Overview. Unit 2: What are the building blocks of our brains?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Overview. Unit 2: What are the building blocks of our brains?"

Transcription

1 Unit 2: What are the building blocks of our brains? Overview In the last unit we discovered that complex brain functions occur as individual structures in the brain work together like an orchestra. We also discussed one of the limitations of our new visualization techniques that they only sample populations of hundreds or thousands of neurons, so they don t give us any information about how the individual cells of the nervous system work together. So now we re going to take another step back and dial down our focus to the primary building blocks of our brains, the neurons and the glial cells. In this unit we will explore how these basic cells are built and how they work, and importantly what can go wrong when these building blocks are diseased and their functions are compromised. Remember our graphic from the beginning of this workbook? This unit focuses on the neuron, which is the building block of our brains.

2 Neuron cells of the nervous system that are specialized for the reception, conduction and transmission of electrochemical signals. LESSON 2.1 WORKBOOK What is the structure of a neuron? This unit introduces you to the building blocks of our brains: neurons and glia cells. In this lesson, we will begin our exploration of how the brain is put together by investigating why neurons have such complex structures and how these structures allow the neurons to perform highly specialized functions What are neurons? Neurons are the most important functional cells in our nervous system. The adult human brain contains roughly 86 billion individual neurons. Each neuron is interconnected, forming a precise network. Within that network neurons are assembled into many different kinds of functionally distinct regions (like Broca s area for example). As we saw in the last lesson these regions interact with each other to produce our perception of the external world, to fix our attention on the responses that need to be made, and to control our bodily functions. Our first step in understanding the brain, therefore, has to be to understand the neuron how it is put together and how it works. Neurons are cells with highly complex structures, much more complex than any other cell in the body. Wiggle your big toe. The neuron that controls that wiggle starts off in the spinal cord somewhere in your upper chest and ends up at your big toe, a distance that would be tens of meters if you were a giraffe (which don t have toes, but whatever, you get the point). Neurons are different from other cells in a number of ways especially because, unlike most cells, neurons don t divide the number of neurons you had when you are born is the maximum you will ever have. This means that when a neuron is damaged the only possibility you have to restore its function is to fix it, you can t simply make another one to take its place, like you could in the liver. In the peripheral nervous system you can fix damaged neurons so that they ll grow slowly back to make their original connections. The central nervous system is different. When a CNS neuron is damaged it cannot regrow long distances to repair its connections. Why? No one really knows. (Interestingly, CNS neurons can grow in lower vertebrates like fish). One potential reason why our CNS neurons aren t able to regrow lays in the hypothesis that all of our complex behaviors demand a neuronal network with a very precise architecture. Meaning that, CNS neurons have had to trade off the ability to regrow, so Can neurons in the PNS repair themselves? What would this mean in regards to recovery after an injury to the PNS? Can neurons in the CNS repair themselves? What would this mean in regards to recovery after an injury to the CNS? that the network remains stable. Even so, some nervous system damage can be repaired if we can induce Lesson 2.1 neurons to rewire over short distances. 38

3 Cell body part of the neuron containing the nucleus, but not including the axon and dendrites. Also called the soma. Endoplasmic reticulum organelle in the cell that forms a network of tubules and vesicles. It functions to synthesize proteins and lipids as well as metabolize carbohydrates. Nucleus the DNA containing structures of cells. Neurons have three distinct functional regions The typical neuron contains three different regions, each of which looks different and each of which has its own specialized function (Figure 1). These regions are: The cell body The dendrites The axon The cell body The cell body (also sometimes called the soma) is the metabolic center of the neuron (Figure 2). It contains the nucleus, which stores the genes of the cell in chromosomes, and the smooth and rough endoplasmic reticulum, which are the sites where proteins are synthesized. It also contains the lysosomes that degrade proteins that have become old or damaged. Because the ribosomes are mostly concentrated in the cell body, protein synthesis primarily occurs there and in the dendrites that are closest to it. Because of this, a major role of the cell body is to package the proteins it has made so they can be transported over long distances down the leg and into the foot to our big toe (or our little finger etc.). Similarly, because the cell body is also the site were lysosomes are concentrated, any big toe protein that has reached its sell-by date needs to be transported back up the leg to the cell body for destruction. Keeping all the parts of the neuron supplied with protein is a major task carried out by the cell body. Dendrites What are the three functional regions of the neuron? Name two important functions carried out by the neuron s cell body. Lesson Cell Body Ini2al Segment Presynap2c cell Axon Synapse Postsynap2c cell Figure 1: Neuron structure. Neurons have three distinct regions: the dendrites, the cell body, and the axon. Figure 2: Cell body. The cell body is the metabolic center of the cell and contains all the cellular organelles required to support cell life: the nucleus, mitochondria, ribosomes, rough and smooth endoplasmic reticulum.

4 Dendrites branched projection(s) of a neuron that functions as the receptive area of a neuron. Dendritic spines tiny spikes of various shapes that are located on the surfaces of many dendrites and are the sites of synapses. We can identify two types of outgrowths sprouting off from the cell body, the dendrites and the axon. The dendrites Most neurons have several dendrites (Figure 3). These dendrites branch out from the cell body in a shape that makes them look like a tree. In fact the dendrites are often called the dendritic tree. The dendritic tree is the main region of the neuron that receives signals. These signals can come in the form of sensations from the environment. Alternatively, in the depths of the neuronal network they may come from other neurons. The role of the dendrites is to convert these signals, which may be in the form of physical signals if they are from the environment (such as light, sound or touch) or chemicals if they are from other neurons, into an electrical signal. Dendrites do this by changing the electrical properties of their membranes via depolarization or hyperpolarization. We will talk more about the important processes of depolarization and hyperpolarization later on in this unit. Each of our sensory systems contains unique neurons that are specialized to detect specific types of sensory stimuli in the environment. The dendrites from these neurons are able to convert these stimuli into a neural response that the brain can understand. For example, different types of sensory dendrites in our skin are uniquely tuned to detect changes in pressure. They then convert the physical sensation of pressure into a neural response by depolarizing or hyperpolarizing their membranes. Figure 4: Dendritic spines. Dendrites have small protuberances called spines. Each spine can contain a synapse. The branches of the dendritic tree often have many hundreds of thousands of little twigs that we call dendritic spines because they look like spikes (Figure 4). Each dendritic spine usually contains one synapse, which is an exact area where the dendrite can receive a signal, whether from the environment or from another neuron. You can appreciate that if a single dendritic tree has hundreds of thousands of spines, then it can have hundreds of thousands of different inputs. Remember that there are also 86 billion neurons makes you appreciate Lesson 2.1 that trying to understand how everything is connected is a massive task. No wonder neuroscientists were 40 excited by the development of supercomputers! Figure 3: Dendrites. The dendritic arbor of two neurons (a Purkinje neuron on the left, and a sensory neuron on the righ) illustrating the extensive branching of dendrites.. What is the function of the dendritic tree? Which kind of neuron has more inputs: a neuron without dendritic spines, or a neuron with dendiritc spines? Why?

5 Action potential the electrical signal of the axon. Axon projection of a neuron that functions to conduct electrical impulses away from a neuron s cell body. Presynaptic cell neuron located before the synapse, and thus sending the signal Postsynaptic cell neuron located after the synapse, and thus receiving the signal The axon The other type of sprout we can detect coming off the cell body is the axon. Unlike the branches of the dendritic tree, which are tapered just like real branches, the axon can be identified because it looks just like a cylindrical tube. There is usually only one axon per neuron. The axon grows out from a specialized region of the cell body called the axon hillock or initial segment. This structure is important because the axon is the main transmitting or conducting unit of the neuron, conveying electrical signals from the dendritic tree down to its very tip. In our big toe analogy, the axon would convey the signal from dendrites in the spinal cord along your leg to tell your muscles to wiggle your toe. The axon hillock gathers together all the signals the neuron has received from the dendritic tree, converts them into the single output response and sends them down the axon. This output response is an electrical signal called the action potential. We will focus on how the action potential is made and transported in another lesson in this unit. Many axons split into several branches at their tips (like the roots of the tree). This means that the action potential can affect a larger area of its target cell, for example a muscle, than it could if it didn t have roots. Just as dendrites have specific points of contact called synapses, where they receive information from the environment or other cells, so too do axons. Axons form synapses with muscles, glands, or when located deep within a network of the CNS, with other neurons (Figure 5). In fact the synapse actually contains both the transmitting point of contact (axon) and the receiving point of contact (dendrite). The cell transmitting the signal is called the presynaptic cell for before the synapse, whereas the cell receiving the signal is the postsynaptic cell for after the synapse. Our neurons are classified into two main groups depending on what other cells they make connections with and what type of information they convey. Neurons that receive input from the environment, and transmit that input into the CNS are called sensory neurons. Whereas neurons that carry information out of the CNS and make connections with muscles and glands are called motor neurons. If we are going to be able to understand how neurons make functional networks it is going to be very important to understand exactly how the neurons connect together. Figure 5: Synapse. The end of the axon divides into fine branches that swell to form axon terminals. These axon terminals are separated from the postsynaptic cell by the synaptic cleft. What is the function of the axon? At a synapse, the cell sending a signal is called what? (Hint: It s the cell before the synapse.) At a synapse, the cell receiving the signal is called what? (Hint: It s the cell after the synapse.) Lesson Presynap)c cell Postsynap)c cell Axon terminal Synap)c cle4

6 Axon terminals/presynaptic terminals swellings at the end of the axon s branches that serve as the transmitting site of the presynaptic cell. Synaptic cleft small gap in the synapse that separates the presynaptic cell from postsynaptic cell. Within the depths of the network in the central nervous system, neurons connect to other neurons, so the presynaptic site is usually on an axon and the postsynaptic site is usually a dendrite (we may run into exceptions later, but for now don t worry about them). The points of contact on the axon are specialized swellings on the axon s branches called axon terminals or presynaptic terminals, while the points of contact on the dendrite are called, not surprisingly, postsynaptic terminals. It is an important characteristic of synapses that the pre- and postsynaptic terminals do not physically touch each other. Instead, they are separated by a space called the synaptic cleft. In order to get the signal across the synaptic cleft, and depolarize or hyperpolarize the dendritic membrane the presynaptic terminal turns the action potential into a chemical signal that can cross the physical space. We will talk about this process of transmitting a signal across the synapse called synaptic transmission in another lesson. As you might imagine, the function of the neuron critically depends on how long its axon is. Neurons with long axons are able to convey information over long distances to your big toe and so are called projection or relay neurons. Neurons with short axons are only able to convey information into a limited region and integrate information within a specific local area. Neuronal function So now we can classify neurons into three groups on the basis of their function: Sensory neurons carry information into the central nervous system for perception. Motor neurons carry commands out of the central nervous system to muscles and glands. Interneurons carry information from area to area within the nervous system. They are by far the largest class, consisting of all the neurons that are not specifically sensory or motor. In summary, although all neurons contain the same three functional components, they do not all look or behave the same (Figure 6). Figure 6: Examples of neurons. Neurons that perform different functions have different shapes. Sensory neurons receive input from a sensory organ, like the ear. Motor neurons control muscle information. Local interneurons integrate activity within a small area. Projection neurons convey information for long distances. Neuroendocrine cells release hormones into blood vessels. Model neurons show that each of What is the name of the site on the axon that connects to the dendrite? What is the name of the site on the dendrite that connects to the axon? Are the axons and dendrites in physical contact with each other? the different types have the same Lesson 2.1 functional components. 42

7 STUDENT RESPONSES Remember to identify your sources How are neurons specialized to complete their functions? Given what you know about the different types of neurons, what types of neurons do you predict to be involved in your ability to smell warm chocolate chip cookies? And then taste one after you eat it? What has to happen after you ve smelled the cookie, but before you make the first bite? Be as specific as you can. Lesson

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials Depolarize to decrease the resting membrane potential. Decreasing membrane potential means that the membrane potential is becoming more positive. Excitatory postsynaptic potentials (EPSP) graded postsynaptic

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Neuron by Richard H. Hall, 1998

The Neuron by Richard H. Hall, 1998 The Neuron by Richard H. Hall, 1998 External Structure A neuron can be defined as a nerve cell. The neuron is often thought of as the "building block" of the nervous system, and for good reason. The neuron

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 5 2401 : Anatomy/Physiology Introduction Neural Tissue TextBook Readings Pages 388 through 397. Make use of the figures in your textbook ; a picture is worth a thousand words! Work

More information

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi The Nervous System & Nervous tissue Dr. Ali Ebneshahidi Functions of the Nervous System 1. Nervous system and endocrine system are the chief control centers in maintaining body homeostasis. 2. Nervous

More information

Teacher Key. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body.

Teacher Key. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body. Introduction to Neurons An individual s survival and reproductive success depends upon

More information

6.5 Nerves, Hormones and Homeostasis

6.5 Nerves, Hormones and Homeostasis 6.5 Nerves, Hormones and Homeostasis IB Biology SL Part 1 - Nerves Outcomes Part 1 6.5.1State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse

Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse Outline Nervous System - Neurons Biol 105 Lecture Packet 9 Chapter 7 I. II. III. IV. V. VI. Nervous system function Central and peripheral nervous system Nervous system cells Myelinated neurons Nerve signal

More information

Blood & Nervous Tissue. Blood. Nervous Tissue 10/13/2008. BY: Jeremiah Peters, Brett Maggard, Miranda Asher, and Benjamin Oakes

Blood & Nervous Tissue. Blood. Nervous Tissue 10/13/2008. BY: Jeremiah Peters, Brett Maggard, Miranda Asher, and Benjamin Oakes Blood & Nervous Tissue BY: Jeremiah Peters, Brett Maggard, Miranda Asher, and Benjamin Oakes Blood Fluid within blood vessels Doesn t connect or give mechanical support Transports Nutrients, wastes, respiratory

More information

35-2 The Nervous System Slide 1 of 38

35-2 The Nervous System Slide 1 of 38 1 of 38 35-2 The Nervous System The nervous system controls and coordinates functions throughout the body and responds to internal and external stimuli. 2 of 38 Neurons Neurons The messages carried by

More information

PHYSIOLOGICAL ADAPTATIONS FOR SURVIVAL

PHYSIOLOGICAL ADAPTATIONS FOR SURVIVAL PHYSIOLOGICAL ADAPTATIONS FOR SURVIVAL HOMEOSTASIS Homeostasis means staying similar or unchanging and refers to the constant internal environment or steady state of an organism. It also includes the processes

More information

NERVOUS SYSTEM C H A P T E R 2 8

NERVOUS SYSTEM C H A P T E R 2 8 NERVOUS SYSTEM C H A P T E R 2 8 CAN AN INJURED SPINAL CORD BE FIXED? Injuries to the spinal cord disrupt communication between the central nervous system (brain and spinal cord) and the rest of the body

More information

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts:

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts: Animals: Nervous system Neuron and connection of neurons Outline 1. Key concepts 2. An Overview and Evolution 3. Human Nervous System 4. The Neurons 5. The Electrical Signals 6. Communication between Neurons

More information

Lecture 3 (Oct 5 th ): NEURONS AND NERVE IMPULSES Lecture Outline

Lecture 3 (Oct 5 th ): NEURONS AND NERVE IMPULSES Lecture Outline Lecture 3 (Oct 5 th ): NEURONS AND NERVE IMPULSES Lecture Outline 1) CNS vs. PNS 2) Structure of Neurons parts of a neuron: soma, dendrites, axons 3) Glial Cells 4) Mitosis and Regeneration in Neurons

More information

H. composed of the brain and spinal cord.

H. composed of the brain and spinal cord. Mrs. Keadle H Science Name period date assigned date due date returned Match the following vocabulary words to their definition. Please write a capital letter in the blank. 1. central nervous system 2.

More information

Week 2 Psychology. The Brain and Behavior

Week 2 Psychology. The Brain and Behavior Week 2 Psychology The Brain and Behavior In this lesson, we will focus on the nervous system. We will learn about the Nervous System and its Command Center the Brain Characteristics and Divisions of the

More information

You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS.

You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS. 1 Nervous system maintains coordination through the use of electrical and chemical processes. There are three aspects: sensory, motor, and integrative, which we will discuss throughout the system. The

More information

Biological Psychology. Unit Two AA Mr. Cline Marshall High School Psychology

Biological Psychology. Unit Two AA Mr. Cline Marshall High School Psychology Biological Psychology Unit Two AA Mr. Cline Marshall High School Psychology What are the biological factors that affect our behavior? In this unit we are going to take a look at biological psychology,

More information

Neural and Hormonal Systems

Neural and Hormonal Systems PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Worth Publishers, 2007 1 Neural and Hormonal Systems Module 4 2 Neural and Hormonal Systems Neural Communication Neurons How Neurons Communicate

More information

Module 5 : Anatomy The nervous system

Module 5 : Anatomy The nervous system Module 5 : Anatomy The nervous system In this module you will learn: The main parts of the nervous system The different sections of the brain and how it functions The structure and function of the spinal

More information

Bio11: The Nervous System. Body control systems. The human brain. The human brain. The Cerebrum. What parts of your brain are you using right now?

Bio11: The Nervous System. Body control systems. The human brain. The human brain. The Cerebrum. What parts of your brain are you using right now? Bio11: The Nervous System Body control systems Nervous system Quick Sends message directly to target organ Endocrine system Sends a hormone as a messenger to the target organ Can target several organs

More information

The 7 th lecture. Anatomy and Physiology For the. 1 st Class. By Dr. Ala a Hassan Mirza

The 7 th lecture. Anatomy and Physiology For the. 1 st Class. By Dr. Ala a Hassan Mirza The 7 th lecture In Anatomy and Physiology For the 1 st Class By Dr. Ala a Hassan Mirza Nervous System (part I) The Nerve Tissue and the Nervous System The Tissues of the Body There are 4 types of tissues

More information

Nervous System. Electrical Signals.III Signal Transmission at Synapses Neurotransmitters.V Neural Circuits.VI

Nervous System. Electrical Signals.III Signal Transmission at Synapses Neurotransmitters.V Neural Circuits.VI Nervous System Overview.I Histology.II Electrical Signals.III Signal Transmission at Synapses Neurotransmitters.V Neural Circuits.VI Repairs.VII Pathology.VIII.IV 1 Controls and integrates all body activities

More information

Explore the Neuroscience for Kids Web Site (QUESTIONS) Start at:

Explore the Neuroscience for Kids Web Site (QUESTIONS) Start at: NAME Explore the Neuroscience for Kids Web Site (QUESTIONS) Start at: http://faculty.washington.edu/chudler/neurok.html On the left side, click on Explore, then click on The Neuron, then click on Millions

More information

Learning Modules - Medical Gross Anatomy Nervous System Overview - Page 1 of 14

Learning Modules - Medical Gross Anatomy Nervous System Overview - Page 1 of 14 Nervous System Overview - Page 1 of 14 Overview of the Nervous System Every minute of every day, your nervous system is sending and receiving countless messages about what is happening both inside and

More information

The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine.

The Nervous System. Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine. The Nervous System Dr. ZHANG Xiong Dept. of Physiology ZJU School of Medicine Http://10.10.10.151 Part 1. Summary of the nervous system The Nervous System Central Nervous System Brain + Spinal Cord Peripheral

More information

Functions of Nervous System Neuron Structure

Functions of Nervous System Neuron Structure Chapter 10 Nervous System I Divisions of the Nervous System Cell Types of Neural Tissue neurons neuroglial cells Central Nervous System brain spinal cord Peripheral Nervous System nerves cranial nerves

More information

Chapter 22. The Nervous and Endocrine Systems Worksheets. 561

Chapter 22. The Nervous and Endocrine Systems Worksheets. 561 Chapter 22 The Nervous and Endocrine Systems Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 22.1: The Nervous System Lesson 22.2: The

More information

The Nervous System. Nerves, nerves everywhere!

The Nervous System. Nerves, nerves everywhere! The Nervous System Nerves, nerves everywhere! Purpose of the Nervous System The information intake and response system of the body. Coordinates all body functions, voluntary and involuntary! Responds to

More information

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12.

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12. C H A P T E R 12 Fundamentals of the Nervous System and Nervous Tissue Nervous System Sensory input Integration Motor output Figure 12.1 Basic Divisions of the Nervous System Brain CNS Spinal cord Nerves

More information

Chapter 3 Biological Foundations and Neuroscience

Chapter 3 Biological Foundations and Neuroscience Chapter 3 Biological Foundations and Neuroscience Copyright 2001 by McGraw-Hill Ryerson Limited Heredity! Chromosomes! Threadlike structures that come in 23 pairs, one member of each pair coming from each

More information

Nerve Cell Flashcards

Nerve Cell Flashcards 1. What does the word innervates mean? Refers to a nerve supplying a muscle or organ. For example, The phrenic nerve innervates the diaphragm muscle. 2. 3 parts of the Nervous System 1. Central Nervous

More information

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Question No. 1 of 10 The human body contains different types of tissue. The tissue is formed into organs and organ systems.

More information

Objectives. ! Describe the major structures of the nervous system. ! Explain how a nerve impulse is transmitted.

Objectives. ! Describe the major structures of the nervous system. ! Explain how a nerve impulse is transmitted. Objectives! Describe the major structures of the nervous system.! Explain how a nerve impulse is transmitted.! Distinguish between the functions of the central and peripheral nervous systems.! Identify

More information

THE NERVOUS SYSTEM AS A TARGET ORGAN

THE NERVOUS SYSTEM AS A TARGET ORGAN THE NERVOUS SYSTEM AS A TARGET ORGAN Summary A target organ is an organ or organs of the body which adversely responds to systemic exposure of a chemical. The function of the nervous system is to communicate

More information

The Nervous System. Overall Function

The Nervous System. Overall Function The Nervous System The Nervous System Overall Function COMMUNICATION Works with the endocrine system in regulating body functioning, but the nervous system is specialized for SPEED Neurons A neuron is

More information

Chapter 20. The Nervous System

Chapter 20. The Nervous System Chapter 20 The Nervous System Overview: The Nervous System https://www.youtube.com/watch?v=q8ntmdrb_qo https://www.youtube.com/watch?v=qy9ntvh-awo https://www.youtube.com/watch?v=kr7dgpowzsa Section 1

More information

Learning Intention. Name and describe the components of a neuron

Learning Intention. Name and describe the components of a neuron c) Neural Pathways Learning Intention Name and describe the components of a neuron Cells of the Nervous System The nervous system consists of a complex network of nerve cells called neurons which receive

More information

The Nervous System and the Endocrine System

The Nervous System and the Endocrine System The Nervous System and the Endocrine System Neurons: The Building Blocks of the Nervous System Nervous System The electrochemical communication system of the body Sends messages from the brain to the

More information

THE NERVOUS SYSTEM. Homeostasis Strand

THE NERVOUS SYSTEM. Homeostasis Strand THE NERVOUS SYSTEM Homeostasis Strand Introduction In general, a nervous system has three overlapping functions : 1. Sensory input conduction of signals from sensory receptors to integration centres 2.

More information

! BIOL 2401! Week 5. Nervous System. Nervous System

! BIOL 2401! Week 5. Nervous System. Nervous System Collin County Community College! BIOL 2401! Week 5 Nervous System 1 Nervous System The process of homeostasis makes sure that the activities that occur in the body are maintained within normal physiological

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

CHAPTER I From Biological to Artificial Neuron Model

CHAPTER I From Biological to Artificial Neuron Model CHAPTER I From Biological to Artificial Neuron Model EE543 - ANN - CHAPTER 1 1 What you see in the picture? EE543 - ANN - CHAPTER 1 2 Is there any conventional computer at present with the capability of

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

Chapter 11: Fundamentals of the Nervous System and Nervous Tissue

Chapter 11: Fundamentals of the Nervous System and Nervous Tissue Chapter 11: Fundamentals of the Nervous System and Nervous Tissue Objectives: 1. List the basic functions of the nervous system. 2. Explain the structural and functional divisions of the nervous system.

More information

Introduction. Chapter The Perceptual Process

Introduction. Chapter The Perceptual Process Chapter 1 Introduction Most of us take for granted our ability to perceive the external world. However, this is no simple deed at all. Imagine being given a task of designing a machine that can perceive,

More information

Physiology of the nerve

Physiology of the nerve Physiology of the nerve Objectives Transmembrane potential Action potential Relative and absolute refractory period The all-or-none law Hoorweg Weiss curve Du Bois Reymond principle Types of nerve fibres

More information

Neurons: The Building Blocks of the Nervous System

Neurons: The Building Blocks of the Nervous System Neurons: The Building Blocks of the Nervous System CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well

More information

Introduction. Visual Perception Aditi Majumder, UCI. Perception is taken for granted!

Introduction. Visual Perception Aditi Majumder, UCI. Perception is taken for granted! Introduction Visual Perception Perception is taken for granted! Slide 2 1 Perception is very complex Perceive Locate Identify/Recognize Different objects Their relationship with each other Qualitative

More information

ACTIVITY2.15 Text:Campbell,v.8,chapter48 DATE HOUR NERVOUS SYSTEMS NEURON

ACTIVITY2.15 Text:Campbell,v.8,chapter48 DATE HOUR NERVOUS SYSTEMS NEURON AP BIOLOGY ACTIVITY2.15 Text:Campbell,v.8,chapter48 NAME DATE HOUR NERVOUS SYSTEMS NEURON SIMPLE REFLEX RESTING POTENTIAL ACTION POTENTIAL ACTION POTENTIAL GRAPH TRANSMISSION ACROSS A SYNAPSE QUESTIONS:

More information

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems Bio11 schedule Lecture Nervous system and senses Lab Current events reports (10 pts) Urinalysis Lecture exam 2 Thursday Feb 24 Same format as before Study guide will be posted Your total points so far

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

Nerve Cell Communication

Nerve Cell Communication Nerve Cell Communication Core Concept: Nerve cells communicate using electrical and chemical signals. Class time required: Approximately 40 minutes if Part 4 is completed for homework. Teacher Provides:

More information

Nervous System Notes

Nervous System Notes Nervous System Notes The nervous system consists of a network of nerve cells or neurons. I. A nervous system is an important part of a cell s (or an organism s) ability to respond to the environment. A.

More information

Bioscience in the 21st century

Bioscience in the 21st century Bioscience in the 21st century Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous system 6.

More information

Neurons: Structure and communication

Neurons: Structure and communication Neurons: Structure and communication http://faculty.washington.edu/chudler/gall1.html Common Components of a Neuron Dendrites Input, receives neurotransmitters Soma Processing, decision Axon Transmits

More information

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse Neurotransmitters A chemical released by one neuron that affects another neuron or an effector organ (e.g., muscle, gland, blood vessel). Neurotransmitters are small molecules that serve as messengers

More information

Module H NERVOUS SYSTEM

Module H NERVOUS SYSTEM Module H NERVOUS SYSTEM Topic from General functions of the nervous system Organization of the nervous system from both anatomical & functional perspectives Gross & microscopic anatomy of nervous tissue

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 TEXTBOOK AND REQUIRED/RECOMMENDED

More information

Biology 3201 Quiz on Nervous System. Total 33 points

Biology 3201 Quiz on Nervous System. Total 33 points Biology 3201 Quiz on Nervous System Total 33 points Name: Circle the best response to the following: (33 points) 1. What do we call the long fibre that carries impulses away from the nerve cell body? A.

More information

The Nervous System Mark Stanford, Ph.D.

The Nervous System Mark Stanford, Ph.D. The Nervous System Functional Neuroanatomy and How Neurons Communicate Mark Stanford, Ph.D. Santa Clara Valley Health & Hospital System Addiction Medicine and Therapy Services The Nervous System In response

More information

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3)

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3) UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM State the 3 functions of the nervous system. Briefly describe the general function(s) of each of the following neuron types: a) SENSORY NEURONS: b) INTERNEURONS: c)

More information

The Function of Nervous Tissue *

The Function of Nervous Tissue * OpenStax-CNX module: m46531 1 The Function of Nervous Tissue * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

The Nervous System. Lab Exercise 29. Objectives. Introduction

The Nervous System. Lab Exercise 29. Objectives. Introduction Lab Exercise The Nervous System Objectives -You should be able to recognize a neuron and identify its components. - Be able to identify the principal components of the brain and be able to name at least

More information

HASPI Medical Anatomy & Physiology 11a Lab Activity

HASPI Medical Anatomy & Physiology 11a Lab Activity HASPI Medical Anatomy & Physiology 11a Lab Activity Name(s): Period: Date: The Nervous System The nervous system is an incredibly complex network of tissues that are capable of carrying information throughout

More information

1. Processes nutrients and provides energy for the neuron to function; contains the cell's nucleus; also called the soma.

1. Processes nutrients and provides energy for the neuron to function; contains the cell's nucleus; also called the soma. 1. Base of brainstem; controls heartbeat and breathing 2. tissue destruction; a brain lesion is a naturally or experimentally caused destruction of brain tissue 3. A thick band of axons that connects the

More information

Tips. Use the Study Guide (SG) to follow the lectures. Reading the SG before class will be helpful Use the textbook to supplement lectures/sg

Tips. Use the Study Guide (SG) to follow the lectures. Reading the SG before class will be helpful Use the textbook to supplement lectures/sg Tips Use the Study Guide (SG) to follow the lectures Lectures will be posted after class Reading the SG before class will be helpful Use the textbook to supplement lectures/sg The Nervous System N E U

More information

Concept Nervous Systems Consist of Neurons and Glia

Concept Nervous Systems Consist of Neurons and Glia Chapter 34: Neurology ACTIVE LEARNING EXERCISES Concept 34.1 - Nervous Systems Consist of Neurons and Glia 1. Draw two neurons that meet at a synapse. Label on your diagram: a. Axon b. Axon hillock c.

More information

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures Soma Collateral Overview of Neurons Psychology 470 Axon Hillock Teleodendria Introduction to Chemical Additions Steven E. Meier, Ph.D. Node of Ranvier Listen to the audio lecture while viewing these slides

More information

Neural Tissue. Chapter 12 Part B

Neural Tissue. Chapter 12 Part B Neural Tissue Chapter 12 Part B CNS Tumors - Neurons stop dividing at age 4 but glial cells retain the capacity to divide. - Primary CNS tumors in adults- division of abnormal neuroglia rather than from

More information

Nervous System- Chapters 7, 8

Nervous System- Chapters 7, 8 Nervous System- Chapters 7, 8 1 Surgical Papyrus Egyptian hieroglyphics. 17 th Century B.C. Oldest known surgical treatise. 48 case histories are outlined. 2 Organization of the Nervous System Consists

More information

Intro to the Biological Perspective

Intro to the Biological Perspective Psychology Biology 01 Notes Intro to the Biological Perspective The Biological perspective of Psychology encompasses all of the physical attributes of the human body that play a part in how we act, think

More information

CHAPTER 3 THE STRUCTURE OF THE NERVOUS SYSTEM

CHAPTER 3 THE STRUCTURE OF THE NERVOUS SYSTEM CHAPTER 3 THE STRUCTURE OF THE NERVOUS SYSTEM 3.1. THE BASIC STRUCTURE OF THE NERVOUS SYSTEM. The nervous system of all animals is made up of groups of neurons that receive information from sensory systems,

More information

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I

NERVOUS SYSTEM 1 CHAPTER 10 BIO 211: ANATOMY & PHYSIOLOGY I BIO 211: ANATOMY & PHYSIOLOGY I 1 Ch 10 A This set Ch 10 B CHAPTER 10 NERVOUS SYSTEM 1 BASIC STRUCTURE and FUNCTION Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill.

More information

A. Subdivisions of the Nervous System: 1. The two major subdivisions of the nervous system:

A. Subdivisions of the Nervous System: 1. The two major subdivisions of the nervous system: BIO 211: ANATOMY & PHYSIOLOGY I 1 Ch 10 A Ch 10 B CHAPTER 10 NERVOUS SYSTEM 1 BASIC STRUCTURE and FUNCTION Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill.

More information

PSYC& 100: Biological Psychology (Lilienfeld Chap 3) 1

PSYC& 100: Biological Psychology (Lilienfeld Chap 3) 1 PSYC& 100: Biological Psychology (Lilienfeld Chap 3) 1 1 What is a neuron? 2 Name and describe the functions of the three main parts of the neuron. 3 What do glial cells do? 4 Describe the three basic

More information

Indicate whether the statement is true (A) or false (B).

Indicate whether the statement is true (A) or false (B). Bio70 Psychobiology Fall 2006 First Midterm October 12 Version A You must put your name and student ID number on both the paper test and your Scantron. Make sure to put the test version number on your

More information

STOP. The Nervous System How you know when to. doing something stupid. Or Keep doing something pleasurable. The Neuron. Different Types of Neurons

STOP. The Nervous System How you know when to. doing something stupid. Or Keep doing something pleasurable. The Neuron. Different Types of Neurons The Nervous System How you know when to STOP doing something stupid. Or Keep doing something pleasurable Complexity of the Brain The brain contains approximately 100 billion nerve cells, or neurons, and

More information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information NERVOUS SYSTEM Monitor changes External / internal Integrate input Primary Functions Process, interpret, make decisions, store information Initiate a response E.g., movement, hormone release, stimulate/inhibit

More information

Organelles Found in a Generalized Animal Cell

Organelles Found in a Generalized Animal Cell Organelles Found in a Generalized Animal Cell 1. Cell Membrane 2. Cytoplasm 3. Nucleus 4. Nuclear Membrane 5. Nucleoplasm 6. Nucleolus 7. Chromosomes 8. Vacuole 9. Ribosomes 10. Rough Endoplasmic Reticulum

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

BI 232: Human Anatomy & Physiology

BI 232: Human Anatomy & Physiology BI 232: Human Anatomy & Physiology Roster Business Course Introduction and Syllabus Notecard Name E-mail Why you are taking the course Something interesting you did over break Lecture Tips Use the Study

More information

Okami Study Guide: Chapter 2 1

Okami Study Guide: Chapter 2 1 Okami Study Guide: Chapter 2 1 Chapter Test 1. A cell that receives information and transmits it to other cells via an electrochemical process is called a(n) a. neuron b. hormone c. glia d. endorphin Answer:

More information

II. Nervous System (NS) Organization: can be organized by location/ structure or by function A. Structural Organization 1. Central N.S.

II. Nervous System (NS) Organization: can be organized by location/ structure or by function A. Structural Organization 1. Central N.S. Nervous System I. Nervous system Functions A. Detect Changes in the environment (stimuli) B. Interpret/evaluate those stimuli C. Initiate responses (trigger muscle contractions or glandular response) II.

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Name Date Class. How the Nervous System Works (pages ) 2. Is the following sentence true or false? You can move without your

Name Date Class. How the Nervous System Works (pages ) 2. Is the following sentence true or false? You can move without your CHAPTER 15 THE NERVOUS SYSTEM SECTION 15 1 How the Nervous System Works (pages 486-490) This section describes what the nervous system does in the body. It also tells how nerve impulses travel. Functions

More information

BIOLOGY 12 NERVOUS SYSTEM PRACTICE

BIOLOGY 12 NERVOUS SYSTEM PRACTICE 1 Name: BIOLOGY 12 NERVOUS SYSTEM PRACTICE Date: 1) Identify structures X, Y and Z and give one function of each. 2) Which processes are involved in the movement of molecule Y from point X to point Z?

More information

Name: Period: Test Review: Chapter 2

Name: Period: Test Review: Chapter 2 Name: Period: Test Review: Chapter 2 1. The function of dendrites is to A) receive incoming signals from other neurons. B) release neurotransmitters into the spatial junctions between neurons. C) coordinate

More information