Rationale for Patient- Specific Vaccine Therapy for Non-Hodgkin Lymphoma

Size: px
Start display at page:

Download "Rationale for Patient- Specific Vaccine Therapy for Non-Hodgkin Lymphoma"

Transcription

1 Rationale for Patient- Specific Vaccine Therapy for Non-Hodgkin Lymphoma Maribeth Hohenstein, RN, BSN, OCN Clinical Research Nurse Coordinator University of Nebraska Medical Center Objectives Review the Immune System and it s function Define Vaccine Therapy Discuss how the Immune System is utilized in Vaccine Therapy Discuss the components of Vaccine Therapy Discuss the rationale for Vaccine Therapy in the treatment of Follicular NHL NHL and the Immune System NHL is a disease that starts in and affects the immune system NHL arises from B cells or T cells It s important to understand how a healthy immune system functions to in turn understand lymphoma and its treatment Immune System General Overview Primary Function Recognize and eliminate foreign substances (non-self) that enter the body Small army that is always on guard to protect the body Distinguish between self and non-self Innate or Nonspecific Immunity Adaptive or Acquired Immunity Innate (Non-specific) Immunity Primary line of defense Non-specific (natural immunity) No Memory Complement Phagocytes Natural Killer cells Adaptive (Acquired) Immunity Secondary line of defense Specific Memory Lymphocytes (T cells and B cells) 1

2 Immunotherapeutic Responses Passive (Adaptive) Immunity Transfer of antibodies or short-lived anti-tumor activities Monoclonal antibody therapy (Rituxan ) Active (Acquired) Immunity Stimulates host s immune system Creates memory Vaccine therapy Specific Immune Responses Cellular (Cell-mediated) Immunity Antigen-specific responses are mediated by T-lymphocytes Humoral (Antibody-mediated) Immunity Antigen-specific responses are mediated by serum antibodies produced by B-cells Cellular and humoral responses work together to induce tumor regression and long-lasting immunity to the disease being treated Workman, M.L. (1998). The lymphoid system and its role in maintaining immunocompetence. Seminars in Oncology Nursing, 14(4), Antigen and Antibody Stem cells develop into myeloid stem cells, which can become red blood cells, megakaryocytes (pre-platelets), and a variety of leukocytes (white blood cells) including dendritic cells. Together, all of these cells constitute the immune system. Image Not Available Antigen Anything that causes the immune system to react Produce a response that can lead to the destruction of both the antigen and whatever the antigen is attached to Antibody Produced by B cells Used by the immune system to fight foreign invaders or disease An antibody matches an antigen much like a key matches a lock Whenever antibody and antigen interlock, the mechanism is put in place for cellular destruction B Cells Made in the bone marrow Each B cell produces one specific antibody or immunoglobulin Also called, B-Lymphocytes B cells do not have direct cytotoxic (killing) effect on cells Immunoglobulins on the cell surface act as antigen or foreign substance receptors Complement system helps antibodies to destroy antigens Stimulated B cells develop into: Plasma cells with the first antigen exposure Memory cells with the subsequent exposures Can also act as antigen-presenting cells to T-cells DeMeyer, E. and Barr, J. (2003). Dendritic Cells: The Sentry Cells of the Immune System, OES Monograph 2

3 T Cells Mature in the thymus Where T cells learn to distinguish self from nonself T cells communicate by releasing cytokines Recognize and destroy foreign antigens Activate macrophages Assist in making antibodies T Cells (Continued) Helper/inducer T cells (T 4 or CD4 or Th) Immunoregulatory cells Activate other cells of the immune system Recruit killer T cells by providing cytokine (e.g. IL-2, GM-CSF) Instruct B cells to make antibodies Activate NK cells and macrophages Cytotoxic/cytolytic T cells (T 8 or CD8 or Tc) Killer T cells Rid the body of foreign antigens or infected cells by attacking antigens and releasing cytotoxic substances DeMeyer, E. and Barr, J. (2003). Dendritic Cells: The Sentry Cells of the Immune System, OES Monograph DeMeyer, E. and Barr, J. (2003). Dendritic Cells: The Sentry Cells of the Immune System, OES Monograph Mechanisms of Immune Destruction T of Tumor Cells H 1, T H 2 cytokines Stimulates macrophages, NK cells, B cells B cell Tumor antigenspecific antibodies Ab Tumor cell CD4+ T cell activates ADCC NK cell or macrophage Tumor cell lysis/death CD8+ T cell Cytotoxic T-cell activity Miller, Jeffrey, General Principles of Tumor Immunology and Future Directions in Dendritic Cell Therapy from Oncology and Transplantation: Current Standards of Care to Immune-based Therapies. Sponsored by Medical Education Resources, Inc. Antigen Presenting Cells (APCs) Cells that present antigen on its surface to other cells of the immune system Very important step of the immune response APCs include Macrophages Dendritic cells B cells Dendritic Cells Dendritic cells (DCs) present the antigen to the T cell = antigen presenting cell (APC) Potent cells of the immune system Play a significant role in the development of acquired immunity Circulate, capture, and express the antigen on the surface membranes that are bound to MHC antigens to attract T cells DeMeyer E. and Buchsel, P. (2005) A Dendritic Cell Primer for Oncology Nurses, CJON, 9(4), DeMeyer, E. and Barr, J. (2003). Dendritic Cells: The Sentry Cells of the Immune System, OES Monograph 3

4 Major Histocompatibility Complex MHC (Major Histocompatibility Complex) Group of genes that distinguish self from non-self Referred to in humans as human leukocyte antigen (HLA) complex Act as markers for antigen presentation by B cells, macrophages and T cells Unique in every individual, just like fingerprints MHC class I stimulate CD8+ killer cells MHC class II stimulate CD4+ helper cells MHC class III consists of complement components DeMeyer, E. and Barr, J. (2003). Dendritic Cells: The Sentry Cells of the Immune System, OES Monograph Action of APCs and MHC Dendritic cells (DCs) circulate throughout the body looking for antigens from other cells Other cells = invaders, abnormal or normal self tissue Goal: make antigen recognizable to T cells The DCs (APCs) present antigen to T cells DCs express both MHC class I and class II Therefore, stimulates both CD8 (killer cells) and CD4 cells (helper cells), respectively Naïve T cells are activated to trigger a complex immune response to either fight or tolerate antigens. Activated T cells can stimulate other cells of the immune system B cells for antibody formation Macrophages for cytokine release Cell targets for lysis DeMeyer, E. and Barr, J. (2003). Dendritic Cells: The Sentry Cells of the Immune System, OES Monograph The Immune Response IMMUNE RESPONSE to a FOREIGN ANTIGEN requires the presence of APC in combination with B CELLs or T CELLs. The B CELL is signaled to proliferate and produce ANTIBODIES to bind to the ANTIGEN. ANTIBODIES initiate the COMPLEMENT CASCADE to cause destruction of the ANTIGEN. APCs present ANTIGEN to T CELLs CD8 cells activated to kill target cells (Cellular Response) CD4 cells activated to regulate production (Humoral Response) of ANTIBODIES and activity of CD8 cells Mechanisms of Immune Destruction of Tumor Cells Cellular and Humoral Immunity Humoral-Mediated Mechanisms Lysis by antibody and complement Antibody-mediated and complement-mediated opsonization Cell-Mediated Mechanisms Antibody-dependent cellmediated cytotoxicity Destruction by cytotoxic T cells Destruction by activated macrophages Destruction by natural killer cells Image Not Available Benjamini E, et al. Immunology: A Short Course. 3rd ed

5 Personalized Vaccines: Multiple Levels of Attack Polyclonal Anti-tumor Antibodies A Cancer Vaccine is. Monoclonal Antibody T-Cell Antigen Lymphoma B-cell Cytokines T-cell a substance or group of substances meant to cause the immune system to respond to a tumor or to microorganisms, such as bacteria or viruses. A vaccine can help the body to recognize and destroy cancer cells or microorganisms. CD4+ Helper CD8+ Cytotoxic History of Vaccine Therapy The first successful vaccination procedure was described by Edward Jenner in the 1790 s. William Coley was the first to work with the idea of vaccination for cancer in the 1890 s. Chang, A. (2000). Cancer vaccines. Retrieved August 18, 2005 from Waldman, T. (2003). Immunotherapy: past, present and future [Electronic Version]. Nature Medicine. 9(3), Retrieved August 18, 2005 from Goal of Cancer Vaccines is to produce a strong immune response that involves the cellular and humoral arms of the immune system resulting in a T cell and antibody response is to present the target to the immune system resulting in a much larger activation of T cells than is occurring naturally in the host Prophylactic Vaccines Stimulate a long-lasting (years or even a lifetime) immune response that prevents one from getting sick Not yet possible for cancer because of the variation among different cancers even within the same type of cancer Viral targets for cancer have been identified Hepatitis B virus (HBV) Epstein-Barr virus (EBV) Human Papillomavirus (HPV) Hepatitis B vaccine FDA approved Reduction of cirrhosis and hepatocellular carcinoma HPV quadrivalent vaccine clinical trials May reduce the incidence of cervical cancer Therapeutic Vaccines Designed to treat people affected with a disease, with the goal of stimulating or boosting the body s immune defenses to fight the disease Therapeutic vaccines for cancer are effective because the immune system can develop acquired immunity to disease after initial exposure 5

6 How do cancer vaccines really work? The tumor associated antigen (TAA) or target must be presented to the immune system in a way that stimulates an immune response Both cellular and humoral responses are necessary to create an adequate response and memory to work against the antigen Tumor Escape Mechanisms Tumor cells, are by definition, either weakly immunogenic or functionally non-immunogenic Tumors can escape Immune Surveillance SELF vs. NON-SELF Tumor cells are much like normal cells and simply cannot stimulate a strong effective immune response Cancer cells are able to trick the immune system by altering their characteristics slightly Tolerance may be due to only a minor difference between the tumor cell and the normal cell The tumor needs to be presented the immune system in a way that it appears foreign, so that an immune response can be initiated. Components of Vaccine Therapy - Tumor-specific Target - Carrier Protein - Adjuvant Targets for Cancer Vaccines Tumor-Associated Antigens (Tumor-Specific Target) Molecule on the surface of the tumor cell May be unique to the individual tumor, shared by several tumor types, or expressed on normal tissue from which the cancer grows The first human cancer antigen was discovered in the cells of patient with metastatic melanoma in 1991 More than 500 tumor antigens have been identified Examples Carcinoembryonic antigen (CEA) Prostate-specific antigen (PSA) Melanoma antigen genes (MAGE 1, 2, and 3) HER-2/neu Idiotype (tumor-specific) - NHL Battiato, L. & Wheeler, V. (2003). Biotherapy. In Yarbro, C.H., Goodman, M., Frogge, M.H., & Groenwald, S.L. (Ed.), Cancer Nursing; Principles and Practice, (5 th ed., pp ). Sudbury, MA: Jones & Bartlett. National Cancer Institute. (2003). Cancer Vaccine Fact Sheet retrieved August 16, 2005 from 6

7 Idiotype (Id) Each B Cell (lymphocyte) has it s own unique idiotype cell surface marker (Id) Found on the Immunoglobulin protein Unique to a tumor Isolated from the patient-specific tumor Every B Cell and T Cell carries this unique receptor (antibody) on it s surface that recognizes foreign antigen Tumor Specific Idiotype: Ideal Target for NHL To Review B Cell Lymphoma arises from the reproduction of abnormal B cells Each NHL cell arises from a single abnormal parent cell. Therefore, all the cells of one person s tumor have the same antibody with the same Id. The Id is not found on healthy B cells or any other cells in the body The Id is like a tumor-specific fingerprint Idiotype Vaccine therapy is Patient-Specific Carrier Protein Highly immunogenic Helps the immune system to recognize the attached TAAs as foreign Puts the immune system on high alert Serves as a decoy, attracting the attention of the immune system and initiating an immune response Examples Keyhole limpet hemocyanin (KLH) Bacillus calmette guerin (BCG) California Giant Keyhole Limpets Megathura crenulata Images Not Available Adjuvants Known to boost the immune system by luring dendritic cells and other immune system cells to the site of injection Examples GM-CSF IL-2 IFN-α Autologous vs. Allogeneic Autologous or Patient-specific Made using the patient s own tumor cells Customized Considered genetically identical, descended from one abnormal cell that escaped surveillance by the immune system DNA or RNA is extracted from the cell Tumor tissue obtained and delivered to manufacturer either fresh or frozen Allogeneic or off-the-shelf Made from the tumor cells of several people with the same cancer or tumor cell line Patient s tumor should be tested for the antigen in the vaccine 7

8 Peptide/Protein Vaccine Some of the first vaccines studied were peptide/protein vaccines Use protein fragments or peptides (tumor associated antigens) to stimulate the immune system to fight the tumor cells Antigen(s) combined with an adjuvant to stimulate an immune response Examples: Idiotype Patient-Specific Vaccine for NHL Genitope MyVax Personalized Immunotherapy Favrille - Favld Accentia Biopharmaceutical - BioVaxId Dendritic Cell (DC) Vaccines Dendritic cells are taken from a patient s blood by leukapheresis, the DCs are stimulated (primed) with the patient s own cancer antigen, grown in culture, and reinjected Activate the immune system s T cells Activation of DCs is expected to cause T cells to multiply and attack cancer cells expressing the antigen Examples: Dendritic Cell Vaccine for NHL Currently being studied at Stanford, UCLA, and Beth Israel Deaconess Medical Center Patient-Specific Vaccine Therapy for NHL Therapeutic Autologous Patient specific Custom made Components include Tumor Specific Target Idiotype (Id) Carrier Protein Keyhole limpet hemocyanin (KLH) Adjuvant GMCSF (Leukine ) Ideal for Vaccine Therapy Low tumor burden Tumor expected to recur Tumor expresses antigen that can be used as a target Competent immune system Battiato, L. & Wheeler, V. (2003). Biotherapy. In Yarbro, C.H., Goodman, M., Frogge, M.H., & Groenwald, S.L. (Ed.), Cancer Nursing: Principles and Practice (5th ed., pp ). Sudbury, MA: Jones & Bartlett. Potential Barriers for Vaccine Therapy Tumor cell escape mechanisms Inefficient antigen-presenting cells Alterations in T cell receptor signal transduction Acquired deficiencies to immune sensitivity Majority of tumor antigens are selfantigens, leading to tolerance Cytokine environment at tumor site does not support T cell growth Adapted from Muehlbauer, P.M. & Schwartzentruber, D.J. (2003). Cancer vaccines. Seminars in Oncology Nursing, 19(3), Why study Vaccine Therapy for FOLLICULAR NHL??? Follicular B Cell Non-Hodgkin Lymphoma is ideal for patient-specific vaccine therapy Each tumor has the necessary idiotype cell surface marker The disease is slow growing, which allows time for production of the vaccine 8

9 Conclusion The Immune System can be stimulated to fight cancer Cellular and humoral responses work together to induce tumor regression and long-lasting immunity Follicular NHL is ideal for patient-specific vaccine therapy 9

Biological Therapies for Cancer: Questions and Answers

Biological Therapies for Cancer: Questions and Answers Biological Therapies for Cancer: Questions and Answers Key Points Biological therapies use the body s immune system to fight cancer or to lessen the side effects that may be caused by some cancer treatments

More information

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 Tumor Immunology M. Nagarkatti Teaching Objectives: Introduction to Cancer Immunology Know the antigens expressed by cancer cells Understand

More information

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant Tumor Immunology Wirsma Arif Harahap Surgical Oncology Consultant 1) Immune responses that develop to cancer cells 2) Escape of cancer cells 3) Therapies: clinical and experimental Cancer cells can be

More information

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization! Topic 8 Specific Immunity (adaptive) (18) Topics - 3 rd Line of Defense - B cells - T cells - Specific Immunities 1 3 rd Line = Prophylaxis via Immunization! (a) A painting of Edward Jenner depicts a cow

More information

Tumor Immunology. Tumor (latin) = swelling

Tumor Immunology. Tumor (latin) = swelling Tumor Immunology Tumor (latin) = swelling benign tumor malignant tumor Tumor immunology : the study of the types of antigens that are expressed by tumors how the immune system recognizes and responds to

More information

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System

The Immune System. A macrophage. ! Functions of the Immune System. ! Types of Immune Responses. ! Organization of the Immune System The Immune System! Functions of the Immune System! Types of Immune Responses! Organization of the Immune System! Innate Defense Mechanisms! Acquired Defense Mechanisms! Applied Immunology A macrophage

More information

Immune surveillance hypothesis (Macfarlane Burnet, 1950s)

Immune surveillance hypothesis (Macfarlane Burnet, 1950s) TUMOR-IMMUNITÄT A.K. Abbas, A.H. Lichtman, S. Pillai (6th edition, 2007) Cellular and Molecular Immunology Saunders Elsevier Chapter 17, immunity to tumors Immune surveillance hypothesis (Macfarlane Burnet,

More information

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology Code : AS-2246 M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology A. Select one correct option for each of the following questions:- 2X10=10 1. (b)

More information

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University CANCER IMMUNOPATHOLOGY Eryati Darwin Faculty of Medicine Andalas University Padang 18 Mei 2013 INTRODUCTION Tumor: cells that continue to replicate, fail to differentiate into specialized cells, and become

More information

Chapter 13 Lymphatic and Immune Systems

Chapter 13 Lymphatic and Immune Systems The Chapter 13 Lymphatic and Immune Systems 1 The Lymphatic Vessels Lymphoid Organs Three functions contribute to homeostasis 1. Return excess tissue fluid to the bloodstream 2. Help defend the body against

More information

Chapter 15 Adaptive, Specific Immunity and Immunization

Chapter 15 Adaptive, Specific Immunity and Immunization Chapter 15 Adaptive, Specific Immunity and Immunization Adaptive Immunity: The third line of defense Third line of defense acquired and specific. Dual System of B and T lymphocytes- Immunocompetence Antigen

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

The Lymphatic System and Immunity. Chapters 20 & 21

The Lymphatic System and Immunity. Chapters 20 & 21 The Lymphatic System and Immunity Chapters 20 & 21 Objectives 1. SC.912.L.14.52 - Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Immunity and Infection. Chapter 17

Immunity and Infection. Chapter 17 Immunity and Infection Chapter 17 The Chain of Infection Transmitted through a chain of infection (six links) Pathogen: Disease causing microorganism Reservoir: Natural environment of the pathogen Portal

More information

CH. 24. The Immune System

CH. 24. The Immune System CH. 24 The Immune System The immune systems consists of organs, cells, and molecules that fight infections and protect us from invaders. Pathogens: Bacteria, Viruses, Parasites, Fungi 1. Innate (nonspecific)

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific

More information

Interaction between the immune system and tumor

Interaction between the immune system and tumor Tumor immunology Interaction between the immune system and tumor elimination (immune system attempts to kill cancer cells and inhibits tumor growth) balance (between elimination and growth of tumor cells)

More information

Chapter 35 Active Reading Guide The Immune System

Chapter 35 Active Reading Guide The Immune System Name: AP Biology Mr. Croft Chapter 35 Active Reading Guide The Immune System Section 1 Phagocytosis plays an important role in the immune systems of both invertebrates and vertebrates. Review the process

More information

White Blood Cells (WBCs)

White Blood Cells (WBCs) YOUR ACTIVE IMMUNE DEFENSES 1 ADAPTIVE IMMUNE RESPONSE 2! Innate Immunity - invariant (generalized) - early, limited specificity - the first line of defense 1. Barriers - skin, tears 2. Phagocytes - neutrophils,

More information

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc.

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc. The innate immune interact with the adaptive immune system 1. Damage to skin causes bleeding = bradykinin activated, resulting in inflammation 2. Dendritic phagocytose pathogens Adaptive immunity 4. Dendritic

More information

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3. A summary of innate and acquired immunity General iology INNATE IMMUNITY Rapid responses to a broad range of microbes Course No: NG00 Credits:.00 External defenses Invading microbes (pathogens). The Immune

More information

Immunology CANCER IMMUNOLOGY

Immunology CANCER IMMUNOLOGY Immunology د. عائدة الدرزي Lec. 6 CANCER IMMUNOLOGY Oncogenesis (passes through two stages): 1- Reversible change Normal transformed cells 2- Irreversible change Transformed oncogenic cells Factors causing

More information

Overview of the Lymphoid System

Overview of the Lymphoid System Overview of the Lymphoid System The Lymphoid System Protects us against disease Lymphoid system cells respond to Environmental pathogens Toxins Abnormal body cells, such as cancers Overview of the Lymphoid

More information

immunity defenses invertebrates vertebrates chapter 48 Animal defenses --

immunity defenses invertebrates vertebrates chapter 48 Animal defenses -- defenses Animal defenses -- immunity chapter 48 invertebrates coelomocytes, amoebocytes, hemocytes sponges, cnidarians, etc. annelids basophilic amoebocytes, acidophilic granulocytes arthropod immune systems

More information

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity 1 2 3 4 5 6 7 8 9 The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 In innate immunity, recognition and

More information

Body Defense Mechanisms

Body Defense Mechanisms BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 13 Body Defense Mechanisms Lecture Presentation Anne Gasc Hawaii Pacific University and University of

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

I. Critical Vocabulary

I. Critical Vocabulary I. Critical Vocabulary A. Immune System: a set of glands, tissues, cells, and dissolved proteins that combine to defend against non-self entities B. Antigen: any non-self chemical that triggers an immune

More information

Clinical Basis of the Immune Response and the Complement Cascade

Clinical Basis of the Immune Response and the Complement Cascade Clinical Basis of the Immune Response and the Complement Cascade Bryan L. Martin, DO, MMAS, FACAAI, FAAAAI, FACOI, FACP Emeritus Professor of Medicine and Pediatrics President, American College of Allergy,

More information

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS LYMPHOCYTES & IMMUNOGLOBULINS Dr Mere Kende, Lecturer SMHS Immunity Immune- protection against dangers of non-self/invader eg organism 3 components of immune system 1 st line: skin/mucosa/cilia/hair/saliva/fatty

More information

immunity produced by an encounter with an antigen; provides immunologic memory. active immunity clumping of (foreign) cells; induced by crosslinking

immunity produced by an encounter with an antigen; provides immunologic memory. active immunity clumping of (foreign) cells; induced by crosslinking active immunity agglutination allografts immunity produced by an encounter with an antigen; provides immunologic memory. clumping of (foreign) cells; induced by crosslinking of antigenantibody complexes.

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 24: The Immune System Guided Reading Activities Big idea: Innate immunity Answer the following questions as you read modules 24.1 24.2: 1. Bacteria, viruses, and other microorganisms

More information

Microbes which manage to evade the non-specific immune system are then met with the next level of defence known as the specific immune system.

Microbes which manage to evade the non-specific immune system are then met with the next level of defence known as the specific immune system. Higher Human Biology Unit 4 Key Area 2 Pupil Notes Microbes which manage to evade the non-specific immune system are then met with the next level of defence known as the specific immune system. Note: In

More information

Topics in Parasitology BLY Vertebrate Immune System

Topics in Parasitology BLY Vertebrate Immune System Topics in Parasitology BLY 533-2008 Vertebrate Immune System V. Vertebrate Immune System A. Non-specific defenses against pathogens 1. Skin - physical barrier a. Tough armor protein KERATIN b. Surface

More information

Chapter 23 Immunity Exam Study Questions

Chapter 23 Immunity Exam Study Questions Chapter 23 Immunity Exam Study Questions 1. Define 1) Immunity 2) Neutrophils 3) Macrophage 4) Epitopes 5) Interferon 6) Complement system 7) Histamine 8) Mast cells 9) Antigen 10) Antigens receptors 11)

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host 17 Adaptive Immunity: Specific Defenses of the Host SLOs Differentiate between innate and adaptive immunity, and humoral and cellular immunity. Define antigen, epitope, and hapten. Explain the function

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS Exoskeleton made of chitin forms the first barrier to pathogens Digestive system is protected by a chitin-based barrier and lysozyme,

More information

Overview. Barriers help animals defend against many dangerous pathogens they encounter.

Overview. Barriers help animals defend against many dangerous pathogens they encounter. Immunity Overview Barriers help animals defend against many dangerous pathogens they encounter. The immune system recognizes foreign bodies and responds with the production of immune cells and proteins.

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

35.2 Defenses against Infection

35.2 Defenses against Infection 35.2 Defenses against Infection Key Questions At the end of this section you should be able to answer the following questions: What are the two types of infections? What are examples of each? How does

More information

I. Defense Mechanisms Chapter 15

I. Defense Mechanisms Chapter 15 10/24/11 I. Defense Mechanisms Chapter 15 Immune System Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Defense Mechanisms Protect against

More information

NATURAL KILLER T CELLS EBOOK

NATURAL KILLER T CELLS EBOOK 08 April, 2018 NATURAL KILLER T CELLS EBOOK Document Filetype: PDF 90.41 KB 0 NATURAL KILLER T CELLS EBOOK Natural killer T cells (NK T cells) are a type of lymphocyte, or white blood cell. Natural killer

More information

Immunology The innate and adaptive immune systems

Immunology The innate and adaptive immune systems Immunology The innate and adaptive immune systems The immune system is the collection of cells, tissues and molecules that protects the body from numerous pathogenic microbes and toxins in our environment.

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

Immunity. Chapter 38

Immunity. Chapter 38 Immunity Chapter 38 Impacts, Issues Frankie s Last Wish Infection with a common, sexually transmitted virus (HPV) causes most cervical cancers including the one that killed Frankie McCullogh 38.1 Integrated

More information

Understanding basic immunology. Dr Mary Nowlan

Understanding basic immunology. Dr Mary Nowlan Understanding basic immunology Dr Mary Nowlan 1 Immunology Immunology the study of how the body fights disease and infection Immunity State of being able to resist a particular infection or toxin 2 Overview

More information

The Immune System. Specific Immunity

The Immune System. Specific Immunity The Immune System Specific Immunity What You Should Know Immune surveillance A range of white blood cells constantly circulate monitoring the tissues. If tissues become damaged or invaded, cells release

More information

Endeavour College of Natural Health endeavour.edu.au

Endeavour College of Natural Health endeavour.edu.au Endeavour College of Natural Health endeavour.edu.au BIOH122 Human Biological Science 2 Session 9 Immune System 2 Bioscience Department Endeavour College of Natural Health endeavour.edu.au o Adaptive (Specific)

More information

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology Immunology, Immune Response, and Immunological Testing Lines of Defense If the First and Second lines of defense fail, then the Third line of defense is activated. B and T lymphocytes undergo a selective

More information

The Immune System. The Immune System is a complex and highly developed system, yet its mission is simple: to seek and kill invaders.

The Immune System. The Immune System is a complex and highly developed system, yet its mission is simple: to seek and kill invaders. The Immune System The Immune System is a complex and highly developed system, yet its mission is simple: to seek and kill invaders. The immune system is a complex of organs--highly specialized cells and

More information

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology By Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology Lecture objectives: At the end of the lecture you should be able to: Enumerate features that characterize acquired immune response

More information

Chapter 12: The Lymphatic System

Chapter 12: The Lymphatic System Chapter 12: The Lymphatic System Immune System Composed of many nonspecific and specific defenses Lymphatic System also plays an important role in establishing immunity Lymphatic System Major components

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

Unit 5 The Human Immune Response to Infection

Unit 5 The Human Immune Response to Infection Unit 5 The Human Immune Response to Infection Unit 5-page 1 FOM Chapter 21 Resistance and the Immune System: Innate Immunity Preview: In Chapter 21, we will learn about the branch of the immune system

More information

Exploring Immunotherapies: Beyond Checkpoint Inhibitors

Exploring Immunotherapies: Beyond Checkpoint Inhibitors Exploring Immunotherapies: Beyond Checkpoint Inhibitors Authored by: Jennifer Dolan Fox, PhD VirtualScopics (Now part of BioTelemetry Research) jennifer_fox@virtualscopics.com +1 585 249 6231 Introduction

More information

C. Incorrect! MHC class I molecules are not involved in the process of bridging in ADCC.

C. Incorrect! MHC class I molecules are not involved in the process of bridging in ADCC. Immunology - Problem Drill 13: T- Cell Mediated Immunity Question No. 1 of 10 1. During Antibody-dependent cell mediated cytotoxicity (ADCC), the antibody acts like a bridge between the specific antigen

More information

Chapter 43. Immune System. phagocytosis. lymphocytes. AP Biology

Chapter 43. Immune System. phagocytosis. lymphocytes. AP Biology Chapter 43. Immune System phagocytosis lymphocytes 1 Why an immune system? Attack from outside lots of organisms want you for lunch! animals must defend themselves against unwelcome invaders viruses protists

More information

Introduction to Immunology and the Immune System

Introduction to Immunology and the Immune System Introduction to Immunology and the Immune System Assistant professor Dr. Aida R. Al-Derzi M.B.Ch.B; M.Sc; FICM/Path Dept. of Microbiology/College of Medicine/Baghdad University Introduction to Immunology

More information

UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI UNIVERSITY OF NAIROBI COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES FACULTY OF SCIENCE LECTURE NOTES ON SZL 204:BASIC IMMUNOLOGY PROF. HORACE OCHANDA DEPARTMENT OF ZOOLOGY UNIVERSITY OF NAIROBI REVIEWED

More information

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System 24.1 Multiple-Choice Questions 1) The body's innate defenses against infection include A) several nonspecific

More information

Overview: The immune responses of animals can be divided into innate immunity and acquired immunity.

Overview: The immune responses of animals can be divided into innate immunity and acquired immunity. GUIDED READING - Ch. 43 - THE IMMUNE SYSTEM NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.

More information

The Immune System is the Third Line of Defense Against Infection. Components of Human Immune System

The Immune System is the Third Line of Defense Against Infection. Components of Human Immune System Chapter 17: Specific Host Defenses: The Immune Response The Immune Response Immunity: Free from burden. Ability of an organism to recognize and defend itself against specific pathogens or antigens. Immune

More information

Foundations in Microbiology

Foundations in Microbiology Foundations in Microbiology Fifth Edition Talaro Chapter 15 The Acquisition of Specific Immunity and Its Applications Chapter 15 2 Chapter Overview 1. Development of the Dual Lymphocyte System 2. Entrance

More information

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Capillary exchange Fluid movement in capillaries Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Lymphatic vessels Lymphatic capillaries permeate

More information

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer)

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer) Tumor Immunology (Cancer) Tumors arise from accumulated genetic mutations Robert Beatty MCB150 Mutations Usually have >6 mutations in both activation/growth factors and tumor suppressor genes. Types of

More information

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTLs, Natural Killers and NKTs 1 Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTL inducing tumor apoptosis 3 Lecture outline CD8 + Cytotoxic T lymphocytes (CTL) Activation/differentiation

More information

chapter 17: specific/adaptable defenses of the host: the immune response

chapter 17: specific/adaptable defenses of the host: the immune response chapter 17: specific/adaptable defenses of the host: the immune response defense against infection & illness body defenses innate/ non-specific adaptable/ specific epithelium, fever, inflammation, complement,

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell There are 2 major lines of defense: Non-specific (Innate Immunity) and Specific (Adaptive Immunity) Photo of macrophage cell Development of the Immune System ery pl neu mφ nk CD8 + CTL CD4 + thy TH1 mye

More information

CHAPTER 18: Immune System

CHAPTER 18: Immune System CHAPTER 18: Immune System 1. What are four characteristics of the specific immune system? a. b. c. d. 2. List the two main types of defense mechanisms and briefly describe features of each. 3. Give examples

More information

windows of my lab Prof. Allan Wiik, emeritus director Department of Autoimmunology Statens Serum Institute, Copenhagen

windows of my lab Prof. Allan Wiik, emeritus director Department of Autoimmunology Statens Serum Institute, Copenhagen The normal immune system windows of my lab, Prof. Allan Wiik, emeritus director Department of Autoimmunology Statens Serum Institute, Copenhagen The immune defence Theinnateimmune system Cells: Eater cells

More information

Vaccins anti-cancer. Claude Leclerc. 7 novembre 2011

Vaccins anti-cancer. Claude Leclerc. 7 novembre 2011 Vaccins anti-cancer Claude Leclerc 7 novembre 2011 2010: FDA panel passes first cancer vaccine Cancer, a worldwide burden 1st cause of mortality in France In Europ, in 2006: - 1.7 million deaths from cancer

More information

Nonspecific External Barriers skin, mucous membranes

Nonspecific External Barriers skin, mucous membranes Immune system Chapter 36 BI 103 Plant-Animal A&P Levels of Defense Against Disease Nonspecific External Barriers skin, mucous membranes Physical barriers? Brainstorm with a partner If these barriers are

More information

Adaptive Immune Response Day 2. The Adaptive Immune Response

Adaptive Immune Response Day 2. The Adaptive Immune Response Adaptive Immune Response Day 2 Chapter 16 The Adaptive Immune Response 1 The B cell receptor vs. the T cell receptor. The B cell receptor vs. the T cell receptor. 2 Which T cells have CD4 and which have

More information

Macrophage Activation & Cytokine Release. Dendritic Cells & Antigen Presentation. Neutrophils & Innate Defense

Macrophage Activation & Cytokine Release. Dendritic Cells & Antigen Presentation. Neutrophils & Innate Defense Macrophage Activation & Cytokine Release Dendritic Cells & Antigen Presentation Neutrophils & Innate Defense Neutrophils Polymorphonuclear cells (PMNs) are recruited to the site of infection where they

More information

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LECTURE: 14 Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the general morphology of the NK-cells. Enumerate the different functions

More information

Internal Defense Notes

Internal Defense Notes Internal environment of animals provides attractive area for growth of bacteria, viruses, fungi Harm via: 1. destruction of cells 2. production of toxic chemicals To protect against foreign invaders, humans

More information

Diseases-causing agents, pathogens, can produce infections within the body.

Diseases-causing agents, pathogens, can produce infections within the body. BIO 212: ANATOMY & PHYSIOLOGY II 1 CHAPTER 16 Lecture: Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. LYMPHATIC and IMMUNE Systems Body Defenses Against

More information

LBL 3 terms/discussion questions posted BNG Seminar Monday! Lippman 017, Common Hour (w/ lunch) Julie Czupryna, Ph.D.

LBL 3 terms/discussion questions posted BNG Seminar Monday! Lippman 017, Common Hour (w/ lunch) Julie Czupryna, Ph.D. The Immune System Some updates LBL 3 terms/discussion questions posted BNG Seminar Monday! Lippman 017, Common Hour (w/ lunch) Julie Czupryna, Ph.D. Technical Director, Optical Imaging Core, Upenn Beyond

More information

Advances in Cancer Immunotherapy

Advances in Cancer Immunotherapy Advances in Cancer Immunotherapy Immunology 101 for the Non-Immunologist Arnold H. Zea, PhD azea@lsuhsc.edu Disclosures No relevant financial relationships to disclose This presentation does not contain

More information

Warm-up. Parts of the Immune system. Disease transmission. Disease transmission. Why an immune system? Chapter 43 3/9/2012.

Warm-up. Parts of the Immune system. Disease transmission. Disease transmission. Why an immune system? Chapter 43 3/9/2012. Warm-up Objective: Explain how antigens react with specific lymphocytes to induce immune response and immunological memory. Warm-up: Which of the following would normally contain blood with the least amount

More information

The Immune System All animals have innate immunity, a defense active immediately

The Immune System All animals have innate immunity, a defense active immediately The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 INNATE IMMUNITY (all animals) Recognition of traits shared

More information

IMMUNOTHERAPY FOR CANCER A NEW HORIZON. Ekaterini Boleti MD, PhD, FRCP Consultant in Medical Oncology Royal Free London NHS Foundation Trust

IMMUNOTHERAPY FOR CANCER A NEW HORIZON. Ekaterini Boleti MD, PhD, FRCP Consultant in Medical Oncology Royal Free London NHS Foundation Trust IMMUNOTHERAPY FOR CANCER A NEW HORIZON Ekaterini Boleti MD, PhD, FRCP Consultant in Medical Oncology Royal Free London NHS Foundation Trust ASCO Names Advance of the Year: Cancer Immunotherapy No recent

More information

Immunity. Acquired immunity differs from innate immunity in specificity & memory from 1 st exposure

Immunity. Acquired immunity differs from innate immunity in specificity & memory from 1 st exposure Immunity (1) Non specific (innate) immunity (2) Specific (acquired) immunity Characters: (1) Non specific: does not need special recognition of the foreign cell. (2) Innate: does not need previous exposure.

More information

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system Aims Immune system Lymphatic organs Inflammation Natural immune system Adaptive immune system Major histocompatibility complex (MHC) Disorders of the immune system 1 2 Immune system Lymphoid organs Immune

More information

Mucosal Immune System

Mucosal Immune System Exam Format 100 points - 60 pts mandatory; 40 points where 4, 10 point questions will be chosen Some open-ended questions, some short answer. Kuby question Cytokines Terminology How do cytokines achieve

More information

Transplantation. Immunology Unit College of Medicine King Saud University

Transplantation. Immunology Unit College of Medicine King Saud University Transplantation Immunology Unit College of Medicine King Saud University Objectives To understand the diversity among human leukocyte antigens (HLA) or major histocompatibility complex (MHC) To know the

More information

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION Scott Abrams, Ph.D. Professor of Oncology, x4375 scott.abrams@roswellpark.org Kuby Immunology SEVENTH EDITION CHAPTER 13 Effector Responses: Cell- and Antibody-Mediated Immunity Copyright 2013 by W. H.

More information

Hematopoiesis, Growth Factors, and Immunology Kelley Blake MSN, RN, AOCNS, OCN UW Medicine/Valley Medical Center

Hematopoiesis, Growth Factors, and Immunology Kelley Blake MSN, RN, AOCNS, OCN UW Medicine/Valley Medical Center Objectives Hematopoiesis, Growth Factors, and Immunology Kelley Blake MSN, RN, AOCNS, OCN UW Medicine/Valley Medical Center Describe the hematopoietic system How blood cells are developed Role & function

More information

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center General Overview of Immunology Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center Objectives Describe differences between innate and adaptive immune responses

More information

The Adaptive Immune Response. T-cells

The Adaptive Immune Response. T-cells The Adaptive Immune Response T-cells T Lymphocytes T lymphocytes develop from precursors in the thymus. Mature T cells are found in the blood, where they constitute 60% to 70% of lymphocytes, and in T-cell

More information

3. A small percentage of tumors, mainly melanomas and some lymphomas, spontaneously regress, presumably due to an immunologic response.

3. A small percentage of tumors, mainly melanomas and some lymphomas, spontaneously regress, presumably due to an immunologic response. TUMOR IMMUNOLOGY CANCER. Over 577,000 people in the United States will die of cancer in 2012 1. It is the second leading cause of death, after heart disease. After accidents, it is the second leading cause

More information

CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR.

CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. The Immune Response Immunity: Free from burden. Ability of an

More information

Immunology. Overview. Kris.ne Kra1s, M.D.

Immunology. Overview. Kris.ne Kra1s, M.D. Immunology Overview Kris.ne Kra1s, M.D. Immunology Overview Defini.ons Cells Lymphocytes An.gen-presen.ng cells Effector cells Responses The innate immune response Capturing and displaying an.gens Cell-mediated

More information