Genetically Generated Neural Networks I: Representational Effects

Size: px
Start display at page:

Download "Genetically Generated Neural Networks I: Representational Effects"

Transcription

1 Boston University OpenBU Cognitive & Neural Systems CAS/CNS Technical Reports Genetically Generated Neural Networks I: Representational Effects Marti, Leonardo Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems Boston University

2 GENETICALLY GENERATED NEURAL NETWORKS I: REPRESENTATIONAL EFFECTS Leonardo Marti February, 1992 Technical Report CAS/CNS Permission to copy without fee all or part of this material is granted provided that: 1. the copies are not made or distributed for direct commercial advantage, 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of the BOSTON UNIVERSITY CENTER FOR ADAPTIVE SYSTEMS AND DEPARTMENT OF COGNITIVE AND NEURAL SYSTEMS. To copy otherwise, or to republish, requires a fee and/or special permission Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems 111 Cummington Street Boston, MA 02215

3 Genetically Generated Neural Networks I: Representational Effects Leonardo Marti Boston University Center for Adaptive Systems 111 Cummington Street Boston, MA Abstract This paper studies several applications of genetic algorithms (GAs) within the neural networks field. After generating a robust GA engine, the system was used to generate neural network circuit architectures. This was accomplished by using the GA to determine the weights in a fully interconnected network. The importance of the internal genetic representation was shown by testing different approaches. The effects in speed of optimization of varying the constraints imposed upon the desired network were also studied. It was observed that relatively loose constraints provided results comparable to a fully constn1ined system. The type of neural network circuits generated were recurrent competitive fields as described by Grossberg (1982). I. Introduction Genetic Algorithms (GAs) have a lot in common with neural networks. While used in engineering applications, neural networks are noted for their neurobiological foundations. GAs are also based on biological foundations. However, not all known natural genetic functions have been incorporated into GAs. GAs have been used mainly as search and optimization procedures. Natural genetics perform some of these tasks, but more importantly, genetic material contains the "program" for life-building. Although recent discoveries (I-Io & Fox, 1988) have changed our view on this "program", it is still undisputed that the genetic material (DNA, RNA) contains enough information to generate an organism. A genetic system consists of a population of orga.nisrns or individuals where each member is composed of a. gene. A gene is composed of a. string of alleles. In this particular case, alleles arc represented a.s single bit binary values. An initial population of an arbitrary number of members is created by assigning random values to each allele. Once the population is established, each individual's gene is tested against some metric. This can be seen a.s their "life" performance, generating a probability of reproduction. Once all individuals have been tested (have "lived") the individuals with higher performance will be more likely to procreate and pass on their genes.

4 This paper uses GAs to search for the parameters that describe a neural network. These parameters will be used to generate such a network and to analyze its behavior when required to perform a specific task. The aim here is not only to use GAs as a parameter search tool, but as a code building tool. Garis (1990), Miller, Todd, & Hegde (1989), and Harp, Samad, & Guha, (1989) have done some work in this direction. The Miller, Todd, & Hegde's system (1989) can't be considered strictly a network building model, but as a network design or configuration system. It basically determines the weight values in a fully interconnected network where the number of nodes is predetermined. Harp, Samad, & Guha (1989) on the other hand, determine the number of nodes and their connectivity in a fairly complete way. Here, the type of network searched for will be of a more biologically based type. The internal genetic representation is critical to the speed and optimization level of a genetic system. This was shown by testing different approaches to the genome representation. In order to further accelerate the optimization process, the effects of varying the constraints imposed upon the desired network were also studied. In this paper, the formation of subsequent generations is based on two genetic operators: mutation and crossover. Mutation is performed by switching each allele to its complementary value with certain probability. Crossovers are performed by selecting two individuals from the population for reproduction. A crossover point is randomly selected somewhere along the extent of the gene, and two progenitors arc generated by switching the genetic material of the two progenitors after the point chosen. In the simulations carried out here, the probability of mutation was The probability of crossover was In addition, the genome of the best individual of each generation was copied unchanged for the next gcnemtion. For further reference on genetic operations and implementation details see Goldberg (1989). II. System Description An approach similar to that of Miller, Todd, & Hegde (1989) was used. A network of fixed node size was implemented. The connections between nodes were represented by a 4 by 4 rnatrix. The Gi\ was used to find which connections should exist and whether these should be inhibitory or excitatory. The activation equation was of the form: d~~; =-Ax;+ (B- a:;)(i; +I; f(xg))- (x; +D) I; f(tch) where a:; is node i from 1 to 4, A, B and D are constants set at 6.0, 5.0, 5.0 respectively, f(x) is the neuron's feedback equation (f(x) = x; if x > 0 otherwise f(x) = 0), g is the set of excitatory nodes, and h the set of inhibitory nodes. The sets of excitatory and inhibitory nodes are deterrninecl by the contents of the genome. For the target circuit, g was the node itself (.f(x;)), and h consisted of every other node (L:hti f(xh)). 'I'he representation of the matrix in the genome was implemented by allocating two alleles to each connection. So, locations l a.nd 2 specify the type of connectivity between node 1 and itself. Locations 3 and 4 specify the type of connectivity between node 1 and node 2, and so on. The meaning of each pair of alleles is shown in Table 1. In the current experiment, the exact resulting circuit and its response curve were known a priori, so a measure of the difference from this curve was used as the function to be maximized. 2

5 Allele pair Connection 00 Disconnected 01 Disconnected 10 Inhibitory 11 Excitatory Table 1: Table for allele representation of connection The problem studied with this setup was a network of feedback nodes. The target configuration was a recurrent competitive feedback circuit (Grossberg, 1982), as shown in Figure l. OUTPUT,, INPUT Figure 1: Competitive recurrent circuit. For clarity, only node 2 is shown with all its efferent connections. III. Representation Modifications The setup just described did not converge to an optimal result within a reasonable time ( 400 generations). An <malysis of the schemata. (similarity templates) involved in the representation of connections, reveals that it is more likely for the system to change genetic material from one state to a state with lower fitness, rather than to a state with higher fitness. This is due to the allele representation, in conjunction with the metric used, and the manner in which crossover <md mutation affects genes. For example, let's assume that a given connection was initially set as not connected (00) when the optimal setting is excitatory (11). Since the probabilities of rnutation are quite low (0.0:3) compared with the probabilities of crossover (1.0), it is quite unlikely that both alleles will be mutated during the same generation in the same individual, therefore, making crossover the more likely candidate for improving performance. This means that a population member with values of 10 rnust be combined with another member with values of 01. But a setting of 10 is of lower fitness tha.n the original setting of 00. So the member with the lower fitness is quite unlikely to survive and reproduce, in effect slowing the improvement of genetic material. In order to avoid this problem, the representation must allow for stepwise improvements in performance through the combination of short length schemata. Crossover should be equally likely to move the schemata to any possible state. This can be achieved in a number of ways. One possible solution would be to use a tri-valued allele, where mutation would be equally likely to 3

6 switch to any state. This option would avoid the problem of crossover effects on schemata, by not allowing crossover to modify the type of connection used. The solution chosen still maintains hi-valued alleles, but the meaning of the alleles has been altered. Table 2 shows the table for a connection under the new configuration. Here, it is quite likely that an excitatory connection will eventually move to a disconnected state, and from a disconnected state it is possible to move to either an excitatory or inhibitory state. Allele pair Connection 00 Inhibitory 01 Disconnected 10 Disconnected 11 Excitatory Table 2: Table for new allele representation of connection,,,,,,,, ~-J ' '---~-- x, x, Figure 2: Left: Input sequence. Right: Output of recurrent competitive recurrent circuit A characteristic response curve similar to the one shown in Figure 2 was requested, given the shown inputs. Since this curve docs not contain all possible cornbinations of inputs, the optimal circuit may respond unexpectedly to inputs not tested. The resulting network matched exactly that of Figure 1.. As desired, the network contains both positive feedback within all the nodes <mel inhibitory connections to all other nodes. This shows that all possible inputs need not be tested in order to provide sufficient constraints for a. unique system. The improvement in fitness across generations is shown in Figure 3. The fitness function used was: 4

7 O(x) = L,(I<, - Yt) where K, is the optimal output value at timet, and y, the actual output from the network at timet Jr------r ~ r max - avg - --~ min Figure 3: Best, worst, and average population members of the search for i1 recurrent competitive network over 150 generations. IV. Constraint Modification At this point, the fitness function Wi1S simplified in order to provide feedback only when the node's activation had settled after each input had changed. 'I'he output activations were then compared with two threshold levels, giving three possible states: ina.ctive, inhibited and excited. 'I'hc discrete result was then compared with a table of the desired network. The disparity frorn the table was then used as the metric to be optimized. This simpler method of network specification was similarly robust in guiding the GA towm ds the desired network specification. Since the calculation of the metric is now simpler, the system executed i1 similar number of generations in less time (about half). V. Conclusions 'I'he design and use of neural sub-systems is a complex a.re<t that merits further research. In the present study, only sm<tll, fix-sized networks were tre<tted. How these networks c<tn increase in size, how they are maintained, modifted, and coupled to form more complex systems is an important <trei1 that must be investigated to better understand the evolutionary processes. The present study shows the importm1t intemction between schemata <tnd intern<tl represcnt<ttion. As a genetic system grows more complex, a methodical testing of the effects of genetic 5

8 operators is necessary. If novel genetic operations are to prove their usefulness, work of the type performed by De Jong (1975), is required. Similarly, other network specification representations should be studied, to observe effects such as the one described here. The present study also shows how partially constraining a system may be enough to orient the search in the proper direction. It can't be generalized to all problem areas, but it can be used to simplify a genetic system when it becomes too complex. References De Jong, K. A. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. (Doctora.l dissertation, University of Michigan). Dissertation Abstracts International 36 (10), (University Microfilms No ) de Garis, H. (1990) Genetic Programming. Mllchine Le<trning: Proceedings of the Seventh Inl.erna.tiomtl Conference, Goldberg, D. E. (1989). Addison-Wesley, Reading. Genetic Algorithms in Sea.rch, Optimizlltion a.nd Machine Lca.ming, Grossberg, S. (1982). Studies of Mind and Brain: Neurlll Principles of Lcllrning, Perception, Development, Cognition, and Motor Control, Reidel Press, Boston. Harp, S. A, Sa.mad, T. & Guha, A., (1989) Towards the Genetic Synthesis of Neural Networks. Proceedings of the Third Conference on Genetic Algorithms, Morgan Ka.ufmann, Sa.n Mateo. Ho, M. & Fox, Sidney W. (1988). Processes and Metaphors in Evolution. In Ho, Mae-Wan & Fox, Sidney W. Eds. Evolutionmy Processes and Metaphors John Wiley & Sons Ltd. Chichester. Miller, G. F., 'I'odd, P. M. & l-iegde, S. U. (1989) Designing Neural Networks using Genetic Algorithrns. Proceedings of the Third Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo. 6

Evolutionary Programming

Evolutionary Programming Evolutionary Programming Searching Problem Spaces William Power April 24, 2016 1 Evolutionary Programming Can we solve problems by mi:micing the evolutionary process? Evolutionary programming is a methodology

More information

A Neural Theory of Visual Search: Recursive Attention to Segmentations and Surfaces

A Neural Theory of Visual Search: Recursive Attention to Segmentations and Surfaces Boston University OpenBU Cognitive & Neural Systems http://open.bu.edu CAS/CNS Technical Reports 1993-01 A Neural Theory of Visual Search: Recursive Attention to Segmentations and Surfaces Grossberg, Stephen

More information

Sparse Coding in Sparse Winner Networks

Sparse Coding in Sparse Winner Networks Sparse Coding in Sparse Winner Networks Janusz A. Starzyk 1, Yinyin Liu 1, David Vogel 2 1 School of Electrical Engineering & Computer Science Ohio University, Athens, OH 45701 {starzyk, yliu}@bobcat.ent.ohiou.edu

More information

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence To understand the network paradigm also requires examining the history

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 7: Network models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells Neurocomputing, 5-5:389 95, 003. Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells M. W. Spratling and M. H. Johnson Centre for Brain and Cognitive Development,

More information

An Escalation Model of Consciousness

An Escalation Model of Consciousness Bailey!1 Ben Bailey Current Issues in Cognitive Science Mark Feinstein 2015-12-18 An Escalation Model of Consciousness Introduction The idea of consciousness has plagued humanity since its inception. Humans

More information

Realization of Visual Representation Task on a Humanoid Robot

Realization of Visual Representation Task on a Humanoid Robot Istanbul Technical University, Robot Intelligence Course Realization of Visual Representation Task on a Humanoid Robot Emeç Erçelik May 31, 2016 1 Introduction It is thought that human brain uses a distributed

More information

Genetic Algorithms and their Application to Continuum Generation

Genetic Algorithms and their Application to Continuum Generation Genetic Algorithms and their Application to Continuum Generation Tracy Moore, Douglass Schumacher The Ohio State University, REU, 2001 Abstract A genetic algorithm was written to aid in shaping pulses

More information

Artificial Neural Networks (Ref: Negnevitsky, M. Artificial Intelligence, Chapter 6)

Artificial Neural Networks (Ref: Negnevitsky, M. Artificial Intelligence, Chapter 6) Artificial Neural Networks (Ref: Negnevitsky, M. Artificial Intelligence, Chapter 6) BPNN in Practice Week 3 Lecture Notes page 1 of 1 The Hopfield Network In this network, it was designed on analogy of

More information

Spiking Inputs to a Winner-take-all Network

Spiking Inputs to a Winner-take-all Network Spiking Inputs to a Winner-take-all Network Matthias Oster and Shih-Chii Liu Institute of Neuroinformatics University of Zurich and ETH Zurich Winterthurerstrasse 9 CH-857 Zurich, Switzerland {mao,shih}@ini.phys.ethz.ch

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Motivation and Goals The increasing availability and decreasing cost of high-throughput (HT) technologies coupled with the availability of computational tools and data form a

More information

The Evolution of Cooperation: The Genetic Algorithm Applied to Three Normal- Form Games

The Evolution of Cooperation: The Genetic Algorithm Applied to Three Normal- Form Games The Evolution of Cooperation: The Genetic Algorithm Applied to Three Normal- Form Games Scott Cederberg P.O. Box 595 Stanford, CA 949 (65) 497-7776 (cederber@stanford.edu) Abstract The genetic algorithm

More information

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention

Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention Oscillatory Neural Network for Image Segmentation with Biased Competition for Attention Tapani Raiko and Harri Valpola School of Science and Technology Aalto University (formerly Helsinki University of

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 5: Data analysis II Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single

More information

The storage and recall of memories in the hippocampo-cortical system. Supplementary material. Edmund T Rolls

The storage and recall of memories in the hippocampo-cortical system. Supplementary material. Edmund T Rolls The storage and recall of memories in the hippocampo-cortical system Supplementary material Edmund T Rolls Oxford Centre for Computational Neuroscience, Oxford, England and University of Warwick, Department

More information

Direct memory access using two cues: Finding the intersection of sets in a connectionist model

Direct memory access using two cues: Finding the intersection of sets in a connectionist model Direct memory access using two cues: Finding the intersection of sets in a connectionist model Janet Wiles, Michael S. Humphreys, John D. Bain and Simon Dennis Departments of Psychology and Computer Science

More information

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Communicated by Richard Andersen 1 A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Shawn R. Lockery Yan Fang Terrence J. Sejnowski Computational Neurobiological Laboratory,

More information

Learning and Adaptive Behavior, Part II

Learning and Adaptive Behavior, Part II Learning and Adaptive Behavior, Part II April 12, 2007 The man who sets out to carry a cat by its tail learns something that will always be useful and which will never grow dim or doubtful. -- Mark Twain

More information

A model of the interaction between mood and memory

A model of the interaction between mood and memory INSTITUTE OF PHYSICS PUBLISHING NETWORK: COMPUTATION IN NEURAL SYSTEMS Network: Comput. Neural Syst. 12 (2001) 89 109 www.iop.org/journals/ne PII: S0954-898X(01)22487-7 A model of the interaction between

More information

Lesson 6 Learning II Anders Lyhne Christensen, D6.05, INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS

Lesson 6 Learning II Anders Lyhne Christensen, D6.05, INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS Lesson 6 Learning II Anders Lyhne Christensen, D6.05, anders.christensen@iscte.pt INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS First: Quick Background in Neural Nets Some of earliest work in neural networks

More information

Genetic Algorithm for Solving Simple Mathematical Equality Problem

Genetic Algorithm for Solving Simple Mathematical Equality Problem Genetic Algorithm for Solving Simple Mathematical Equality Problem Denny Hermawanto Indonesian Institute of Sciences (LIPI), INDONESIA Mail: denny.hermawanto@gmail.com Abstract This paper explains genetic

More information

Revisiting the Personal Satellite Assistant: Neuroevolution with a Modified Enforced Sub-Populations Algorithm

Revisiting the Personal Satellite Assistant: Neuroevolution with a Modified Enforced Sub-Populations Algorithm Revisiting the Personal Satellite Assistant: Neuroevolution with a Modified Enforced Sub-Populations Algorithm Boye A. Høverstad Complex Adaptive Organically Inspired Systems Group (CAOS) Department of

More information

Genetic Algorithm for Scheduling Courses

Genetic Algorithm for Scheduling Courses Genetic Algorithm for Scheduling Courses Gregorius Satia Budhi, Kartika Gunadi, Denny Alexander Wibowo Petra Christian University, Informatics Department Siwalankerto 121-131, Surabaya, East Java, Indonesia

More information

CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures. Instructor: Chad Jenkins (cjenkins)

CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures. Instructor: Chad Jenkins (cjenkins) Lecture 5 Control Architectures Slide 1 CS148 - Building Intelligent Robots Lecture 5: Autonomus Control Architectures Instructor: Chad Jenkins (cjenkins) Lecture 5 Control Architectures Slide 2 Administrivia

More information

Learning Classifier Systems (LCS/XCSF)

Learning Classifier Systems (LCS/XCSF) Context-Dependent Predictions and Cognitive Arm Control with XCSF Learning Classifier Systems (LCS/XCSF) Laurentius Florentin Gruber Seminar aus Künstlicher Intelligenz WS 2015/16 Professor Johannes Fürnkranz

More information

Modeling of Hippocampal Behavior

Modeling of Hippocampal Behavior Modeling of Hippocampal Behavior Diana Ponce-Morado, Venmathi Gunasekaran and Varsha Vijayan Abstract The hippocampus is identified as an important structure in the cerebral cortex of mammals for forming

More information

A toy model of the brain

A toy model of the brain A toy model of the brain arxiv:q-bio/0405002v [q-bio.nc] 2 May 2004 B. Hoeneisen and F. Pasmay Universidad San Francisco de Quito 30 March 2004 Abstract We have designed a toy brain and have written computer

More information

Biologically-Inspired Control in Problem Solving. Thad A. Polk, Patrick Simen, Richard L. Lewis, & Eric Freedman

Biologically-Inspired Control in Problem Solving. Thad A. Polk, Patrick Simen, Richard L. Lewis, & Eric Freedman Biologically-Inspired Control in Problem Solving Thad A. Polk, Patrick Simen, Richard L. Lewis, & Eric Freedman 1 Computational Models of Control Challenge: Develop computationally explicit theories of

More information

Observational Learning Based on Models of Overlapping Pathways

Observational Learning Based on Models of Overlapping Pathways Observational Learning Based on Models of Overlapping Pathways Emmanouil Hourdakis and Panos Trahanias Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH) Science and Technology

More information

CHAPTER I From Biological to Artificial Neuron Model

CHAPTER I From Biological to Artificial Neuron Model CHAPTER I From Biological to Artificial Neuron Model EE543 - ANN - CHAPTER 1 1 What you see in the picture? EE543 - ANN - CHAPTER 1 2 Is there any conventional computer at present with the capability of

More information

Reactive agents and perceptual ambiguity

Reactive agents and perceptual ambiguity Major theme: Robotic and computational models of interaction and cognition Reactive agents and perceptual ambiguity Michel van Dartel and Eric Postma IKAT, Universiteit Maastricht Abstract Situated and

More information

A Learning Method of Directly Optimizing Classifier Performance at Local Operating Range

A Learning Method of Directly Optimizing Classifier Performance at Local Operating Range A Learning Method of Directly Optimizing Classifier Performance at Local Operating Range Lae-Jeong Park and Jung-Ho Moon Department of Electrical Engineering, Kangnung National University Kangnung, Gangwon-Do,

More information

ENVIRONMENTAL REINFORCEMENT LEARNING: A Real-time Learning Architecture for Primitive Behavior Refinement

ENVIRONMENTAL REINFORCEMENT LEARNING: A Real-time Learning Architecture for Primitive Behavior Refinement ENVIRONMENTAL REINFORCEMENT LEARNING: A Real-time Learning Architecture for Primitive Behavior Refinement TaeHoon Anthony Choi, Eunbin Augustine Yim, and Keith L. Doty Machine Intelligence Laboratory Department

More information

Dynamics of Hodgkin and Huxley Model with Conductance based Synaptic Input

Dynamics of Hodgkin and Huxley Model with Conductance based Synaptic Input Proceedings of International Joint Conference on Neural Networks, Dallas, Texas, USA, August 4-9, 2013 Dynamics of Hodgkin and Huxley Model with Conductance based Synaptic Input Priyanka Bajaj and Akhil

More information

Artificial Intelligence For Homeopathic Remedy Selection

Artificial Intelligence For Homeopathic Remedy Selection Artificial Intelligence For Homeopathic Remedy Selection A. R. Pawar, amrut.pawar@yahoo.co.in, S. N. Kini, snkini@gmail.com, M. R. More mangeshmore88@gmail.com Department of Computer Science and Engineering,

More information

Intelligent Control Systems

Intelligent Control Systems Lecture Notes in 4 th Class in the Control and Systems Engineering Department University of Technology CCE-CN432 Edited By: Dr. Mohammed Y. Hassan, Ph. D. Fourth Year. CCE-CN432 Syllabus Theoretical: 2

More information

Trip generation: comparison of neural networks and regression models

Trip generation: comparison of neural networks and regression models Trip generation: comparison of neural networks and regression models F. Tillema, K. M. van Zuilekom & M. F. A. M van Maarseveen Centre for Transport Studies, Civil Engineering, University of Twente, The

More information

Computational & Systems Neuroscience Symposium

Computational & Systems Neuroscience Symposium Keynote Speaker: Mikhail Rabinovich Biocircuits Institute University of California, San Diego Sequential information coding in the brain: binding, chunking and episodic memory dynamics Sequential information

More information

Learning to play Mario

Learning to play Mario 29 th Soar Workshop Learning to play Mario Shiwali Mohan University of Michigan, Ann Arbor 1 Outline Why games? Domain Approaches and results Issues with current design What's next 2 Why computer games?

More information

Hierarchical dynamical models of motor function

Hierarchical dynamical models of motor function ARTICLE IN PRESS Neurocomputing 70 (7) 975 990 www.elsevier.com/locate/neucom Hierarchical dynamical models of motor function S.M. Stringer, E.T. Rolls Department of Experimental Psychology, Centre for

More information

ERA: Architectures for Inference

ERA: Architectures for Inference ERA: Architectures for Inference Dan Hammerstrom Electrical And Computer Engineering 7/28/09 1 Intelligent Computing In spite of the transistor bounty of Moore s law, there is a large class of problems

More information

Self-Organization and Segmentation with Laterally Connected Spiking Neurons

Self-Organization and Segmentation with Laterally Connected Spiking Neurons Self-Organization and Segmentation with Laterally Connected Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 USA Risto Miikkulainen Department

More information

Assignment Question Paper I

Assignment Question Paper I Subject : - Discrete Mathematics Maximum Marks : 30 1. Define Harmonic Mean (H.M.) of two given numbers relation between A.M.,G.M. &H.M.? 2. How we can represent the set & notation, define types of sets?

More information

Application of Tree Structures of Fuzzy Classifier to Diabetes Disease Diagnosis

Application of Tree Structures of Fuzzy Classifier to Diabetes Disease Diagnosis , pp.143-147 http://dx.doi.org/10.14257/astl.2017.143.30 Application of Tree Structures of Fuzzy Classifier to Diabetes Disease Diagnosis Chang-Wook Han Department of Electrical Engineering, Dong-Eui University,

More information

Contents. Just Classifier? Rules. Rules: example. Classification Rule Generation for Bioinformatics. Rule Extraction from a trained network

Contents. Just Classifier? Rules. Rules: example. Classification Rule Generation for Bioinformatics. Rule Extraction from a trained network Contents Classification Rule Generation for Bioinformatics Hyeoncheol Kim Rule Extraction from Neural Networks Algorithm Ex] Promoter Domain Hybrid Model of Knowledge and Learning Knowledge refinement

More information

On the Combination of Collaborative and Item-based Filtering

On the Combination of Collaborative and Item-based Filtering On the Combination of Collaborative and Item-based Filtering Manolis Vozalis 1 and Konstantinos G. Margaritis 1 University of Macedonia, Dept. of Applied Informatics Parallel Distributed Processing Laboratory

More information

University of Cambridge Engineering Part IB Information Engineering Elective

University of Cambridge Engineering Part IB Information Engineering Elective University of Cambridge Engineering Part IB Information Engineering Elective Paper 8: Image Searching and Modelling Using Machine Learning Handout 1: Introduction to Artificial Neural Networks Roberto

More information

Competition Between Objective and Novelty Search on a Deceptive Task

Competition Between Objective and Novelty Search on a Deceptive Task Competition Between Objective and Novelty Search on a Deceptive Task Billy Evers and Michael Rubayo Abstract It has been proposed, and is now widely accepted within use of genetic algorithms that a directly

More information

NEURAL SYSTEMS FOR INTEGRATING ROBOT BEHAVIOURS

NEURAL SYSTEMS FOR INTEGRATING ROBOT BEHAVIOURS NEURAL SYSTEMS FOR INTEGRATING ROBOT BEHAVIOURS Brett Browning & Gordon Wyeth University of Queensland Computer Science and Electrical Engineering Department Email: browning@elec.uq.edu.au & wyeth@elec.uq.edu.au

More information

LEARNING ARBITRARY FUNCTIONS WITH SPIKE-TIMING DEPENDENT PLASTICITY LEARNING RULE

LEARNING ARBITRARY FUNCTIONS WITH SPIKE-TIMING DEPENDENT PLASTICITY LEARNING RULE LEARNING ARBITRARY FUNCTIONS WITH SPIKE-TIMING DEPENDENT PLASTICITY LEARNING RULE Yefei Peng Department of Information Science and Telecommunications University of Pittsburgh Pittsburgh, PA 15260 ypeng@mail.sis.pitt.edu

More information

Application of ecological interface design to driver support systems

Application of ecological interface design to driver support systems Application of ecological interface design to driver support systems J.D. Lee, J.D. Hoffman, H.A. Stoner, B.D. Seppelt, and M.D. Brown Department of Mechanical and Industrial Engineering, University of

More information

Mark J. Anderson, Patrick J. Whitcomb Stat-Ease, Inc., Minneapolis, MN USA

Mark J. Anderson, Patrick J. Whitcomb Stat-Ease, Inc., Minneapolis, MN USA Journal of Statistical Science and Application (014) 85-9 D DAV I D PUBLISHING Practical Aspects for Designing Statistically Optimal Experiments Mark J. Anderson, Patrick J. Whitcomb Stat-Ease, Inc., Minneapolis,

More information

Cerebral Cortex. Edmund T. Rolls. Principles of Operation. Presubiculum. Subiculum F S D. Neocortex. PHG & Perirhinal. CA1 Fornix CA3 S D

Cerebral Cortex. Edmund T. Rolls. Principles of Operation. Presubiculum. Subiculum F S D. Neocortex. PHG & Perirhinal. CA1 Fornix CA3 S D Cerebral Cortex Principles of Operation Edmund T. Rolls F S D Neocortex S D PHG & Perirhinal 2 3 5 pp Ento rhinal DG Subiculum Presubiculum mf CA3 CA1 Fornix Appendix 4 Simulation software for neuronal

More information

http://www.diva-portal.org This is the published version of a paper presented at Future Active Safety Technology - Towards zero traffic accidents, FastZero2017, September 18-22, 2017, Nara, Japan. Citation

More information

Time Experiencing by Robotic Agents

Time Experiencing by Robotic Agents Time Experiencing by Robotic Agents Michail Maniadakis 1 and Marc Wittmann 2 and Panos Trahanias 1 1- Foundation for Research and Technology - Hellas, ICS, Greece 2- Institute for Frontier Areas of Psychology

More information

PSY380: VISION SCIENCE

PSY380: VISION SCIENCE PSY380: VISION SCIENCE 1) Questions: - Who are you and why are you here? (Why vision?) - What is visual perception? - What is the function of visual perception? 2) The syllabus & instructor 3) Lecture

More information

Reinforcement Learning in Steady-State Cellular Genetic Algorithms

Reinforcement Learning in Steady-State Cellular Genetic Algorithms Reinforcement Learning in Steady-State Cellular Genetic Algorithms Cin-Young Lee and Erik K. Antonsson Abstract A novel cellular genetic algorithm is developed to address the issues of good mate selection.

More information

arxiv: v1 [cs.ai] 28 Nov 2017

arxiv: v1 [cs.ai] 28 Nov 2017 : a better way of the parameters of a Deep Neural Network arxiv:1711.10177v1 [cs.ai] 28 Nov 2017 Guglielmo Montone Laboratoire Psychologie de la Perception Université Paris Descartes, Paris montone.guglielmo@gmail.com

More information

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Peter Osseward, Uri Magaram Department of Neuroscience University of California, San Diego La Jolla, CA 92092 possewar@ucsd.edu

More information

Error Detection based on neural signals

Error Detection based on neural signals Error Detection based on neural signals Nir Even- Chen and Igor Berman, Electrical Engineering, Stanford Introduction Brain computer interface (BCI) is a direct communication pathway between the brain

More information

AVENIO family of NGS oncology assays ctdna and Tumor Tissue Analysis Kits

AVENIO family of NGS oncology assays ctdna and Tumor Tissue Analysis Kits AVENIO family of NGS oncology assays ctdna and Tumor Tissue Analysis Kits Accelerating clinical research Next-generation sequencing (NGS) has the ability to interrogate many different genes and detect

More information

MODELING SMALL OSCILLATING BIOLOGICAL NETWORKS IN ANALOG VLSI

MODELING SMALL OSCILLATING BIOLOGICAL NETWORKS IN ANALOG VLSI 384 MODELING SMALL OSCILLATING BIOLOGICAL NETWORKS IN ANALOG VLSI Sylvie Ryckebusch, James M. Bower, and Carver Mead California Instit ute of Technology Pasadena, CA 91125 ABSTRACT We have used analog

More information

Cell Responses in V4 Sparse Distributed Representation

Cell Responses in V4 Sparse Distributed Representation Part 4B: Real Neurons Functions of Layers Input layer 4 from sensation or other areas 3. Neocortical Dynamics Hidden layers 2 & 3 Output layers 5 & 6 to motor systems or other areas 1 2 Hierarchical Categorical

More information

Lateral Inhibition Explains Savings in Conditioning and Extinction

Lateral Inhibition Explains Savings in Conditioning and Extinction Lateral Inhibition Explains Savings in Conditioning and Extinction Ashish Gupta & David C. Noelle ({ashish.gupta, david.noelle}@vanderbilt.edu) Department of Electrical Engineering and Computer Science

More information

Affective Action Selection and Behavior Arbitration for Autonomous Robots

Affective Action Selection and Behavior Arbitration for Autonomous Robots Affective Action Selection and Behavior Arbitration for Autonomous Robots Matthias Scheutz Department of Computer Science and Engineering University of Notre Dame Notre Dame, IN 46556, USA mscheutz@cse.nd.edu

More information

IEEE SIGNAL PROCESSING LETTERS, VOL. 13, NO. 3, MARCH A Self-Structured Adaptive Decision Feedback Equalizer

IEEE SIGNAL PROCESSING LETTERS, VOL. 13, NO. 3, MARCH A Self-Structured Adaptive Decision Feedback Equalizer SIGNAL PROCESSING LETTERS, VOL 13, NO 3, MARCH 2006 1 A Self-Structured Adaptive Decision Feedback Equalizer Yu Gong and Colin F N Cowan, Senior Member, Abstract In a decision feedback equalizer (DFE),

More information

A HMM-based Pre-training Approach for Sequential Data

A HMM-based Pre-training Approach for Sequential Data A HMM-based Pre-training Approach for Sequential Data Luca Pasa 1, Alberto Testolin 2, Alessandro Sperduti 1 1- Department of Mathematics 2- Department of Developmental Psychology and Socialisation University

More information

Neural response time integration subserves. perceptual decisions - K-F Wong and X-J Wang s. reduced model

Neural response time integration subserves. perceptual decisions - K-F Wong and X-J Wang s. reduced model Neural response time integration subserves perceptual decisions - K-F Wong and X-J Wang s reduced model Chris Ayers and Narayanan Krishnamurthy December 15, 2008 Abstract A neural network describing the

More information

Evolution of Plastic Sensory-motor Coupling and Dynamic Categorization

Evolution of Plastic Sensory-motor Coupling and Dynamic Categorization Evolution of Plastic Sensory-motor Coupling and Dynamic Categorization Gentaro Morimoto and Takashi Ikegami Graduate School of Arts and Sciences The University of Tokyo 3-8-1 Komaba, Tokyo 153-8902, Japan

More information

Abstract A neural network model called LISSOM for the cooperative self-organization of

Abstract A neural network model called LISSOM for the cooperative self-organization of Modeling Cortical Plasticity Based on Adapting Lateral Interaction Joseph Sirosh and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin, Austin, TX{78712. email: sirosh,risto@cs.utexas.edu

More information

Hebbian Plasticity for Improving Perceptual Decisions

Hebbian Plasticity for Improving Perceptual Decisions Hebbian Plasticity for Improving Perceptual Decisions Tsung-Ren Huang Department of Psychology, National Taiwan University trhuang@ntu.edu.tw Abstract Shibata et al. reported that humans could learn to

More information

Stepper Motors and Control Part II - Bipolar Stepper Motor and Control (c) 1999 by Rustle Laidman, All Rights Reserved

Stepper Motors and Control Part II - Bipolar Stepper Motor and Control (c) 1999 by Rustle Laidman, All Rights Reserved Copyright Notice: (C) June 2000 by Russell Laidman. All Rights Reserved. ------------------------------------------------------------------------------------ The material contained in this project, including

More information

A framework for the Recognition of Human Emotion using Soft Computing models

A framework for the Recognition of Human Emotion using Soft Computing models A framework for the Recognition of Human Emotion using Soft Computing models Md. Iqbal Quraishi Dept. of Information Technology Kalyani Govt Engg. College J Pal Choudhury Dept. of Information Technology

More information

Memory, Attention, and Decision-Making

Memory, Attention, and Decision-Making Memory, Attention, and Decision-Making A Unifying Computational Neuroscience Approach Edmund T. Rolls University of Oxford Department of Experimental Psychology Oxford England OXFORD UNIVERSITY PRESS Contents

More information

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1 Lecture 27: Systems Biology and Bayesian Networks Systems Biology and Regulatory Networks o Definitions o Network motifs o Examples

More information

A general error-based spike-timing dependent learning rule for the Neural Engineering Framework

A general error-based spike-timing dependent learning rule for the Neural Engineering Framework A general error-based spike-timing dependent learning rule for the Neural Engineering Framework Trevor Bekolay Monday, May 17, 2010 Abstract Previous attempts at integrating spike-timing dependent plasticity

More information

EXIT Chart. Prof. Francis C.M. Lau. Department of Electronic and Information Engineering Hong Kong Polytechnic University

EXIT Chart. Prof. Francis C.M. Lau. Department of Electronic and Information Engineering Hong Kong Polytechnic University EXIT Chart Prof. Francis C.M. Lau Department of Electronic and Information Engineering Hong Kong Polytechnic University EXIT Chart EXtrinsic Information Transfer (EXIT) Chart Use for the analysis of iterative

More information

Using Genetic Algorithms to Optimise Rough Set Partition Sizes for HIV Data Analysis

Using Genetic Algorithms to Optimise Rough Set Partition Sizes for HIV Data Analysis Using Genetic Algorithms to Optimise Rough Set Partition Sizes for HIV Data Analysis Bodie Crossingham and Tshilidzi Marwala School of Electrical and Information Engineering, University of the Witwatersrand

More information

Variable-size Memory Evolutionary Algorithm:

Variable-size Memory Evolutionary Algorithm: 1 Variable-size Memory Evolutionary Algorithm: Studies on the impact of different replacing strategies in the algorithm s performance and in the population s diversity when dealing with dynamic environments

More information

Using Probabilistic Reasoning to Develop Automatically Adapting Assistive

Using Probabilistic Reasoning to Develop Automatically Adapting Assistive From: AAAI Technical Report FS-96-05. Compilation copyright 1996, AAAI (www.aaai.org). All rights reserved. Using Probabilistic Reasoning to Develop Automatically Adapting Assistive Technology Systems

More information

Expert System Profile

Expert System Profile Expert System Profile GENERAL Domain: Medical Main General Function: Diagnosis System Name: INTERNIST-I/ CADUCEUS (or INTERNIST-II) Dates: 1970 s 1980 s Researchers: Ph.D. Harry Pople, M.D. Jack D. Myers

More information

Grounding Ontologies in the External World

Grounding Ontologies in the External World Grounding Ontologies in the External World Antonio CHELLA University of Palermo and ICAR-CNR, Palermo antonio.chella@unipa.it Abstract. The paper discusses a case study of grounding an ontology in the

More information

FACIAL COMPOSITE SYSTEM USING GENETIC ALGORITHM

FACIAL COMPOSITE SYSTEM USING GENETIC ALGORITHM RESEARCH PAPERS FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 2014 Volume 22, Special Number FACIAL COMPOSITE SYSTEM USING GENETIC ALGORITHM Barbora

More information

Neural Processing of Counting in Evolved Spiking and McCulloch-Pitts Agents

Neural Processing of Counting in Evolved Spiking and McCulloch-Pitts Agents in Evolved Spiking and McCulloch-Pitts Agents Abstract This article investigates the evolution of autonomous agents that perform a memory-dependent counting task. Two types of neurocontrollers are evolved:

More information

A Monogenous MBO Approach to Satisfiability

A Monogenous MBO Approach to Satisfiability A Monogenous MBO Approach to Satisfiability Hussein A. Abbass University of New South Wales, School of Computer Science, UC, ADFA Campus, Northcott Drive, Canberra ACT, 2600, Australia, h.abbass@adfa.edu.au

More information

Capacity Limits in Mechanical Reasoning

Capacity Limits in Mechanical Reasoning Capacity Limits in Mechanical Reasoning Mary Hegarty Department of Psychology University of California, Santa Barbara Santa Barbara, CA 93106 hegarty@psych.ucsb.edu Abstract This paper examines capacity

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 6: Single neuron models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis I 5 Data analysis II 6 Single

More information

The Re(de)fined Neuron

The Re(de)fined Neuron The Re(de)fined Neuron Kieran Greer, Distributed Computing Systems, Belfast, UK. http://distributedcomputingsystems.co.uk Version 1.0 Abstract This paper describes a more biologically-oriented process

More information

Study the Evolution of the Avian Influenza Virus

Study the Evolution of the Avian Influenza Virus Designing an Algorithm to Study the Evolution of the Avian Influenza Virus Arti Khana Mentor: Takis Benos Rachel Brower-Sinning Department of Computational Biology University of Pittsburgh Overview Introduction

More information

Evaluating the Effect of Spiking Network Parameters on Polychronization

Evaluating the Effect of Spiking Network Parameters on Polychronization Evaluating the Effect of Spiking Network Parameters on Polychronization Panagiotis Ioannou, Matthew Casey and André Grüning Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK

More information

Evaluating Classifiers for Disease Gene Discovery

Evaluating Classifiers for Disease Gene Discovery Evaluating Classifiers for Disease Gene Discovery Kino Coursey Lon Turnbull khc0021@unt.edu lt0013@unt.edu Abstract Identification of genes involved in human hereditary disease is an important bioinfomatics

More information

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization 1 7.1 Overview This chapter aims to provide a framework for modeling cognitive phenomena based

More information

A NEW DIAGNOSIS SYSTEM BASED ON FUZZY REASONING TO DETECT MEAN AND/OR VARIANCE SHIFTS IN A PROCESS. Received August 2010; revised February 2011

A NEW DIAGNOSIS SYSTEM BASED ON FUZZY REASONING TO DETECT MEAN AND/OR VARIANCE SHIFTS IN A PROCESS. Received August 2010; revised February 2011 International Journal of Innovative Computing, Information and Control ICIC International c 2011 ISSN 1349-4198 Volume 7, Number 12, December 2011 pp. 6935 6948 A NEW DIAGNOSIS SYSTEM BASED ON FUZZY REASONING

More information

Behavior Architectures

Behavior Architectures Behavior Architectures 5 min reflection You ve read about two very different behavior architectures. What are the most significant functional/design differences between the two approaches? Are they compatible

More information

A MULTIPLE-PLASTICITY SPIKING NEURAL NETWORK EMBEDDED IN A CLOSED-LOOP CONTROL SYSTEM TO MODEL CEREBELLAR PATHOLOGIES

A MULTIPLE-PLASTICITY SPIKING NEURAL NETWORK EMBEDDED IN A CLOSED-LOOP CONTROL SYSTEM TO MODEL CEREBELLAR PATHOLOGIES International Journal of Neural Systems World Scientific Publishing Company A MULTIPLE-PLASTICITY SPIKING NEURAL NETWORK EMBEDDED IN A CLOSED-LOOP CONTROL SYSTEM TO MODEL CEREBELLAR PATHOLOGIES ALICE GEMINIANI,

More information

Evolving Imitating Agents and the Emergence of a Neural Mirror System

Evolving Imitating Agents and the Emergence of a Neural Mirror System Evolving Imitating Agents and the Emergence of a Neural Mirror System Elhanan Borenstein and Eytan Ruppin,2 School of Computer Science, Tel Aviv University, Tel-Aviv 6998, Israel 2 School of Medicine,

More information

Basics of Computational Neuroscience: Neurons and Synapses to Networks

Basics of Computational Neuroscience: Neurons and Synapses to Networks Basics of Computational Neuroscience: Neurons and Synapses to Networks Bruce Graham Mathematics School of Natural Sciences University of Stirling Scotland, U.K. Useful Book Authors: David Sterratt, Bruce

More information

Learning Utility for Behavior Acquisition and Intention Inference of Other Agent

Learning Utility for Behavior Acquisition and Intention Inference of Other Agent Learning Utility for Behavior Acquisition and Intention Inference of Other Agent Yasutake Takahashi, Teruyasu Kawamata, and Minoru Asada* Dept. of Adaptive Machine Systems, Graduate School of Engineering,

More information

Institute of Psychology C.N.R. - Rome. Using emergent modularity to develop control systems for mobile robots

Institute of Psychology C.N.R. - Rome. Using emergent modularity to develop control systems for mobile robots Institute of Psychology C.N.R. - Rome Using emergent modularity to develop control systems for mobile robots Stefano Nolfi Institute of Psychology, National Research Council, Rome, Italy. e-mail: stefano@kant.irmkant.rm.cnr.it

More information