. the paravermal cortex (intermediate cortex) projects to the Intermediate nucleus = the interpositus nucleus of primates = the globose (medial and posterior) and the emboliform (lateral and anterior) nuclei of humans C. the lateral cortex projects to the Dentate nucleus Functionally, there are 3 Cortico-nuclear zones- Different effects are produced by stimulation or lesions of each zone: medial = intermed= lateral = effects on whole body posture and locomotion effects on the control of distal movements effects are still somewhat of a mystery, but both distal and proximal movements are involved. The flocculonodular lobe is often considered as part of the medial zone. It is involved in vestibular and oculomotor functions. Given this sagittal organization, remember to ask where the lesion is when someone talks about a cerebellar patient. We will focus on the skeletomotor functions of the cerebellum. However, cerebellar involvement in behavior is wide-ranging. There is evidence for cerebellar control of attention, cardiovascular function, respiration, feeding behavior, sleep, speech, and possibly memory. II. Cerebellum - Internal structure (Fig. 3-4) Cortex types of afferent fibers: mossy fibers and climbing fibers 2. 5 cell types: Purkinje cell, granule cell, golgi cell, stellate cell, basket cell 3. 1 output cell: Purkinje cell We will focus on the circuits involving Purkinje, granules and the two types of afferent inputs. Mossy fibers originate from multiple sources, i.e., pons, spinal cord, etc. Mossy fibers make contact with granule cells. The axons of granule cells ascend to the outer molecular layer of cerebellar cortex and form parallel fibers. These parallel fibers run for considerable distances and make contact with the dendritic spines of many Purkinje cells. Thus, a single mossy fiber influences many Purkinje cells and a single Purkinje cell receives input from many mossy fibers. Climbing fibers originate from a single source (inferior olive). Only one climbing fiber contacts each Purkinje cell. If you record from Purkinje cells:

3 Strick Lecture 3 March 22, 2017 Page 3 1) The activity of a climbing fiber produces a complex spike in a Purkinje cell. 2) In contrast, the activity of a mossy fiber input evokes simple spikes in Purkinje cells. Recordings of complex spike and simple spike discharge in awake animals show (Fig. 3-5) Slide 6 1) Climbing fiber discharge = irregular and infrequent, often not well-related to movement = "infrequent" error signal 2) Mossy fiber discharge = spontaneously active, modulates with somatosensory or motor signals = "moment by moment" signal Current concept- Climbing fiber activity modifies the response of a Purkinje cell to subsequent parallel fiber input = Basis of Motor Learning. Temporal coincidence of climbing fiber input with parallel fiber input will modify the response of a Purkinje cell to subsequent parallel fiber input. It is still unclear whether the Purkinje cell becomes more or less responsive to a parallel fiber input. III. Cerebellar disorders (Neurophysiological basis)(fig. 3-6) Cerebellar dysfunction leads to 6 basic motor problems: a) hypotonia, reduced force production, delayed onset and termination of movement, intention tremor, hypo- and hypermetria, movement decomposition. A. Hypotonia (Fig. 3-7) = reduced response to perturbations, reduced ability to maintain tone Neurophysiological basis (a disorder in the cerebello-thalamocortical pathway): I. Cerebellar lesion reduces tonic excitability of M1 1. cerebellum output projects to VL; VL projects to the primary motor cortex 2. neurons in the deep cerebellar nuclei have relatively high tonic rates of discharge 3. If this tonic input to the primary motor cortex is removed, then the excitability of the primary motor cortex is decreased. and/or II. Cerebellar lesion removes a source of signal for corrective response 1. the cerebellum receives a signal from periphery that there has been a perturbation 2. the signal reaches primary motor cortex and generates a corrective response 3. a lesion of cerebellum reduces or abolishes this signal B. Delayed onset and termination of movement (also reduction in force) (Fig. 3-8) Neurophysiological basis: The relation between dentate and interpositus neuron activity and movement onset DENTATE 1. neurons in the primary motor cortex discharge before movement 2. neurons in the dentate nucleus also discharge before movement 3. dentate neurons are thought to be a source of the central commands for initiating motor cortex activity and movement 4. dentate lesions delay movement onset by 100 msec, but movement occurs INTERPOSITUS 1. neurons in interpositus (globose and emboliform of the human) discharge at or just after movement onset. 2. Thus, these neurons are not likely to be involved in the process of movement initiation

4 Strick Lecture 3 March 22, 2017 Page 4 3. However, they may be involved in movement termination or correcting errors during the course of movement 4. Interpositus lesions do not cause a delay in movement onset C. Tremor (Fig. 3-9) Slide 10, particularly at the onset and termination of movement Types of Cerebellar tremor- Intention tremor, e.g., finger to nose test Postural tremor, e.g., ataxia One viewpoint is that intention tremor is actually successive overshoots and undershoots about a goal which leads to oscillation, i.e., a type of dysmetria. EMG basis of Dysmetria (Fig. 3-10) For a movement to be accurate, both the size and the duration of the Agonist and Antagonist bursts must be precisely adjusted in amplitude and timing. For example- - if the Agonist is too large = movement would be hypermetric - if the Agonist is too small = movement would be hypometric -similar problems would arise if the amplitude of the antagonist burst were not properly adjusted -in addition, bursts that are too long or short in duration would lead to dysmetria D. Decomposition of movement (Fig. 3-11) Definition: Test: a breakdown in the correct spatio-temporal features of simple movement sequences. Examine the ability to produce repeatable sequences of rapidly alternating movements. EMG basis (Fig. 3-10): (elemental deficit) 1. Normal subjects display a decrease in activity in antagonist muscles prior to any change in agonist activity 2. This decrease has been termed the Huffschmidt phenomenon 3. Some patients with cerebellar lesions lack the Huffschmidt phenomenon 4. Thus, these subjects are unable to turn off muscle activity that opposes their movement. Also No "Sequence Length Effect" in cerebellar patients (higher order deficit) 1. Normal subjects show an increase in the reaction time to perform the first movement in a sequence as the number of elements in the sequence increases = "sequence length effect" (Fig. 3-12) 2. Cerebellar patients do not show this effect 3. In cerebellar patients, each element in a sequence is performed as if it was a reaction time task. 4. The interbutton interval is prolonged in cerebellar patients 5. Thus, cerebellar patients are unable to quickly and easily perform one movement right after another without a reaction time between each movement.

5 Strick Lecture 3 March 22, 2017 Page 5 This is a higher-order motor deficit. Cerebellar output is directed at primary motor and premotor areas. The absence of a "sequence length effect", the prolonged interbutton intervals and reaction time delays reflect a difficulty in combining simple movements together into a sequence. This may be due to interruption of cerebellar input to premotor areas involved in higher order aspects of motor programming. IV. Examples of Cerebellar Function - Adaptive Control Figure 1 a. Cerebellar Adaptive Control of Posture (Fig. 3-13, 3-14, 3-15, 3-16) b. Orbital Position Dependent Dysmetria (Fig. 3-17) c. Prism Adaptation (Demonstration)

6 Strick Lecture 3 March 22, 2017 Page 6 Figure 2 Figure 3

7 Strick Lecture 3 March 22, 2017 Page 7 Figure 4

8 Strick Lecture 3 March 22, 2017 Page 8 Figure 5 Figure 6

9 Strick Lecture 3 March 22, 2017 Page 9 Figure 7 Figure 8

10 Strick Lecture 3 March 22, 2017 Page 10 Figure 9 Figure 10

11 Strick Lecture 3 March 22, 2017 Page 11 Figure 11 Figure 12

12 Strick Lecture 3 March 22, 2017 Page 12 Figure 13 Figure 14

13 Strick Lecture 3 March 22, 2017 Page 13 Figure 15 Figure 16

14 Strick Lecture 3 March 22, 2017 Page 14 Figure 17 Figure 18

15 Strick Lecture 3 March 22, 2017 Page 15 Figure 19

16 Strick Lecture 3 March 22, 2017 Page 16 Figure 20

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning

The Cerebellum. Outline. Lu Chen, Ph.D. MCB, UC Berkeley. Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning The Cerebellum Lu Chen, Ph.D. MCB, UC Berkeley 1 Outline Overview Structure Micro-circuitry of the cerebellum The cerebellum and motor learning 2 Overview Little brain 10% of the total volume of the brain,

More information

Cerebellum: little brain. Cerebellum. gross divisions

Cerebellum: little brain. Cerebellum. gross divisions Cerebellum The anatomy of the cerebellum and its gross divisions Its principal input and output pathways The organization of the cerebellar cortex Role of climbing vs. mossy fibre input The parallel-fibre/

More information

Cerebellum: little brain. Cerebellum. gross divisions

Cerebellum: little brain. Cerebellum. gross divisions Cerebellum The anatomy of the cerebellum and its gross divisions Its principal input and output pathways The organization of the cerebellar cortex Role of climbing vs. mossy fibre input The parallel-fibre/

More information

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu

The Cerebellum. The Little Brain. Neuroscience Lecture. PhD Candidate Dr. Laura Georgescu The Cerebellum The Little Brain Neuroscience Lecture PhD Candidate Dr. Laura Georgescu Learning Objectives 1. Describe functional anatomy of the cerebellum - its lobes, their input and output connections

More information

Cerebellum John T. Povlishock, Ph.D.

Cerebellum John T. Povlishock, Ph.D. Cerebellum John T. Povlishock, Ph.D. OBJECTIVES 1. To identify the major sources of afferent inputs to the cerebellum 2. To define the pre-cerebellar nuclei from which the mossy and climbing fiber systems

More information

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement?

CASE 48. What part of the cerebellum is responsible for planning and initiation of movement? CASE 48 A 34-year-old woman with a long-standing history of seizure disorder presents to her neurologist with difficulty walking and coordination. She has been on phenytoin for several days after having

More information

The Cerebellum. Little Brain. Neuroscience Lecture. Dr. Laura Georgescu

The Cerebellum. Little Brain. Neuroscience Lecture. Dr. Laura Georgescu The Cerebellum Little Brain Neuroscience Lecture Dr. Laura Georgescu Learning Objectives 1. Describe functional anatomy of the cerebellum- its lobes, their input and output connections and their functions.

More information

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline.

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. The Cerebellum Cerebellum Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. Gray matter is external. White matter is internal,

More information

Connection of the cerebellum

Connection of the cerebellum CEREBELLUM Connection of the cerebellum The cerebellum has external layer of gray matter (cerebellar cortex ), & inner white matter In the white matter, there are 3 deep nuclei : (a) dentate nucleus laterally

More information

Abdullah AlZibdeh. Dr. Maha ElBeltagy. Maha ElBeltagy

Abdullah AlZibdeh. Dr. Maha ElBeltagy. Maha ElBeltagy 19 Abdullah AlZibdeh Dr. Maha ElBeltagy Maha ElBeltagy Introduction In this sheet, we discuss the cerebellum; its lobes, fissures and deep nuclei. We also go into the tracts and connections in which the

More information

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota Cerebellum Steven McLoon Department of Neuroscience University of Minnesota 1 Anatomy of the Cerebellum The cerebellum has approximately half of all the neurons in the central nervous system. The cerebellum

More information

Functions. Traditional view: Motor system. Co-ordination of movements Motor learning Eye movements. Modern view: Cognition

Functions. Traditional view: Motor system. Co-ordination of movements Motor learning Eye movements. Modern view: Cognition The Cerebellum Involved in motor coordination and timing Is simple and well documented Only has one type of output cell (Purkinje) The cerebellum influences motor activity through inhibition The Cerebellum

More information

Unit VIII Problem 5 Physiology: Cerebellum

Unit VIII Problem 5 Physiology: Cerebellum Unit VIII Problem 5 Physiology: Cerebellum - The word cerebellum means: the small brain. Note that the cerebellum is not completely separated into 2 hemispheres (they are not clearly demarcated) the vermis

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Medial View of Cerebellum

Medial View of Cerebellum Meds 5371 System Neuroscience D. L. Oliver CEREBELLUM Anterior lobe (spinal) Posterior lobe (cerebral) Flocculonodular lobe (vestibular) Medial View of Cerebellum 1 Ventral View of Cerebellum Flocculus

More information

The Cerebellum. Outline. Overview Structure (external & internal) Micro-circuitry of the cerebellum Cerebellum and motor learning

The Cerebellum. Outline. Overview Structure (external & internal) Micro-circuitry of the cerebellum Cerebellum and motor learning The Cerebellum P.T Ji Jun Cheol Rehabilitation Center 1 HansarangAsan Hospital. Outline Overview Structure (external & internal) Micro-circuitry of the cerebellum Cerebellum and motor learning 2 1 Cerebellum

More information

Faculty of Dental Medicine and Surgery. Sem 4 Cerebellum Dr. Abbas

Faculty of Dental Medicine and Surgery. Sem 4 Cerebellum Dr. Abbas Faculty of Dental Medicine and Surgery Sem 4 Cerebellum Dr. Abbas Anatomy of the cerebellum Cerebellum Configurations External - located in posterior cranial fossa - communicate with other structure via

More information

THE CEREBELLUM SUDIVISIONS, STRUCTURE AND CONNECTIONS

THE CEREBELLUM SUDIVISIONS, STRUCTURE AND CONNECTIONS THE CEREBELLUM Damage to the cerebellum produces characteristic symptoms primarily with respect to the coordination of voluntary movements. The cerebellum receives information from the skin, joints, muscles,

More information

THE CEREBELLUM. - anatomy of the cerebellum cerebellar nuclei cerebellar inputs and neuronal structure of the Purkinje cells outputs cerebellum

THE CEREBELLUM. - anatomy of the cerebellum cerebellar nuclei cerebellar inputs and neuronal structure of the Purkinje cells outputs cerebellum CHAPTER THE CEREBELLUM Key Terms - anatomy of the cerebellum cerebellar nuclei cerebellar inputs and neuronal structure of the Purkinje cells outputs cerebellum cerebellar disorders Figure 14.9 For each

More information

Cerebellum 1/20/2016. Outcomes you need to be able to demonstrate. MHD Neuroanatomy Module

Cerebellum 1/20/2016. Outcomes you need to be able to demonstrate. MHD Neuroanatomy Module This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Basal nuclei, cerebellum and movement

Basal nuclei, cerebellum and movement Basal nuclei, cerebellum and movement MSTN121 - Neurophysiology Session 9 Department of Myotherapy Basal Nuclei (Ganglia) Basal Nuclei (Ganglia) Role: Predict the effects of various actions, then make

More information

Motor System Hierarchy

Motor System Hierarchy Motor Pathways Lectures Objectives Define the terms upper and lower motor neurons with examples. Describe the corticospinal (pyramidal) tract and the direct motor pathways from the cortex to the trunk

More information

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review

1/2/2019. Basal Ganglia & Cerebellum a quick overview. Outcomes you want to accomplish. MHD-Neuroanatomy Neuroscience Block. Basal ganglia review This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the

More information

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 )

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 ) Systematic Anatomy Nervous system Cerebellum Dr.Hongqi Zhang ( 张红旗 ) Email: zhanghq58@126.com 1 The Cerebellum Cerebellum evolved and developed with the complication of animal movement. Key points about

More information

Strick Lecture 4 March 29, 2006 Page 1

Strick Lecture 4 March 29, 2006 Page 1 Strick Lecture 4 March 29, 2006 Page 1 Basal Ganglia OUTLINE- I. Structures included in the basal ganglia II. III. IV. Skeleton diagram of Basal Ganglia Loops with cortex Similarity with Cerebellar Loops

More information

Basal Nuclei (Ganglia)

Basal Nuclei (Ganglia) Doctor said he will not go deep within these slides because we will take them in physiology, so he will explain the anatomical structures, and he will go faster in the functions sheet in yellow Basal Nuclei

More information

FUNCTION: It COORDINATES movement HOW IT WORKS

FUNCTION: It COORDINATES movement HOW IT WORKS CEREBELLUM Chris Cohan, Ph.D. Dept. of Pathology/Anat Sci University at Buffalo Objectives: Describe the anatomy of the cerebellum, its 3 functions and associated regions Describe how the cerebellum influences

More information

The Cerebellum. Physiology #13 #CNS1

The Cerebellum. Physiology #13 #CNS1 Physiology #13 #CNS1 The cerebellum consists of cortex and deep nuclei, it is hugely condensed with gray mater (condensed with neurons (1/3 of the neurons of the brain)). Cerebellum contains 30 million

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

11/2/2011. Basic circuit anatomy (the circuit is the same in all parts of the cerebellum)

11/2/2011. Basic circuit anatomy (the circuit is the same in all parts of the cerebellum) 11/2/2011 Neuroscientists have been attracted to the puzzle of the Cerebellum ever since Cajal. The orderly structure, the size of the cerebellum and the regularity of the neural elements demands explanation.

More information

Voluntary Movement. Ch. 14: Supplemental Images

Voluntary Movement. Ch. 14: Supplemental Images Voluntary Movement Ch. 14: Supplemental Images Skeletal Motor Unit: The basics Upper motor neuron: Neurons that supply input to lower motor neurons. Lower motor neuron: neuron that innervates muscles,

More information

Developmental sequence of brain

Developmental sequence of brain Cerebellum Developmental sequence of brain Fourth week Fifth week Location of cerebellum Lies above and behind the medullar and pons and occupies posterior cranial fossa Location of cerebellum External

More information

Cerebellum, motor and cognitive functions: What are the common grounds? Eyal Cohen, PhD (Engineering, BIU)

Cerebellum, motor and cognitive functions: What are the common grounds? Eyal Cohen, PhD (Engineering, BIU) Cerebellum, motor and cognitive functions: What are the common grounds? 1 Eyal Cohen, PhD (Engineering, BIU) Cerebellum The Little Brain 2 The Cerebellum takes ~10% of the Brain in Volume Small but Hefty

More information

Lecture : Basal ganglia & Cerebellum By : Zaid Al-Ghnaneem

Lecture : Basal ganglia & Cerebellum By : Zaid Al-Ghnaneem Lecture : Basal ganglia & Cerebellum By : Zaid Al-Ghnaneem Some notes in the beginning : #1 : there is a slides file contains the sheet info as notes for those who love slides more than word papers. #2

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY CATHOLIC UNIVERSITY SEMMELWEIS UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

Making Things Happen 2: Motor Disorders

Making Things Happen 2: Motor Disorders Making Things Happen 2: Motor Disorders How Your Brain Works Prof. Jan Schnupp wschnupp@cityu.edu.hk HowYourBrainWorks.net On the Menu in This Lecture In the previous lecture we saw how motor cortex and

More information

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas:

1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: DENT/OBHS 131 2009 Take-home test 4 Week 6: Take-home test (2/11/09 close 2/18/09) 1. The cerebellum coordinates fine movement through interactions with the following motor-associated areas: Hypothalamus

More information

The Physiology of the Senses Chapter 8 - Muscle Sense

The Physiology of the Senses Chapter 8 - Muscle Sense The Physiology of the Senses Chapter 8 - Muscle Sense www.tutis.ca/senses/ Contents Objectives... 1 Introduction... 2 Muscle Spindles and Golgi Tendon Organs... 3 Gamma Drive... 5 Three Spinal Reflexes...

More information

The Embryology and Anatomy of the Cerebellum

The Embryology and Anatomy of the Cerebellum The Embryology and Anatomy of the Cerebellum Maryam Rahimi Balaei, Niloufar Ashtari, and Hugo Bergen Abstract The cerebellum is an important structure in the central nervous system that controls and regulates

More information

Ch 13: Central Nervous System Part 1: The Brain p 374

Ch 13: Central Nervous System Part 1: The Brain p 374 Ch 13: Central Nervous System Part 1: The Brain p 374 Discuss the organization of the brain, including the major structures and how they relate to one another! Review the meninges of the spinal cord and

More information

Pathways of proprioception

Pathways of proprioception The Autonomic Nervous Assess Prof. Fawzia Al-Rouq Department of Physiology College of Medicine King Saud University Pathways of proprioception System posterior column& Spinocerebellar Pathways https://www.youtube.com/watch?v=pmeropok6v8

More information

Computational cognitive neuroscience: 8. Motor Control and Reinforcement Learning

Computational cognitive neuroscience: 8. Motor Control and Reinforcement Learning 1 Computational cognitive neuroscience: 8. Motor Control and Reinforcement Learning Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava 2 Sensory-motor loop The essence

More information

Announcement. Danny to schedule a time if you are interested.

Announcement.  Danny to schedule a time if you are interested. Announcement If you need more experiments to participate in, contact Danny Sanchez (dsanchez@ucsd.edu) make sure to tell him that you are from LIGN171, so he will let me know about your credit (1 point).

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Fundamental Neuroscience (2 nd Edition): Section V. MOTOR SYSTEMS Chapter 32: Cerebellum James C. Houk and Enrico Mugnaini

Fundamental Neuroscience (2 nd Edition): Section V. MOTOR SYSTEMS Chapter 32: Cerebellum James C. Houk and Enrico Mugnaini Fundamental Neuroscience (2 nd Edition): Section V. MOTOR SYSTEMS Chapter 32: Cerebellum James C. Houk and Enrico Mugnaini The cerebellum (Latin for little brain ) is a strategic part of the nervous system.

More information

Subcortical Motor Systems: cerebellum

Subcortical Motor Systems: cerebellum Outline Subcortical Motor Systems: cerebellum 陽明大學醫學院腦科所陳昌明副教授 Anatomy Cerebellar cortex Neuronal circuitry Cerebellar connections Vestibulocerebellum Spinocerebellum Neocerebellum Other cerebellar functions

More information

The Brain Worksheet Sections 5-7

The Brain Worksheet Sections 5-7 The Brain Worksheet Sections 5-7 1. neuroglia 2. autonomic nervous system 3. sensory neurons 4. oligodendrocytes 5. ascending tracts 6. descending tracts 7. saltatory propagation 8. continuous propagation

More information

Medical Neuroscience Tutorial

Medical Neuroscience Tutorial Pain Pathways Medical Neuroscience Tutorial Pain Pathways MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation

More information

3) Approach to Ataxia - Dr. Zana

3) Approach to Ataxia - Dr. Zana 3) Approach to Ataxia - Dr. Zana Introduction Ataxia is derived from Greek word a -not, taxis -orderly, (not orderly/ not in order) Ataxia is the inability to make smooth, accurate and coordinated movements

More information

Cerebellum: Origins and Development

Cerebellum: Origins and Development Cerebellum: Origins and Development Found in all vertebrates Dorsal lip of developing medulla (rhombencephalon) Near terminations of vestibular (VIII) and lateral line afferents, which sense fluid displacement

More information

CNS MCQ 2 nd term. Select the best answer:

CNS MCQ 2 nd term. Select the best answer: Select the best answer: CNS MCQ 2 nd term 1) Vestibular apparatus: a) Represent the auditory part of the labyrinth. b) May help in initiating the voluntary movements. c) Contains receptors concerned with

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

SENSORY (ASCENDING) SPINAL TRACTS

SENSORY (ASCENDING) SPINAL TRACTS SENSORY (ASCENDING) SPINAL TRACTS Dr. Jamila El-Medany Dr. Essam Eldin Salama OBJECTIVES By the end of the lecture, the student will be able to: Define the meaning of a tract. Distinguish between the different

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

Exam 1 PSYC Fall 1998

Exam 1 PSYC Fall 1998 Exam 1 PSYC 2022 Fall 1998 (2 points) Briefly describe the difference between a dualistic and a materialistic explanation of brain-mind relationships. (1 point) True or False. George Berkely was a monist.

More information

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004 Chapter 3 Structure and Function of the Nervous System 1 Basic Features of the Nervous System Neuraxis: An imaginary line drawn through the center of the length of the central nervous system, from the

More information

Biological Bases of Behavior. 8: Control of Movement

Biological Bases of Behavior. 8: Control of Movement Biological Bases of Behavior 8: Control of Movement m d Skeletal Muscle Movements of our body are accomplished by contraction of the skeletal muscles Flexion: contraction of a flexor muscle draws in a

More information

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:.

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. Cortical Organization Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. 2. Secondary cortex: located immediately adjacent to primary cortical areas,

More information

CEREBRAL CORTEX CHAPTER. caudate nucleus. nucleus. Key Terms. Chapter 13 in a Nutshell REB RAL RES

CEREBRAL CORTEX CHAPTER. caudate nucleus. nucleus. Key Terms. Chapter 13 in a Nutshell REB RAL RES caudate nucleus CHAPTER Key Terms anatomy of the cortex hemisphere asymmetry Brodmann areas motor and premotor areas rnotor body maps corticospinal tract neuronal population studies cortical inputs and

More information

Nervous System C H A P T E R 2

Nervous System C H A P T E R 2 Nervous System C H A P T E R 2 Input Output Neuron 3 Nerve cell Allows information to travel throughout the body to various destinations Receptive Segment Cell Body Dendrites: receive message Myelin sheath

More information

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m.

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m. Normal CNS, Special Senses, Head and Neck TOPIC: CEREBRAL HEMISPHERES FACULTY: LECTURE: READING: P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center Wednesday, 16 March

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

MODULE 6: CEREBELLUM AND BASAL GANGLIA

MODULE 6: CEREBELLUM AND BASAL GANGLIA MODULE 6: CEREBELLUM AND BASAL GANGLIA This module will summarize the important neuroanatomical and key clinical concepts from Chapters 15 and 16 of the textbook for the course. The first part of this

More information

Brain Stem and cortical control of motor function. Dr Z Akbari

Brain Stem and cortical control of motor function. Dr Z Akbari Brain Stem and cortical control of motor function Dr Z Akbari Brain stem control of movement BS nuclear groups give rise to descending motor tracts that influence motor neurons and their associated interneurons

More information

Chapter 8. Control of movement

Chapter 8. Control of movement Chapter 8 Control of movement 1st Type: Skeletal Muscle Skeletal Muscle: Ones that moves us Muscles contract, limb flex Flexion: a movement of a limb that tends to bend its joints, contraction of a flexor

More information

Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018

Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Dr Maha ELbeltagy THE BRAIN STEM Dr Maha ELbeltagy It includes: Midbrain - Pons - Medulla

More information

Histology of the CNS

Histology of the CNS Histology of the CNS Lecture Objectives Describe the histology of the cerebral cortex layers. Describe the histological features of the cerebellum; layers and cells of cerebellar cortex. Describe the elements

More information

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota Brainstem Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Change in Lab Sequence Week of Oct 2 Lab 5 Week of Oct 9 Lab 4 2 Goal Today Know the regions of the brainstem. Know

More information

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific

More information

Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal.

Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal. Dental Neuroanatomy Thursday, February 3, 2011 Suzanne Stensaas, PhD Note: Waxman is very sketchy on today s pathways and nonexistent on the Trigeminal. Resources: Pathway Quiz for HyperBrain Ch. 5 and

More information

Auditory and Vestibular Systems

Auditory and Vestibular Systems Auditory and Vestibular Systems Objective To learn the functional organization of the auditory and vestibular systems To understand how one can use changes in auditory function following injury to localize

More information

FIRST PROOF. Cerebellum. Article Number : EONS : 0736

FIRST PROOF. Cerebellum. Article Number : EONS : 0736 Cerebellum THE HUMAN CEREBELLUM ( little brain ) is a significant part of the central nervous system both in size and in neural structure. It occupies approximately one-tenth of the cranial cavity, sitting

More information

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington Motor systems... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington 1 Descending pathways: CS corticospinal; TS tectospinal; RS reticulospinal; VS

More information

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section)

Homework Week 2. PreLab 2 HW #2 Synapses (Page 1 in the HW Section) Homework Week 2 Due in Lab PreLab 2 HW #2 Synapses (Page 1 in the HW Section) Reminders No class next Monday Quiz 1 is @ 5:30pm on Tuesday, 1/22/13 Study guide posted under Study Aids section of website

More information

Spinal Interneurons. Control of Movement

Spinal Interneurons. Control of Movement Control of Movement Spinal Interneurons Proprioceptive afferents have a variety of termination patterns in the spinal cord. This can be seen by filling physiologically-identified fibers with HRP, so their

More information

Overview of Brain Structures

Overview of Brain Structures First Overview of Brain Structures Psychology 470 Introduction to Chemical Additions Steven E. Meier, Ph.D. All parts are interrelated. You need all parts to function normally. Neurons = Nerve cells Listen

More information

Organization of Motor Functions 4.

Organization of Motor Functions 4. Organization of Motor Functions 4. Dr. Attila Nagy 2018 Sensory-motor system Limbic cortex Structure Subcortical Motivational sub areas Frontal cortex Task Motivation Sequence Plan Tim e Ascending system

More information

Lecturer. Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014

Lecturer. Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014 Lecturer Prof. Dr. Ali K. Al-Shalchy MBChB/ FIBMS/ MRCS/ FRCS 2014 Dorsal root: The dorsal root carries both myelinated and unmyelinated afferent fibers to the spinal cord. Posterior gray column: Long

More information

The motor regulator. 2) The cerebellum

The motor regulator. 2) The cerebellum The motor regulator 2) The cerebellum Motor control systems outside the cortex Cerebellum -controls neural programs for the executionl of skilled movements Cerebellar Peduncles Atlas Fig. 2-31 Atlas Fig.

More information

The Motor Systems. What s the motor system? Plan

The Motor Systems. What s the motor system? Plan The Motor Systems What s the motor system? Parts of CNS and PNS specialized for control of limb, trunk, and eye movements Also holds us together From simple reflexes (knee jerk) to voluntary movements

More information

Page 1 L 58. The University of Connecticut Schools of Medicine and Dental Medicine Humans Systems: Organ Systems /2013 RETICULAR FORMATION

Page 1 L 58. The University of Connecticut Schools of Medicine and Dental Medicine Humans Systems: Organ Systems /2013 RETICULAR FORMATION Page 1 L 58 Douglas L. Oliver, Ph.D. The University of Connecticut Schools of Medicine and Dental Medicine Humans Systems: Organ Systems 1 2012/2013 RETICULAR FORMATION Lecture Lecture: Douglas Oliver

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 21 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Overview of Sensations (p. 652) 1. Sensation is the conscious or subconscious awareness of external or internal stimuli. 2. For a sensation

More information

The Brain. Brain. Spinal Cord. Cauda Equina

The Brain. Brain. Spinal Cord. Cauda Equina The Brain Brain Spinal Cord Cauda Equina The Brain Ventricles- cavities in the brain filled with cerebrospinal fluid connected to the subarachnoid space- fluid filled space surrounding the brain Brain

More information

Notes: Organization. Anatomy of the Nervous System. Cerebral cortex. Cortical layers. PSYC 2: Biological Foundations - Fall Professor Claffey

Notes: Organization. Anatomy of the Nervous System. Cerebral cortex. Cortical layers. PSYC 2: Biological Foundations - Fall Professor Claffey PSYC 2: Biological Foundations - Fall 2012 - Professor Claffey Notes: Organization Version: 10/30/12 - original version Anatomy of the Nervous System Content covered in Hans's lecture: CNS & PNS Directions/Planes

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12

Neocortex. Cortical Structures in the Brain. Neocortex Facts. Laminar Organization. Bark-like (cortical) structures: Shepherd (2004) Chapter 12 Neocortex Shepherd (2004) Chapter 12 Rodney Douglas, Henry Markram, and Kevan Martin Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Cortical Structures in the Brain Bark-like (cortical) structures:

More information

Spinal Cord Tracts DESCENDING SPINAL TRACTS: Are concerned with somatic motor function, modification of ms. tone, visceral innervation, segmental reflexes. Main tracts arise form cerebral cortex and others

More information

General Sensory Pathways of the Trunk and Limbs

General Sensory Pathways of the Trunk and Limbs General Sensory Pathways of the Trunk and Limbs Lecture Objectives Describe gracile and cuneate tracts and pathways for conscious proprioception, touch, pressure and vibration from the limbs and trunk.

More information

The motor regulator. 2) The cerebellum

The motor regulator. 2) The cerebellum The motor regulator 2) The cerebellum Motor control systems outside the cortex Cerebellum -controls neural programs for the executionl of skilled movements Feed-back and feed-forward control circuits By

More information

Movement Disorders Will Garrett, M.D Assistant Professor of Neurology

Movement Disorders Will Garrett, M.D Assistant Professor of Neurology Movement Disorders Will Garrett, M.D Assistant Professor of Neurology I. The Basal Ganglia The basal ganglia are composed of several structures including the caudate and putamen (collectively called the

More information

CYTOARCHITECTURE OF CEREBRAL CORTEX

CYTOARCHITECTURE OF CEREBRAL CORTEX BASICS OF NEUROBIOLOGY CYTOARCHITECTURE OF CEREBRAL CORTEX ZSOLT LIPOSITS 1 CELLULAR COMPOSITION OF THE CEREBRAL CORTEX THE CEREBRAL CORTEX CONSISTS OF THE ARCHICORTEX (HIPPOCAMPAL FORMA- TION), PALEOCORTEX

More information

Somatosensory System. Steven McLoon Department of Neuroscience University of Minnesota

Somatosensory System. Steven McLoon Department of Neuroscience University of Minnesota Somatosensory System Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Dr. Riedl s review session this week: Tuesday (Oct 10) 4-5pm in MCB 3-146B 2 Sensory Systems Sensory

More information

Indicate whether the statement is true (A) or false (B).

Indicate whether the statement is true (A) or false (B). Bio70 Psychobiology Fall 2006 First Midterm October 12 Version A You must put your name and student ID number on both the paper test and your Scantron. Make sure to put the test version number on your

More information