Supplementary motor area provides an efferent signal for sensory suppression

Size: px
Start display at page:

Download "Supplementary motor area provides an efferent signal for sensory suppression"

Transcription

1 Cognitive Brain Research 19 (2004) Research report Supplementary motor area provides an efferent signal for sensory suppression Patrick Haggard*, Ben Whitford Institute of Cognitive Neuroscience and Department of Psychology, University College London, Alexandra House, 17 Queen Square, WC1N3AR, London, UK Accepted 30 October Abstract Voluntary actions produce suppression of neural activity in sensory areas, and reduced levels of conscious sensation. Recent computational models of motor control have linked sensory suppression to motor prediction: an efferent signal from motor areas may cancel the sensory reafferences predicted as a consequence of movement. Direct evidence for the efferent mechanism in sensory suppression has been lacking. We investigated the perceived size of finger-muscle twitches (MEPs) evoked by TMS in eight normal subjects. Subjects freely chose on each trial whether to make or withhold a voluntary flexion of the right index finger, in synchrony with an instructional stimulus. A test MEP occurred at the instructed time of action. The subject then relaxed and a second reference MEP occurred a few seconds later. Subjects judged which of the two MEPs was larger. Subjects perceived the first test MEP to be smaller in trials where they made voluntary actions than on trials where they did not, demonstrating sensory suppression. On randomly selected trials, a conditioning prepulse was delivered over the supplementary motor area (SMA) 10 ms before the pulse producing the test MEP. The SMA prepulse reduced and almost abolished the sensory suppression effect in voluntary action trials. We suggest the SMA may provide an efferent signal which is used by other brain areas to modulate somatosensory activity during self-generated movement. D 2003 Elsevier B.V. All rights reserved. Theme: Motor systems and sensorimotor integration Topic: Cortex Keywords: Action; Sensation; Motor control; Frontal lobes; Human; Sensorimotor integration 1. Introduction Recent theories of motor control emphasise neural prediction of movement outcomes from an internal efference copy [19]. Recently, motor prediction has also been suggested to explain the widespread finding of suppressed somatosensation during voluntary movement [3]. For example, the sensations produced when trying to tickle oneself are perceptually less ticklish than when the same movements are made by an external agent. An efference copy of the motor command sent to the muscles may be used by an internal predictive model to predict the sensory consequences of the command. The predicted consequences are compared to delayed somatosensory feedback: if these match perfectly, cortical perceptual systems may not fully * Corresponding author. Tel.: /1177; fax: address: p.haggard@ucl.ac.uk (P. Haggard). process the afferent signal, as it adds no new information to the prediction [3,17]. Such models depend critically on an efference copy signal. However, the precise neural source of this signal remains unclear. The motor areas of the frontal cortex have appropriate anatomical connections with two brain structures that may provide internal predictive models, namely the cerebellum and parietal cortex. For example, motor cortical areas are known to send axon collaterals to the cerebellum, and patients with cerebellar damage behave as if they had no predictive representation of their own limb movements [9]. In addition, the parietal cortex plays an important role in monitoring actions: patients with parietal lesions are impaired in action-recognition tasks [16]. The parietal cortex also receives frontal signals which update sensory processing [13,16]. Nevertheless, several questions about the relation between sensory suppression and motor prediction remain unanswered: is all sensory processing suppressed during /$ - see front matter D 2003 Elsevier B.V. All rights reserved. doi: /j.cogbrainres

2 P. Haggard, B. Whitford / Cognitive Brain Research 19 (2004) movement, or only those sensory afferences predicted by the model? Where in the brain is the comparator circuit that performs the cancellation? What is the source of the efferent signal used for cancellation? This paper focuses on the latter question. The efferent signal used to modify sensory processing might be the descending volley from the motor cortex to the spinal cord, or it might be an earlier signal involved in the preparation of action. Several studies point to the latter conclusion. Chronicle and Glover [5] studied the ticklishness of voluntary actions of muscle twitches induced by transcranial magnetic stimulation over the primary motor cortex (MI) and of externally applied stimuli. They found that twitches were perceived to be as ticklish as external stimuli, and more ticklish than voluntary actions. This finding suggests that efference from MI is insufficient for sensory suppression, and that the critical efferent signal must arise prior to MI. However, their method implicitly assumes that TMS-induced twitches mimic the normal physiological efference from MI. Haggard and Magno [8] investigated the perceived time of manual actions, and reached a similar conclusion regarding the relation between efferent signals and conscious experience. Subjects reported the time at which they made a simple manual response to a tone. On some trials, the response time was artificially increased by applying TMS over MI just before the expected reaction [6]. Subjects were largely unaware of delays caused by intervention at this level in the system. In contrast, similar stimuli applied over the SMA produced shorter delays in actual response time, but the subjects were aware of a greater proportion of the delay that did occur. This result suggests that awareness of the manual response was formed partly upstream of the MI, possibly in the SMA. The present study attempted a more direct investigation of the role of SMA as the source of the efferent signal for sensory suppression. We studied the perceived magnitude of a somatosensory stimulus controlled by the experimenter, when the stimulus was embedded in a voluntary action and when it was not. We chose TMS-induced twitches evoked by MI stimulation as suitable somatosensory stimuli for subjects to judge, as their magnitude can be directly quantified, their timing precisely controlled, and they involve precisely the sensory receptors that are also affected by voluntary action. We predicted sensory suppression in voluntary action trials. If the SMA generates an efferent signal during voluntary action which is used for sensory suppression, we reasoned that transient disruption of the SMA just prior to the to-be-judged stimulus should disrupt the putative efferent signal, prevent cancellation of sensory reafference, and thus reduce the sensory suppression. 2. Methods Eight healthy subjects (aged years, five female) participated with ethical approval. Subjects heard a sequence of three tones at 1-s intervals and were trained to produce a voluntary right index finger flexion at the onset of the third tone. In the experimental trials, subjects freely decided whether to make or withhold the voluntary action on that trial, aiming for roughly equal proportions of action and no-action trials. TMS over the optimal area of the left motor cortex for exciting the right index finger flexor (first dorsal interosseus muscle: 1DI) was delivered at the onset of the 3rd tone, causing an involuntary Motor Evoked Potential (MEP1). A Magstim 200 stimulator and figure of eight coil were used, at intensities between 100% and 120% of the relaxed motor threshold of the right 1DI. The field strength was varied randomly from trial to trial between these limits under computer control. The resulting MEP superimposed on any voluntary action the subject might make. On 50% of prepulse trials selected at random, a conditioning TMS pulse at 100% of the relaxed motor threshold of the right 1DI was applied over the supplementary motor area (SMA), using a circular coil and a second stimulator. To localise the SMA, we first identified the anterior boundary of the leg area, by using a cone coil and finding the most anterior site from which we could evoke MEPs from the preactivated right gastrocnemius at intensities of up to 65% of maximum output. A circular coil was then placed with its handleoriented anterior-posteriorly, and its most posterior tip just touching the anterior boundary of the leg area. The effective field maximum was thus 20 mm anterior from this boundary. In 50% of randomly selected experimental trials, the SMA prepulse was applied 10 ms before motor cortical TMS. This latency has been found to induce intracortical facilitation locally within the motor cortex in paired-pulse experiments [11]. The timing of TMS pulses was controlled by dedicated timing hardware which ran independently from the computer s operating system. Approximately 1 s after the motor cortical TMS, the subject received a verbal instruction to relax. This was followed a few seconds later by a further series of three tones and a second comparison twitch in the right 1DI (MEP2) caused by motor cortical TMS through the same figure of eight coil. The stimulation intensity for MEP2 was fixed at 110% of relaxed motor threshold for the 1DI, in the centre of the range used for MEP1. Thus, MEP2 served as a fixed reference against which a variable MEP1 could be compared. Subjects never made voluntary actions during MEP2, nor was there any conditioning pulse for MEP2. Subjects compared the perceived intensity of MEP1 and MEP2, and made unspeeded keypresses with their left hand to indicate which was larger. Up to 10 training trials were given at the start of the experimental session, to familiarise subjects with the sequence of trial events and the decision whether to make voluntary actions or not. Subjects then performed a total of 150 trials, giving approximately 38 in each cell of a factorial design made by crossing the two factors occurring at the time of MEP1. These factors were voluntary action (present, absent) and SMA prepulse (present, absent). Our interest

3 54 P. Haggard, B. Whitford / Cognitive Brain Research 19 (2004) focused on how these two factors would modulate the perceived size of the test MEP1 in comparison to the reference MEP2. In two additional conditions, the conditioning pulse occurred after the MI pulse. However, all subjects had very poor judgements of the MEP amplitude in those conditions. They are not therefore reported here, but form the focus of ongoing investigation. The EMG of the right first dorsal interosseus muscle was recorded with bipolar recording using surface electrodes, amplified and digitised at 5 khz. The time of all TMS pulses, the EMG signals around the times of MEP1 and MEP2, and the subject s judgement for each trial were stored on a computer. An offline analysis algorithm then searched for the minimum and maximum EMG levels in the window ms after the TMS pulse. The difference between these levels was defined as the MEP amplitude. In addition, each trial was checked visually by the experimenters, to classify each trial as either including a voluntary movement or not, depending on whether voluntary background EMG was seen in a time window extending from 60 ms before to 60 ms after the third synchronisation tone. The experimenter verified the form of each MEP at the same time. 3. Results Fig. 1 shows typical data for MEP1 from one subject, for a trial containing neither prepulse nor voluntary action (A) and for a further trial with both a prepulse and a voluntary action (B). The MEPs show the classical monophasic pattern, with a large initial direct wave, followed by further peaks and valleys corresponding to indirect waves. When subjects made voluntary actions, MEP1 was larger than when they did not [peak to valley 2.81 vs mv, F(1,7) = 21.4, p < 0.01]. This result was predictable from the known increase in excitability of motor cortex around the time of voluntary contraction [4]. There was also a significant facilitatory effect of the SMA prepulse on MEP1 amplitude [2.55 mv vs mv, F(1,7) = 21.43, p < 0.01], consistent with a facilitatory influence of the SMA on the primary motor cortex. The interaction between the factors of voluntary action and prepulse was close to significance [ F(1,7) = 4.647, p = 0.067], with the prepulse causing less facilitation in voluntary action trials (0.33 mv) than in nonaction trials (0.62 mv). Analysis of MEP2 amplitudes showed no effects of whether there had been a voluntary action or a prepulse at the time of the preceding MEP1 and no interaction (range of means mv, all F < 1). Subject s judgements regarding whether MEP1 was greater or than MEP2 or not were correct on 57.2% of trials over the whole experiment. Although subjects clearly found the judgement task difficult, overall performance was nevertheless significantly better than chance. To further investigate effects of voluntary action and of SMA prepulses on somatosensory processing and conscious perception, we calculated the difference in twitch sizes (MEP1 MEP2) in each trial. We then grouped these trials into 10 frequency bins, and plotted histograms according to the judgement of which MEP was larger. The results (Fig. 2) showed a general tendency to judge MEP2 larger than MEP1 (red area>green area), perhaps due to a recency effect in memory leading to MEP2 seeming more intense. In addition, MEP1 was less likely to be judged larger than MEP2 when subjects made a voluntary action than when they did not. This result is consistent with a sensory suppression of MEP1 during voluntary actions. More importantly, the degree of sensory suppression was reduced by the SMA prepulse (note more green trials in bottom right panel than in top right panel of Fig. 2). To analyse this effect statistically, we obtained a psychophysical function by fitting logistic regression to each Fig. 1. (A) Typical test MEPs in the right first dorsal interosseus muscle produced by motor-cortical TMS in conditions without voluntary action or SMA prepulse. The dashed line indicates the time of motor-cortical TMS stimulation. Stimulator output is 120% of relaxed motor threshold. (B) Typical MEP with voluntary action and SMA prepulse. Note the larger MEP during voluntary action. The dashed line indicates the time of motor-cortical TMS stimulation. Stimulator output is 100% of relaxed motor threshold. The dot-dashed line indicates the time of the conditioning pulse over SMA, also at 100% of relaxed motor threshold. Note that the MEP latency is comparable in both traces, showing that the SMA prepulse did not itself cause MEPs.

4 P. Haggard, B. Whitford / Cognitive Brain Research 19 (2004) Fig. 2. Psychophysical judgements of relative MEP size. Each histogram shows binned data pooled across subjects for the difference between the experimental and comparison MEPs (MEP1 MEP2). The green column shows the number of trials in which subjects judged MEP1 larger than MEP2, and the stacked red column shows the number of trials in which subjects judged MEP2 larger than MEP1. Note the larger values of MEP1 MEP2 on trials in which subjects made voluntary actions (right hand column), due to increased size of MEP1. Note also the greater probability of judging MEP1 larger than MEP2 during voluntary action trials when a prepulse over SMA is delivered, compared to when it is not. subject s binned judgement data in each condition of the 2 2 factorial design. The function estimated the probability of judging MEP1 larger than MEP2, as a function of the amplitude difference MEP1 MEP2. Fig. 3 shows mean curves obtained by averaging coefficients from individual fits. Numerically similar coefficients were obtained by fitting a single regression to all subjects pooled data, suggesting the estimations are robust. Psychophysical functions for the trials without voluntary actions (Fig. 3 solid lines) follow the expected pattern, with a clear positive gradient. The point of subjective equality, at which MEP1 and MEP2 are judged equally intense, occurs when MEP1 is slightly larger than MEP2, again suggesting a recency benefit in sensory memory for MEP2. The SMA prepulse has only a small effect on the curve in the absence of voluntary action, but produces a large shift in the intercept in trials where a voluntary action was made. The intercepts and slope coefficients of the individual logistic regressions were subjected to 2 2 factorial ANOVA with factors of voluntary action (present or absent) and SMA prepulse (present or absent). First, a planned t-test on the overall mean of the slopes confirmed that they were positive, implying that subjects were able to perform the perceptual judgement [t(7) = 3.868, p < 0.01]. Voluntary action significantly reduced the slope of the psychophysical function compared to trials without voluntary action, consistent with sensory suppression [ F(1,7) = 9.007, p < 0.05]. The slope reduction could reflect both specific neural processes such as reduction of afferent information for perception due to cancellation by efference copy, but also general factors, such as division of attention between the voluntary action and the twitch. The SMA prepulse had no effect on the psychophysical function slope, and there was no interaction between the prepulse and the voluntary action factor [ F(1,7) < 1 in both cases]. Analysis of the psychophysical curve intercepts showed no main effect of voluntary action [ F(1,7) < 1], but a significant effect of the prepulse [ F(1,7) = 7.117, p < 0.05]. Most interestingly, there was an interaction between these two factors, which can be clearly seen in Fig. 3. In trials without conditioning pulses, voluntary action introduced a bias in sensory judgement: during voluntary action, MEP1 was generally perceived as smaller than MEP2. This is again consistent with sensory suppression and is particularly striking given that voluntary action generally increased the actual size of MEP1 (Fig. 2). Crucially, this bias was reduced, and almost abolished by the prepulse over SMA producing the interaction. Since the direction of the effect of SMA stimulation was predicted, a one-tailed test of the interaction is appropriate [ F(1,7) = 3.617, p < 0.05]. Followup simple effects t-tests confirmed a significant effect of prepulse on the intercept in the voluntary action trials

5 56 P. Haggard, B. Whitford / Cognitive Brain Research 19 (2004) Fig. 3. Logistic regressions fitted to psychophysical data. The curves are made by averaging coefficients from individual fits to each subject s data in each condition. Note that voluntary actions generally impair judgement of MEP size (reduced slope). Voluntary actions also introduce a bias (rightward shift) towards judging MEP2 to be larger than MEP1, due to sensory suppression of MEP1. However, this bias is reduced and almost abolished by a TMS prepulse over SMA. [t(7) = 3.00, p < 0.05] but not in the absence of voluntary actions [t(7) = 1.69, p>0.1]. 4. Discussion Our results showed that voluntary actions caused sensory suppression of the perceived magnitude of a somatic stimulus (a muscle-twitch caused by MI stimulation). Sensory suppression was seen as changes in both intercepts and slopes of the psychometric function. Voluntary action can produce both an underestimation bias and an attenuation, or reduction in the amount of available perceptual information. While sensory suppression has been reported before (see Section 1), few previous studies have distinguished between its bias and attenuation components. Tsakiris and Haggard [17] obtained Likert scale judgements of the perceived size of a TMS-induced muscle-twitch occurring 270 ms after either a voluntary action, or an equivalent passive movement. They found an intercept change but no slope change, suggesting a biasing but not an attenuating effect of sensory suppression. Their design deliberately kept the voluntary action separate from the somatic stimulus in space and time, reducing the need to divide attention between these events. In the present study, action and somatosensory stimulus were superimposed, and significant attenuation was observed, as measured by the slope of the psychophysical curves. We therefore suggest that attenuation effects in sensory suppression may partly reflect division of attention between the action and the to-be-judged stimulus. The remainder of the discussion focuses on the effect of an SMA prepulse on sensory suppression. We found that transient disruption of the SMA with a TMS prepulse reduced and almost abolished the sensory suppression bias in the perceived magnitude of an MEP during voluntary action. Fig. 3 shows that the SMA prepulse restored the point of subjective equality to a similar level to that in trials where the subject withheld voluntary action, effectively abolishing sensory suppression. Thus, processing in the frontal cortex preceding the motor command itself contributes to predictive suppression of the sensory events during voluntary action. The SMA stimulation did not, however, produce a general impairment of somatosensation or of judgement: its effects were confined to the voluntary action condition. In addition, SMA prepulses modulated the intercept but not the slope of the psychometric function. This suggests SMA stimulation influenced a perceptual system specifically

6 P. Haggard, B. Whitford / Cognitive Brain Research 19 (2004) associated with ongoing actions, rather than operating indirectly via a general change in arousal or divided attention. This specificity also raises an important methodological point. In many psychological studies, TMS is used to produce virtual lesions, influencing behaviour. Lack of effects following stimulation at a control site is used to rule out non-specific effects such as arousal [18]. In conditioning pulse paradigms, the specificity of the conditioning effect offers an alternative for control for arousal. In our study, the effect of the conditioning pulse was specific to the trials where the subject chose to make a voluntary action. Computational models of motor control suggest that internal models may precisely predict and thus cancel reafference caused by voluntary action [3]. The cancellation process explains reduced sensation of those somatic events linked to the motor command. But cancellation also implies that other somatic events occurring during movement but not predicted by the motor command should not show sensory suppression. The present experiment can clarify how precise these efferent effects on sensation may be. Our results show that the perceived size of an involuntary movement is reduced during voluntary action of the same digit at the same time. Since the MEP was not a part of the subject s intention, this suggests that somatosensory suppression during action is partly a general suppression of afferent input from the relevant body part at the relevant time, including both the intended and unintended events. Suppression may be spatially and temporally specific, but may not be specific to the values of sensory parameters. Two brain regions, the cerebellum and the parietal cortex, are thought to be involved in predicting the consequences of action. The cerebellar cortex contains an adaptive circuit which may predict the sensory consequences of motor commands [19]. Since actual sensory experience presumably depends on somatosensory cortical processing rather than the cerebellum, an interaction between cerebellar prediction and somatosensory cortical activity may underlie the subjective effect of sensory suppression. However, many studies show, as we do here, that sensory events unrelated to the movement command are also suppressed during actions [2,7]. We believe this general suppression is not consistent with the specificity of cerebellar prediction in current computational motor control models. Although our results do not exclude some cerebellar contribution to sensory suppression, we suggest that other circuits, and specifically the SMA, are additionally involved. Could the present results reflect spinal, as opposed to cortical, effects? Efferent signals from the SMA during voluntary action could, in principle, depress transmission at spinal synapses conveying afferent information, thus causing sensory suppression. Our data cannot rule out this interpretation conclusively. However, two pieces of evidence suggest it is unlikely. First, the spinal interpretation would imply that patients with lesions to the SMA should have altered (specifically, heightened) somatic sensation, yet this has not been reported to our knowledge. Second, Abbruzzese et al. [1] reported that motor imagery tasks known to involve activation of the SMA produced changes in motor cortical excitability without modulating spinal excitability on H-reflex tests. The suppression effects observed here presumably arise by a different route. We suggest somatosensory processing in parietal cortex is modulated by an efference copy signal arising in the frontal cortex, specifically the SMA. The primary and secondary somatosensory areas of the parietal cortex are involved in conscious perception of somatosensory events [14]. Parietal and frontal brain regions are heavily and reciprocally interconnected by corticocortical fibres [12]. Many neurophysiological studies have indicated that the parietal areas compute spatial descriptions of objects, which are then used in frontal cortex to control grasping actions (e.g., see Ref. [10]). More recent studies have shown a role for the reciprocal, fronto-parietal connections in attention for action, ensuring that perceptual processing is directed to the requirements of impending voluntary actions. For example, signals from the frontal eye field may be responsible for attentional enhancement of visual responses in parietal neurons [13]. Somatosensory suppression during voluntary action is a second kind of attention for action, since it involves deselection of predicted sensory inputs. Our results suggest that the SMA plays a special role in controlling perceptual processing during voluntary action. An efference copy signal within the internal model for sensorimotor control may thus arise in the SMA. This signal is presumably used to regulate somatosensory processing in the parietal lobes at the level of conscious perception. Finally, we speculate on why sensory suppression occurs. Neurophysiological accounts typically assume that sensory suppression, like saccadic suppression in the oculomotor system, serves to reduce the cognitive load of the barrage of sensory information triggered by voluntary movements. However, sensory information is both available and important during skilled action, since loss of sensory information causes severe movement control deficits in deafferented individuals [15]. Sensory suppression therefore seems quite paradoxical. More recent computational accounts [3] suggest that sensory suppression serves to reduce the cognitive load of those sensory events that can be predicted from the motor command. However, this account cannot simply explain why external stimuli unrelated to the motor command are also suppressed. We suggest a possible resolution of this paradox: the CNS may suppress sensory information related to the movement, but enhance sensory information related to achieving the action goal. This approach would ensure that limited cognitive resources for sensory processing are used where they contribute most to our goals, and would reflect an optimal information-processing strategy. This approach implies a sophisticated intentional selection process in the CNS, which would adjust the strength of specific sensory pathways in advance of each action. We plan to test this account in future research.

7 58 P. Haggard, B. Whitford / Cognitive Brain Research 19 (2004) Acknowledgements This research was supported by a Leverhulme Research Fellowship to PH. Additional support was provided by a Wellcome Trust Equipment Grant and an MRC Cooperative Group Grant. We are grateful to two anonymous reviewers for helpful comments and to Clare Press for assistance. References [1] G. Abbruzzese, C. Trompetto, M. Schieppati, The excitability of the human motor cortex increases during execution and mental imagination of sequential but not repetitive finger movements, Exp. Brain Res. 111 (1996) [2] R.W. Angel, R.C. Malenka, Velocity-dependent suppression of cutaneous sensitivity during movement, Exp. Neurol. 77 (1982) [3] S.J. Blakemore, D.M. Wolpert, C.D. Frith, Central cancellation of self-produced tickle sensation, Nat. Neurosci. 1 (1998) [4] R. Chen, M. Hallett, The time course of changes in motor cortex excitability associated with voluntary movement, Can. J. Neurol. Sci., (1999) [5] E.P. Chronicle, J. Glover, A ticklish question: does magnetic stimulation of the primary motor cortex give rise to an efference copy? Cortex, (2003) [6] B.L. Day, J.C. Rothwell, P.D. Thompson, A.M. Denoordhout, K. Nakashima, K. Shannon, C.D. Marsden, Delay in the execution of voluntary movement by electrical or magnetic brain-stimulation in intact man-evidence for the storage of motor programs in the brain, Brain, (1989) [7] N. Forss, T. Silen, Temporal organization of cerebral events: neuromagnetic studies of the sensorimotor system, Rev. Neurol. 157 (2001) [8] P. Haggard, E. Magno, Localising awareness of action with transcranial magnetic stimulation, Exp. Brain Res. 127 (1999) [9] P. Haggard, R.C. Miall, D. Wade, S. Fowler, A. Richardson, P. Anslow, J. Stein, Damage to cerebellocortical pathways after closed head injury: a behavioural and magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry 58 (1995) [10] M. Jeannerod, M.A. Arbib, G. Rizzolatti, H. Sakata, Grasping objects: the cortical mechanisms of visuomotor transformation, Trends Neurosci. 18 (1995) [11] J. Liepert, J. Classen, L.G. Cohen, M. Hallett, Task-dependent changes of intracortical inhibition, Exp. Brain Res. 118 (1998) [12] G. Luppino, M. Matelli, R. Camarda, G. Rizzolatti, Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-sma) in the macaque monkey, J. Comp. Neurol. 338 (1993) [13] T. Moore, K.M. Armstrong, Selective gating of visual signals by microstimulation of frontal cortex, Nature 421 (2003) [14] W. Penfield, T. Rasmussen, The Cerebral Cortex of Man: A Clinical Study of Localisation of Function, Macmillan, New York, [15] J.C. Rothwell, M.M. Traub, B.L. Day, J.A. Obeso, P.K. Thomas, C.D. Marsden, Manual motor performance in a deafferented man, Brain 105 (1982) [16] A. Sirigu, E. Daprati, P. Pradat-Diehl, N. Franck, M. Jeannerod, Perception of self-generated movement following left parietal lesion, Brain 122 (1999) [17] M. Tsakiris, P. Haggard, Awareness of somatic events associated with a voluntary action, Exp. Brain Res. 149 (2003) [18] V. Walsh, A. Pascual-Leone, Transcranial Magnetic Stimulation: A Neurochronometrics of Mind, in press. [19] D.M. Wolpert, Computational approaches to motor control, Trends Cogn. Sci. (1997)

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

The Physiology of the Senses Chapter 8 - Muscle Sense

The Physiology of the Senses Chapter 8 - Muscle Sense The Physiology of the Senses Chapter 8 - Muscle Sense www.tutis.ca/senses/ Contents Objectives... 1 Introduction... 2 Muscle Spindles and Golgi Tendon Organs... 3 Gamma Drive... 5 Three Spinal Reflexes...

More information

Water immersion modulates sensory and motor cortical excitability

Water immersion modulates sensory and motor cortical excitability Water immersion modulates sensory and motor cortical excitability Daisuke Sato, PhD Department of Health and Sports Niigata University of Health and Welfare Topics Neurophysiological changes during water

More information

Introduction to TMS Transcranial Magnetic Stimulation

Introduction to TMS Transcranial Magnetic Stimulation Introduction to TMS Transcranial Magnetic Stimulation Lisa Koski, PhD, Clin Psy TMS Neurorehabilitation Lab Royal Victoria Hospital 2009-12-14 BIC Seminar, MNI Overview History, basic principles, instrumentation

More information

Peripheral facial paralysis (right side). The patient is asked to close her eyes and to retract their mouth (From Heimer) Hemiplegia of the left side. Note the characteristic position of the arm with

More information

Sum of Neurally Distinct Stimulus- and Task-Related Components.

Sum of Neurally Distinct Stimulus- and Task-Related Components. SUPPLEMENTARY MATERIAL for Cardoso et al. 22 The Neuroimaging Signal is a Linear Sum of Neurally Distinct Stimulus- and Task-Related Components. : Appendix: Homogeneous Linear ( Null ) and Modified Linear

More information

Selective bias in temporal bisection task by number exposition

Selective bias in temporal bisection task by number exposition Selective bias in temporal bisection task by number exposition Carmelo M. Vicario¹ ¹ Dipartimento di Psicologia, Università Roma la Sapienza, via dei Marsi 78, Roma, Italy Key words: number- time- spatial

More information

Neuro-MEP-Micro EMG EP. 2-Channel Portable EMG and NCS System with a Built-in Miniature Dedicated Keyboard. EMG according to international standards

Neuro-MEP-Micro EMG EP. 2-Channel Portable EMG and NCS System with a Built-in Miniature Dedicated Keyboard. EMG according to international standards Neuro-MEP-Micro 2-Channel Portable EMG and NCS System with a Built-in Miniature Dedicated Keyboard EMG according to international standards Instant analysis of high-quality responses Over 50 EMG and EP

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

Neurophysiology of systems

Neurophysiology of systems Neurophysiology of systems Motor cortex (voluntary movements) Dana Cohen, Room 410, tel: 7138 danacoh@gmail.com Voluntary movements vs. reflexes Same stimulus yields a different movement depending on context

More information

Lateral view of human brain! Cortical processing of touch!

Lateral view of human brain! Cortical processing of touch! Lateral view of human brain! Cortical processing of touch! How do we perceive objects held in the hand?! Touch receptors deconstruct objects to detect local features! Information is transmitted in parallel

More information

Motor Systems I Cortex. Reading: BCP Chapter 14

Motor Systems I Cortex. Reading: BCP Chapter 14 Motor Systems I Cortex Reading: BCP Chapter 14 Principles of Sensorimotor Function Hierarchical Organization association cortex at the highest level, muscles at the lowest signals flow between levels over

More information

Modulation of single motor unit discharges using magnetic stimulation of the motor cortex in incomplete spinal cord injury

Modulation of single motor unit discharges using magnetic stimulation of the motor cortex in incomplete spinal cord injury 1 SHORT REPORT Division of Neuroscience and Psychological Medicine, Imperial College School of Medicine, Charing Cross Hospital, London W 8RF, UK H C Smith NJDavey D W Maskill P H Ellaway National Spinal

More information

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM STRUCTURAL ORGANIZATION OF THE BRAIN The central nervous system (CNS), consisting of the brain and spinal cord, receives input from sensory neurons and directs

More information

Who is causing what? The sense of agency is relational and efferent-triggered

Who is causing what? The sense of agency is relational and efferent-triggered Cognition 107 (2008) 693 704 www.elsevier.com/locate/cognit Brief article Who is causing what? The sense of agency is relational and efferent-triggered Kai Engbert a, *, Andreas Wohlschläger a, Patrick

More information

KINE 4500 Neural Control of Movement. Lecture #1:Introduction to the Neural Control of Movement. Neural control of movement

KINE 4500 Neural Control of Movement. Lecture #1:Introduction to the Neural Control of Movement. Neural control of movement KINE 4500 Neural Control of Movement Lecture #1:Introduction to the Neural Control of Movement Neural control of movement Kinesiology: study of movement Here we re looking at the control system, and what

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

TMS Disruption of Time Encoding in Human Primary Visual Cortex Molly Bryan Beauchamp Lab

TMS Disruption of Time Encoding in Human Primary Visual Cortex Molly Bryan Beauchamp Lab TMS Disruption of Time Encoding in Human Primary Visual Cortex Molly Bryan Beauchamp Lab This report details my summer research project for the REU Theoretical and Computational Neuroscience program as

More information

Making Things Happen: Simple Motor Control

Making Things Happen: Simple Motor Control Making Things Happen: Simple Motor Control How Your Brain Works - Week 10 Prof. Jan Schnupp wschnupp@cityu.edu.hk HowYourBrainWorks.net The Story So Far In the first few lectures we introduced you to some

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature14066 Supplementary discussion Gradual accumulation of evidence for or against different choices has been implicated in many types of decision-making, including value-based decisions

More information

skilled pathways: distal somatic muscles (fingers, hands) (brainstem, cortex) are giving excitatory signals to the descending pathway

skilled pathways: distal somatic muscles (fingers, hands) (brainstem, cortex) are giving excitatory signals to the descending pathway L15 - Motor Cortex General - descending pathways: how we control our body - motor = somatic muscles and movement (it is a descending motor output pathway) - two types of movement: goal-driven/voluntary

More information

Neurophysiological Basis of TMS Workshop

Neurophysiological Basis of TMS Workshop Neurophysiological Basis of TMS Workshop Programme 31st March - 3rd April 2017 Sobell Department Institute of Neurology University College London 33 Queen Square London WC1N 3BG Brought to you by 31 March

More information

Neurosoft TMS. Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. of motor disorders after the stroke

Neurosoft TMS. Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. of motor disorders after the stroke Neurosoft TMS Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT of corticospinal pathways pathology of motor disorders after the stroke of depression and Parkinson s disease STIMULATION

More information

Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation Transcranial Magnetic Stimulation Session 4 Virtual Lesion Approach I Alexandra Reichenbach MPI for Biological Cybernetics Tübingen, Germany Today s Schedule Virtual Lesion Approach : Study Design Rationale

More information

Degree of freedom problem

Degree of freedom problem KINE 4500 Neural Control of Movement Lecture #1:Introduction to the Neural Control of Movement Neural control of movement Kinesiology: study of movement Here we re looking at the control system, and what

More information

Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle

Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle J Physiol (2003), 550.3, pp. 933 946 DOI: 10.1113/jphysiol.2003.042606 The Physiological Society 2003 www.jphysiol.org Differential modulation of intracortical inhibition in human motor cortex during selective

More information

Agency, Subjective Time, and Other Minds

Agency, Subjective Time, and Other Minds Journal of Experimental Psychology: Human Perception and Performance 2007, Vol. 33, No. 6, 1261 1268 Copyright 2007 by the American Psychological Association 0096-1523/07/$12.00 DOI: 10.1037/0096-1523.33.6.1261

More information

1. Processes nutrients and provides energy for the neuron to function; contains the cell's nucleus; also called the soma.

1. Processes nutrients and provides energy for the neuron to function; contains the cell's nucleus; also called the soma. 1. Base of brainstem; controls heartbeat and breathing 2. tissue destruction; a brain lesion is a naturally or experimentally caused destruction of brain tissue 3. A thick band of axons that connects the

More information

Voluntary Movements. Lu Chen, Ph.D. MCB, UC Berkeley. Outline. Organization of the motor cortex (somatotopic) Corticospinal projection

Voluntary Movements. Lu Chen, Ph.D. MCB, UC Berkeley. Outline. Organization of the motor cortex (somatotopic) Corticospinal projection Voluntary Movements Lu Chen, Ph.D. MCB, UC Berkeley 1 Outline Organization of the motor cortex (somatotopic) Corticospinal projection Physiology of motor neurons Direction representation, population coding

More information

Motor Functions of Cerebral Cortex

Motor Functions of Cerebral Cortex Motor Functions of Cerebral Cortex I: To list the functions of different cortical laminae II: To describe the four motor areas of the cerebral cortex. III: To discuss the functions and dysfunctions of

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

An Overview of BMIs. Luca Rossini. Workshop on Brain Machine Interfaces for Space Applications

An Overview of BMIs. Luca Rossini. Workshop on Brain Machine Interfaces for Space Applications An Overview of BMIs Luca Rossini Workshop on Brain Machine Interfaces for Space Applications European Space Research and Technology Centre, European Space Agency Noordvijk, 30 th November 2009 Definition

More information

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis Kathy Zackowski, PhD, OTR Kennedy Krieger Institute Johns Hopkins University School of Medicine TMS (transcranial

More information

Strick Lecture 1 March 22, 2006 Page 1

Strick Lecture 1 March 22, 2006 Page 1 Strick Lecture 1 March 22, 2006 Page 1 Motor Planning and Programming The point of this lecture is to reveal important features about the operation of our motor system by studying motor behavior. Figures

More information

Manipulating the Experienced Onset of Intention after Action Execution

Manipulating the Experienced Onset of Intention after Action Execution Manipulating the Experienced Onset of Intention after Action Execution Hakwan C. Lau 1,2, Robert D. Rogers 2, and Richard E. Passingham 1,2 Abstract & Using transcranial magnetic stimulation (TMS), we

More information

Changes in intracortical excitability induced by stimulation of wrist afferents in man

Changes in intracortical excitability induced by stimulation of wrist afferents in man 12359 Journal of Physiology (2001), 534.3, pp.891 902 891 Changes in intracortical excitability induced by stimulation of wrist afferents in man Jean-Marc Aimonetti and Jens Bo Nielsen * Laboratoire Développement

More information

CHAPTER 10 THE SOMATOSENSORY SYSTEM

CHAPTER 10 THE SOMATOSENSORY SYSTEM CHAPTER 10 THE SOMATOSENSORY SYSTEM 10.1. SOMATOSENSORY MODALITIES "Somatosensory" is really a catch-all term to designate senses other than vision, hearing, balance, taste and smell. Receptors that could

More information

Computational Cognitive Neuroscience (CCN)

Computational Cognitive Neuroscience (CCN) introduction people!s background? motivation for taking this course? Computational Cognitive Neuroscience (CCN) Peggy Seriès, Institute for Adaptive and Neural Computation, University of Edinburgh, UK

More information

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS J. exp. Biol. (1980), 85, 343-347 343 With a figures Printed in Great Britain POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS BY J. Y. KUWADA, G. HAGIWARA AND J. J. WINE

More information

Neuroscience Tutorial

Neuroscience Tutorial Neuroscience Tutorial Brain Organization : cortex, basal ganglia, limbic lobe : thalamus, hypothal., pituitary gland : medulla oblongata, midbrain, pons, cerebellum Cortical Organization Cortical Organization

More information

Printed in the United Kingdom

Printed in the United Kingdom Psychological Medicine, 2000, 30, 1131 1139. 2000 Cambridge University Press Printed in the United Kingdom The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Review Kim Sweeney ksweeney@cogsci.ucsd.edu www.cogsci.ucsd.edu/~ksweeney/psy260.html Today n Discuss Final Paper Proposal (due 3/10) n General Review 1 The article

More information

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:.

Cortical Organization. Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. Cortical Organization Functionally, cortex is classically divided into 3 general types: 1. Primary cortex:. - receptive field:. 2. Secondary cortex: located immediately adjacent to primary cortical areas,

More information

Cutaneomuscular reflexes recorded from the lower limb

Cutaneomuscular reflexes recorded from the lower limb Journal of Physiology (1995), 487.1, pp.237-242 376 237 Cutaneomuscular reflexes recorded from the lower limb in man during different tasks J. Gibbs, Linda M. Harrison * and J. A. Stephens Department of

More information

Chapter 13. The Nature of Muscle Spindles, Somatic Reflexes, and Posture

Chapter 13. The Nature of Muscle Spindles, Somatic Reflexes, and Posture Chapter 13 The Nature of Muscle Spindles, Somatic Reflexes, and Posture Nature of Reflexes A reflex is an involuntary responses initiated by a sensory input resulting in a change in the effecter tissue

More information

Neuro-MS/D Transcranial Magnetic Stimulator

Neuro-MS/D Transcranial Magnetic Stimulator Neuro-MS/D Transcranial Magnetic Stimulator 20 Hz stimulation with 100% intensity Peak magnetic field - up to 4 T High-performance cooling: up to 10 000 pulses during one session Neuro-MS.NET software

More information

Cognitive Neuroscience Attention

Cognitive Neuroscience Attention Cognitive Neuroscience Attention There are many aspects to attention. It can be controlled. It can be focused on a particular sensory modality or item. It can be divided. It can set a perceptual system.

More information

Neural Integration I: Sensory Pathways and the Somatic Nervous System

Neural Integration I: Sensory Pathways and the Somatic Nervous System 15 Neural Integration I: Sensory Pathways and the Somatic Nervous System PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Sensory Pathways and

More information

SOMATIC SENSATION PART I: ALS ANTEROLATERAL SYSTEM (or SPINOTHALAMIC SYSTEM) FOR PAIN AND TEMPERATURE

SOMATIC SENSATION PART I: ALS ANTEROLATERAL SYSTEM (or SPINOTHALAMIC SYSTEM) FOR PAIN AND TEMPERATURE Dental Neuroanatomy Thursday, February 3, 2011 Suzanne S. Stensaas, PhD SOMATIC SENSATION PART I: ALS ANTEROLATERAL SYSTEM (or SPINOTHALAMIC SYSTEM) FOR PAIN AND TEMPERATURE Reading: Waxman 26 th ed, :

More information

THE NERVOUS SYSTEM III

THE NERVOUS SYSTEM III THE NERVOUS SYSTEM III Small Review Review What is this? A neuron What does it do? Receives and transmits information Sending a signal How are signals sent in the nervous system? Message travels from neuron

More information

Neuro-MS/D DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. Transcranial Magnetic Stimulator. of motor disorders after the stroke

Neuro-MS/D DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. Transcranial Magnetic Stimulator. of motor disorders after the stroke Neuro-MS/D Transcranial Magnetic Stimulator DIAGNOSTICS of corticospinal pathway pathology REHABILITATION of motor disorders after the stroke TREATMENT of depression and Parkinson s disease STIMULATION

More information

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization 1 7.1 Overview This chapter aims to provide a framework for modeling cognitive phenomena based

More information

Biology 218 Human Anatomy

Biology 218 Human Anatomy Chapter 21 Adapted form Tortora 10 th ed. LECTURE OUTLINE A. Overview of Sensations (p. 652) 1. Sensation is the conscious or subconscious awareness of external or internal stimuli. 2. For a sensation

More information

SLHS1402 The Talking Brain

SLHS1402 The Talking Brain SLHS1402 The Talking Brain What are neuroscience core concepts? Neuroscience Core Concepts offer fundamental principles that one should know about the brain and nervous system, the most complex living

More information

Abnormalities in the awareness of action

Abnormalities in the awareness of action Opinion Abnormalities in the awareness of action Sarah-Jayne Blakemore, Daniel M. Wolpert and Christopher D. Frith Optimal motor control relies on internal representations of the actual, desired and predicted

More information

Morton-Style Factorial Coding of Color in Primary Visual Cortex

Morton-Style Factorial Coding of Color in Primary Visual Cortex Morton-Style Factorial Coding of Color in Primary Visual Cortex Javier R. Movellan Institute for Neural Computation University of California San Diego La Jolla, CA 92093-0515 movellan@inc.ucsd.edu Thomas

More information

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington

Motor systems.... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington Motor systems... the only thing mankind can do is to move things... whether whispering or felling a forest. C. Sherrington 1 Descending pathways: CS corticospinal; TS tectospinal; RS reticulospinal; VS

More information

Neuroscience with Pharmacology 2 Functions and Mechanisms of Reflexes. Prof Richard Ribchester

Neuroscience with Pharmacology 2 Functions and Mechanisms of Reflexes. Prof Richard Ribchester Neuroscience with Pharmacology 2 Functions and Mechanisms of Reflexes Prof Richard Ribchester René Descartes Cogito, ergo sum The 21st century still holds many challenges to Neuroscience and Pharmacology

More information

Chapter 14: The Cutaneous Senses

Chapter 14: The Cutaneous Senses Chapter 14: The Cutaneous Senses Somatosensory System There are three parts Cutaneous senses - perception of touch and pain from stimulation of the skin Proprioception - ability to sense position of the

More information

Human Paleoneurology and the Evolution of the Parietal Cortex

Human Paleoneurology and the Evolution of the Parietal Cortex PARIETAL LOBE The Parietal Lobes develop at about the age of 5 years. They function to give the individual perspective and to help them understand space, touch, and volume. The location of the parietal

More information

Physiology. D. Gordon E. Robertson, PhD, FCSB. Biomechanics Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, Canada

Physiology. D. Gordon E. Robertson, PhD, FCSB. Biomechanics Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, Canada Electromyography: Physiology D. Gordon E. Robertson, PhD, FCSB Biomechanics Laboratory, School of Human Kinetics, University of Ottawa, Ottawa, Canada Nervous System Central Nervous System (cerebellum,

More information

Implantable Microelectronic Devices

Implantable Microelectronic Devices ECE 8803/4803 Implantable Microelectronic Devices Fall - 2015 Maysam Ghovanloo (mgh@gatech.edu) School of Electrical and Computer Engineering Georgia Institute of Technology 2015 Maysam Ghovanloo 1 Outline

More information

Dr. Mark Ashton Smith, Department of Psychology, Bilkent University

Dr. Mark Ashton Smith, Department of Psychology, Bilkent University UMAN CONSCIOUSNESS some leads based on findings in neuropsychology Dr. Mark Ashton Smith, Department of Psychology, Bilkent University nattentional Blindness Simons and Levin, 1998 Not Detected Detected

More information

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40

biological psychology, p. 40 The study of the nervous system, especially the brain. neuroscience, p. 40 biological psychology, p. 40 The specialized branch of psychology that studies the relationship between behavior and bodily processes and system; also called biopsychology or psychobiology. neuroscience,

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Nervous System C H A P T E R 2

Nervous System C H A P T E R 2 Nervous System C H A P T E R 2 Input Output Neuron 3 Nerve cell Allows information to travel throughout the body to various destinations Receptive Segment Cell Body Dendrites: receive message Myelin sheath

More information

TREATMENT-SPECIFIC ABNORMAL SYNAPTIC PLASTICITY IN EARLY PARKINSON S DISEASE

TREATMENT-SPECIFIC ABNORMAL SYNAPTIC PLASTICITY IN EARLY PARKINSON S DISEASE TREATMENT-SPECIFIC ABNORMAL SYNAPTIC PLASTICITY IN EARLY PARKINSON S DISEASE Angel Lago-Rodriguez 1, Binith Cheeran 2 and Miguel Fernández-Del-Olmo 3 1. Prism Lab, Behavioural Brain Sciences, School of

More information

Overview of Questions

Overview of Questions Overview of Questions What are the sensors in the skin, what do they respond to and how is this transmitted to the brain? How does the brain represent touch information? What is the system for sensing

More information

Sensory information processing, somato-sensory systems

Sensory information processing, somato-sensory systems mm? Sensory information processing, somato-sensory systems Recommended literature 1. Kandel ER, Schwartz JH, Jessel TM (2000) Principles of Neural Science, McGraw-Hill, Ch. xx. 2. Berne EM, Levy MN, Koeppen

More information

The Nervous System. Nerves, nerves everywhere!

The Nervous System. Nerves, nerves everywhere! The Nervous System Nerves, nerves everywhere! Purpose of the Nervous System The information intake and response system of the body. Coordinates all body functions, voluntary and involuntary! Responds to

More information

Wetware: The Biological Basis of Intellectual Giftedness

Wetware: The Biological Basis of Intellectual Giftedness Wetware: The Biological Basis of Intellectual Giftedness Why is "giftedness" such a puzzle for parents? Why is there so much confusion? The most common plea heard on TAGFAM is "my child is different; please

More information

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION MOTOR EVOKED POTENTIAS AND TRANSCUTANEOUS MAGNETO-EECTRICA NERVE STIMUATION Hongguang iu, in Zhou 1 and Dazong Jiang Xian Jiaotong University, Xian, People s Republic of China 1 Shanxi Normal University,

More information

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech

A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Communicated by Richard Andersen 1 A Dynamic Neural Network Model of Sensorimotor Transformations in the Leech Shawn R. Lockery Yan Fang Terrence J. Sejnowski Computational Neurobiological Laboratory,

More information

Brain and behaviour (Wk 6 + 7)

Brain and behaviour (Wk 6 + 7) Brain and behaviour (Wk 6 + 7) What is a neuron? What is the cell body? What is the axon? The basic building block of the nervous system, the individual nerve cell that receives, processes and transmits

More information

Circuits & Behavior. Daniel Huber

Circuits & Behavior. Daniel Huber Circuits & Behavior Daniel Huber How to study circuits? Anatomy (boundaries, tracers, viral tools) Inactivations (lesions, optogenetic, pharma, accidents) Activations (electrodes, magnets, optogenetic)

More information

NEURAL CONTROL OF ECCENTRIC AND POST- ECCENTRIC MUSCLE ACTIONS

NEURAL CONTROL OF ECCENTRIC AND POST- ECCENTRIC MUSCLE ACTIONS NEURAL CONTROL OF ECCENTRIC AND POST- ECCENTRIC MUSCLE ACTIONS 1, 2 Daniel Hahn, 1 Ben W. Hoffman, 1 Timothy J. Carroll and 1 Andrew G. Cresswell 1 School of Human Movement Studies, University of Queensland,

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 5 Due: Tuesday, Nov. 24, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Basic Neuroscience. Sally Curtis

Basic Neuroscience. Sally Curtis The Physiology of Pain Basic Neuroscience Sally Curtis sac3@soton.ac.uk The behaviour of humans is a result of the actions of nerves. Nerves form the basis of Thoughts, sensations and actions both reflex

More information

Long lasting effects of rtms and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans

Long lasting effects of rtms and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans Journal of Physiology (2002), 540.1, pp. 367 376 DOI: 10.1113/jphysiol.2001.013504 The Physiological Society 2002 www.jphysiol.org Long lasting effects of rtms and associated peripheral sensory input on

More information

Københavns Universitet

Københavns Universitet university of copenhagen Københavns Universitet Interference in ballistic motor learning: specificity and role of sensory error signals Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C; Nielsen,

More information

Disruption of State Estimation in the Human Lateral Cerebellum

Disruption of State Estimation in the Human Lateral Cerebellum Disruption of State Estimation in the Human Lateral Cerebellum R. Chris Miall 1*, Lars O. D. Christensen 2, Owen Cain 1, James Stanley 1 PLoS BIOLOGY 1 School of Psychology, University of Birmingham, Birmingham,

More information

Peripheral Nervous System

Peripheral Nervous System Peripheral Nervous System 1 Sensory Receptors Sensory Receptors and Sensation Respond to changes (stimuli) in the environment Generate graded potentials that can trigger an action potential that is carried

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14 CS/NEUR125 Brains, Minds, and Machines Assignment 5: Neural mechanisms of object-based attention Due: Friday, April 14 This Assignment is a guided reading of the 2014 paper, Neural Mechanisms of Object-Based

More information

MODULATION OF CORTICOSPINAL EXCITABILITY DURING IMAGINED KNEE MOVEMENTS

MODULATION OF CORTICOSPINAL EXCITABILITY DURING IMAGINED KNEE MOVEMENTS J Rehab Med 2001; 33: 230 234 MODULATION OF CORTICOSPINAL EXCITABILITY DURING IMAGINED KNEE MOVEMENTS FrancË ois Tremblay, Louis E. Tremblay and Daniel E. Colcer From the Physiotherapy Programme, School

More information

Unit 3: The Biological Bases of Behaviour

Unit 3: The Biological Bases of Behaviour Unit 3: The Biological Bases of Behaviour Section 1: Communication in the Nervous System Section 2: Organization in the Nervous System Section 3: Researching the Brain Section 4: The Brain Section 5: Cerebral

More information

Lecture 35 Association Cortices and Hemispheric Asymmetries -- M. Goldberg

Lecture 35 Association Cortices and Hemispheric Asymmetries -- M. Goldberg Lecture 35 Association Cortices and Hemispheric Asymmetries -- M. Goldberg The concept that different parts of the brain did different things started with Spurzheim and Gall, whose phrenology became quite

More information

Introduction. Visual Perception Aditi Majumder, UCI. Perception is taken for granted!

Introduction. Visual Perception Aditi Majumder, UCI. Perception is taken for granted! Introduction Visual Perception Perception is taken for granted! Slide 2 1 Perception is very complex Perceive Locate Identify/Recognize Different objects Their relationship with each other Qualitative

More information

Complementarity and the Relation Between Psychological and Neurophysiological Phenomena

Complementarity and the Relation Between Psychological and Neurophysiological Phenomena the Relation Between Psychological and Neurophysiological Phenomena Douglas M. Snyder Berkeley, California ABSTRACT In their recent article, Kirsch and Hyland questioned the relation between psychological

More information

Giacomo Rizzolatti - selected references

Giacomo Rizzolatti - selected references Giacomo Rizzolatti - selected references 1 Rizzolatti, G., Semi, A. A., & Fabbri-Destro, M. (2014). Linking psychoanalysis with neuroscience: the concept of ego. Neuropsychologia, 55, 143-148. Notes: Through

More information

An investigation of the inhibition of voluntary EMG activity by electrical stimulation of the same muscle Paul Taylor and Paul Chappell*.

An investigation of the inhibition of voluntary EMG activity by electrical stimulation of the same muscle Paul Taylor and Paul Chappell*. An investigation of the inhibition of voluntary EMG activity by electrical stimulation of the same muscle Paul Taylor and Paul Chappell*. Department of Medical Physics and Biomedical Engineering, Salisbury

More information

Sensory Pathways & Somatic Nervous System. Chapter 15

Sensory Pathways & Somatic Nervous System. Chapter 15 Sensory Pathways & Somatic Nervous System Chapter 15 How Does Brain Differentiate Sensations? Pain impulses make brain aware of injuries and infections. Impulses from eye, ear, nose and tongue make brain

More information

Synfire chains with conductance-based neurons: internal timing and coordination with timed input

Synfire chains with conductance-based neurons: internal timing and coordination with timed input Neurocomputing 5 (5) 9 5 www.elsevier.com/locate/neucom Synfire chains with conductance-based neurons: internal timing and coordination with timed input Friedrich T. Sommer a,, Thomas Wennekers b a Redwood

More information

Mirror neurons. Romana Umrianova

Mirror neurons. Romana Umrianova Mirror neurons Romana Umrianova The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations Giacomo Rizzolatti and Corrado Sinigaglia Mechanism that unifies action

More information

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR In Physiology Today What the Brain Does The nervous system determines states of consciousness and produces complex behaviors Any given neuron may

More information

Nervous system Reflexes and Senses

Nervous system Reflexes and Senses Nervous system Reflexes and Senses Physiology Lab-4 Wrood Slaim, MSc Department of Pharmacology and Toxicology University of Al-Mustansyria 2017-2018 Nervous System The nervous system is the part of an

More information

Movimento volontario dell'arto superiore analisi, perturbazione, ottimizzazione

Movimento volontario dell'arto superiore analisi, perturbazione, ottimizzazione Movimento volontario dell'arto superiore analisi, perturbazione, ottimizzazione Antonio Currà UOS Neurologia Universitaria, Osp. A. Fiorini, Terracina UOC Neuroriabilitazione ICOT, Latina, Dir. Prof. F.

More information

The natural philosophy of agency. Shaun Gallagher Philosophy and Cognitive Sciences University of Central Florida

The natural philosophy of agency. Shaun Gallagher Philosophy and Cognitive Sciences University of Central Florida Gallagher, S. (2007). The natural philosophy of agency. Philosophy Compass. 2 (2): 347 357 (http://www.blackwell-synergy.com/doi/full/10.1111/j.1747-9991.2007.00067.x) This is a pre-print. Click here to

More information

Active and passive movements give rise to different judgments of coldness

Active and passive movements give rise to different judgments of coldness Perception, 2006, volume 35, pages 573 ^ 575 DOI:10.1068/p5439 Last but not least Active and passive movements give rise to different judgments of coldness Abstract. When the right index fingertip of twelve

More information

Functional Neuroanatomy. IBRO ISN African Neuroscience School 4-13 th Dec 2014 Nairobi, Kenya

Functional Neuroanatomy. IBRO ISN African Neuroscience School 4-13 th Dec 2014 Nairobi, Kenya Functional Neuroanatomy IBRO ISN African Neuroscience School 4-13 th Dec 2014 Nairobi, Kenya What is/are the function(s) of the nervous system? Sensation Perception Visceral activities (Homeostasis) Behavior

More information