Construction and In Vitro Characterization of Attenuated Feline Immunodeficiency Virus Long Terminal Repeat Mutant Viruses

Size: px
Start display at page:

Download "Construction and In Vitro Characterization of Attenuated Feline Immunodeficiency Virus Long Terminal Repeat Mutant Viruses"

Transcription

1 JOURNAL OF VIROLOGY, Jan. 2001, p Vol. 75, No X/01/$ DOI: /JVI Copyright 2001, American Society for Microbiology. All Rights Reserved. Construction and In Vitro Characterization of Attenuated Feline Immunodeficiency Virus Long Terminal Repeat Mutant Viruses LUISA BIGORNIA, 1 KRISTEN M. LOCKRIDGE, 2 AND ELLEN E. SPARGER 1 * Departments of Medicine and Epidemiology, School of Veterinary Medicine 1 and Center of Comparative Medicine, 2 University of California, Davis, California Received 23 March 2000/Accepted 24 October 2000 AP-1- and ATF-binding sites are cis-acting transcriptional elements within the U3 domain of the feline immunodeficiency virus (FIV) long terminal repeat (LTR) that serve as targets for cellular activation pathways and may regulate virus replication. We report that FIV LTR mutant proviruses encoding U3 deletions of the ATF-binding sequence exhibited restricted virus expression and replication in both feline lymphocytes and macrophages. In contrast, deletion of the AP-1 site had negligible effects on virus expression and replication. FIV LTR mutant proviruses encoding deletions of both the AP-1 and ATF sites or a 72-bp deletion encompassing the AP-1 site, duplicated C/EBP sites, and ATF sites were severely restricted for virus expression. These results demonstrate that deletion of either the ATF-binding site or multiple cis-acting transcriptional elements attenuates FIV. These attenuated FIV mutants provide opportunities to characterize the role of cis-acting elements in virus replication in vivo and to test LTR mutants as attenuated virus vaccines. Feline immunodeficiency virus (FIV) is a lentivirus that induces a fatal immunodeficiency syndrome in infected cats. Disease is characterized by depressed CD4/CD8 T-cell ratios, wasting and emaciation, and opportunistic infections (see reference 2 and references therein). FIV has demonstrated a tropism in vitro and in vivo for multiple lymphoid subsets, including CD4 T cells, and for macrophages (1, 3, 9, 10, 13, 14). FIV utilizes the chemokine receptor CXCR4, a molecule also identified as a coreceptor for T-cell line tropic isolates of human immunodeficiency virus (HIV), for infection of feline cells (31, 33, 41). CD4 T-cell depletion is the hallmark of immunodeficiency associated with FIV infection in cats and is accompanied by other immunologic abnormalities, including T-cell abnormalities that are also characteristic of HIV infection in humans (2). Similar to other lentiviruses, FIV gene expression is dictated by virus-encoded factors, including Rev, a posttranscriptional regulator encoded by viral genes orfl and orfh, and a putative viral transactivator encoded by the tat-like gene orfa (also designated orf2) (11, 23, 28, 29, 34, 36 39). Although data from earlier studies, using in vitro transient expression assays, have not strongly supported a role for orfa as a viral transactivator, a recent report provided stronger evidence that the orfa gene product may indirectly up-regulate FIV long terminal repeat (LTR)-directed transcription (11), possibly by interactions with cellular transcription factors. Cellular proteins that interact with OrfA to enhance FIV LTR-directed expression have not yet been identified. cis-acting response elements in the LTR of the proviral DNA bind cellular transcription factors to mediate lentiviral gene expression. Binding sites for cellular transcriptional factors, such as NF- and SP-1, in the U3 domain of the HIV * Corresponding author. Mailing address: Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA Phone: (530) Fax: (530) eesparger@ucdavis.edu. LTR are critical for efficient viral transcription (6, 7). The U3 domain of the FIV LTR has consensus recognition sequences for the cellular transcription factors AP-1, AP-4, ATF (also known as the cyclic AMP [camp] response element, or CRE), NF1, and NF- (see reference 20 and references therein and references 25, 28, 30, and 37). Of these putative target sequences, AP-1, AP-4, ATF, and C/EBP recognition sites have been shown to bind cellular proteins by DNase I footprinting and gel shift assays (17, 37) and appear to be important for basal promoter activity of the FIV LTR in vitro (22, 26, 34, 37). Furthermore, the AP-1 site is required for T-cell activation responses mediated by protein kinase C, as well as activation by c-fos. The ATF site is required for camp-induced responses mediated by protein kinase A (18, 26, 34). To assess the role of these FIV LTR cis-acting response elements in virus expression and replication, we constructed and characterized in vitro virus expression and production from FIV LTR mutant proviruses encoding U3 deletions of either an AP-1 site, an ATF site, or both sites. In addition, a mutant containing a 72-bp deletion encompassing the AP-1, AP-4, duplicated C/EBP, NF1, and ATF enhancer recognition sequences was constructed and tested. Using both transfection and infection approaches, we found that removal of the ATF site severely reduced virus expression and replication, whereas deletion of the AP-1 site produced only a slight reduction in virus expression. Both an FIV LTR mutant encoding deletions of both the AP-1 and ATF sites and the mutant containing a 72-bp deletion spanning the AP-1 and ATF sites were completely restricted for virus expression. Replacement of the 5 LTR with a chimeric promoter encoding the simian virus 40 (SV40) early promoter enhancer and TATA sequences upstream of the RU5 domain in the LTR mutant provirus restored transient provirus expression to allow production of LTR mutant virus stocks for infection studies. For construction of FIV AP-1 and ATF deletion mutants, 4 nucleotides (nt) were deleted from the AP-1 response element and 5 nt were deleted from the ATF response element within 1054

2 VOL. 75, 2001 NOTES 1055 FIG. 1. Mutations in FIV-pPPR cis-acting transcriptional control elements. Mutations are described by nucleotide sequence and location in the 5 U3 domain of the FIV-pPPR provirus (30) and identified by their designated mutant virus. Dots indicate sequence identities, and dashes represent deleted nucleotides. the U3 domain of the molecularly cloned FIV-PPR provirus (FIV subtype A) (30) (Fig. 1) by using site-directed PCR overlap mutagenesis (16) with PCR primers described in Table 1. An LTR deletion mutant encoding a 72-nucleotide (nt) deletion (nt 92 to 163 of the 5 LTR) encompassing the AP-1, AP-4, duplicated C/EBP, and ATF recognition sequences (Fig. 1) with an insertion of a mutated AscI restriction enzyme site (5 TGCGCGCC 3 ) was generated by PCR and designated the 4 mutation. To generate AP-1 and ATF mutations within the U3 region of the 3 LTR, a subgenomic fragment of the FIV-pPPR provirus digested with NdeI (nt 8900) and SalI (3 polylinker site) and containing orfh and the entire 3 LTR was cloned into the plasmid pgem-5zf (Promega Biotech, Madison, Wis.). The resulting construct was named pns5 and was used as a template for site-directed deletion mutagenesis. Terminal primers LTR-A, containing sequence upstream of the 3 LTR (orfh) with an internal NdeI site, and LTR-D, encoding the 3 terminus of the 3 LTR with a flanking SalI site, were used with mutagenic primers LTR-B-AP-1mut and LTR-C-AP-1mut to PCR amplify a 3 LTR with an AP-1 site deletion. Accordingly, an ATF site-deleted 3 LTR was amplified with primers LTR-A and LTR-D and mutagenic primers LTR-B-ATFmut and LTR-C-ATFmut. The amplified AP-1 and ATF mutant LTRs were cloned back into pns5 to generate plasmids pnsap-1 and pnsatf, respectively. By the same approach, plasmid pnsap-1 was used as a template for construction of a 3 LTR encoding both AP-1 and ATF deletions and generation of plasmid pnsap-1/atf. For construction of the 4 mutation, a 344-bp fragment encoding upstream sequence flanking the 72-bp deletion site (nt 9205 to 9278) was amplified by PCR from wild-type (WT) FIV-pPPR with primers LTR-A and LTR-B 4mut, which introduced 3 flanking SalI and AscI restriction enzyme sites, and cloned into pgem-5z f to generate plasmid pgem-f1. Next, a 215-bp fragment (nt 9278 to 9468) encoding the LTR immediately downstream of the deletion site was PCR amplified with primers LTR-C 4mut and LTR-D and cloned into pgem-f1 with AscI and SalI sites to produce plasmid pgem-ltr 4. To facilitate insertion of mutant LTRs into an FIV provirus, the FIV-PPR provirus was cloned out of FIV-pPPRpUC (30) and into vector pgem-9zf( ) (Promega Biotech) to generate an infectious FIV-PPR provirus construct designated pppr WT. The NdeI-SalI fragment from plasmids containing a mutated 3 LTR (pns5 or pgem-ltr 4) was inserted into TABLE 1. Oligonucleotides used for construction and sequencing of FIV LTR mutant proviruses Name Oligonucleotide sequence Source and genomic position with added restriction enzyme site LTR-A 5 -GCGTTGGGAGCTCTCCCATATGAATCC FIV-pPPR, nt ; 5 SacI LTR-D 5 -GTCGGTCGACTGCGAAGTTCTCGGCCCGGATTCCGAGACC FIV-pPPR, nt ; 3 SalI LTR-B-AP1mut 5 -CTGCTAGCGCTTTAACTATGTGTTCAGCTGTTTCCATTTATCATTTGTTTGTGACAG FIV-pPPR, nt LTR-C-AP1mut 5 -GATAAATGGAAACAGCTGAACACATAGTTAAAGCGCTAGCAGCTGCTTAACCG FIV-pPPR, nt LTR-B-ATFmut 5 -CTTACAGTGGAGCAAATTATCATTGGCAAGCTTTACATAGGATGTGGTTTTGCG FIV-pPPR, nt LTR-C-ATFmut 5 -CCTATGTAAAGCTTGCCAAGTATAATTTGCTCCACTGTAAGAG FIV-pPPR, nt LTR-B 4mut 5 -GTCGGTCGACGGCGCGCCTGTTCAGCTGTTTCCATTTATC FIV-pPPR, nt ; 3 SalI LTR-C 4mut 5 -GTCGGGCGCGCCATAATTTGCTCCACTGTAAG FIV-pPPR, nt ; 5 AscI LTR-Kas1 5 -CTGTCGGGCGCCAACTGCGAAGTTCTCGGCCCGGATTCCGAG FIV-pPPR, nt LTR-Spe1 5 -GGACTAGTTGGGATGAGTATTGGGACCCTG FIV-pPPR, nt 1 22 SV40-Spe1 5 -GACGAGAGCTCACTAGTCCAGCTGTGGAATGTGTGTCAGTTAGGG SV40 enhancer SV40-Bgl2 5 -CGCAGAGATCTGCATAAATAAAAAAAATTAGTCAGCCATGGGGCGGAG SV40 early promoter; 3 BglII RU5-Bgl 2 5 -CGAGGATCCAGATCTTTGTGAAACTTCGAGGAGTCTCTTTGTTGAGGAC FIV-pF34, nt RU5-Kas1 5 -CAGTCGCTGCAGCGGGCGCCAACTGCGAAGTTCTCGGC FIV-pPPR, nt ; 3 PstI LTR TGGGATGAGTATTGGGACC FIV-pPPR, nt 1 19 LTR-2 5 -GTTCTCGGCCCGGATTCCGAGACCTCACAGG FIV-pPPR, nt LTR CTGCTCTAGCTTCACTTCCTC FIV-pPPR, nt

3 1056 NOTES J. VIROL. FIG. 2. Construction of FIV-pPPR mutant proviruses. Mutations within all LTR mutant proviruses were confirmed by dideoxynucleotide DNA sequencing. (A) Structure and genomes of type 1 FIV-pPPR LTR mutant proviruses. (B) Design of the chimeric SV40pr/RU5 5 LTR. Construction is described in the text. (C) Structure and genomes of type 2 FIV-pPPR LTR mutant proviruses. pppr WT to generate an FIV-pPPR provirus with a mutated 3 LTR. To prevent generation of WT sequences by recombinatorial events during virus replication, FIV-pPPR mutants encoding deletions within both the 5 and 3 LTRs were constructed and designated type 1 LTR mutants. To complete construction of a type 1 LTR mutant, each mutant 3 LTR was amplified by PCR with primers LTR-Kas1, which spans the 3 terminus of U5 and the primer binding site of the viral genome, and LTR-Spe1 encoding the 5 terminus of the LTR with a flanking SpeI site. Mutant 5 LTRs were cloned into FIV-pPPR proviruses with a mutated 3 LTR to generate FIV-pPPR type 1 LTR mutant proviruses, pppr AP-1, pppr ATF, pppr AP-1/ATF, and pppr 4 (Fig. 2A). All mutant LTRs were assessed by dideoxynucleotide sequencing. To assess virus expression and production following transfection of FIV-pPPR type 1 LTR mutant proviruses, Crandell feline kidney cells (CrFK cells) (a feline adherent cell line) were electroporated with 10 g of proviral plasmid DNA and cocultivated with primary feline peripheral blood mononuclear cells (PBMCs) harvested from whole blood drawn from specific-pathogen-free (SPF) cats and cultured as described in previous reports (9, 34). Cocultivated feline PBMCs were separated from transfected CrFK cells 24 h later and maintained in culture for 14 to 21 days. Supernatant was collected from all infected cell cultures every 3 to 4 days for up to 3 weeks after cocultivation and assayed for virus production by detection of FIV p24 gag with either an FIV p24 gag antigen-capture enzymelinked immunosorbent assay (ELISA) previously described (8) or a commercial FIV p24 gag antigen-capture ELISA (Idexx Corp., Westbrook, Maine). Virus expression and production as determined by FIV p24 gag production were severely restricted after transfection of FIV-pPPR proviruses encoding a mutant 5 LTR with a deletion of the ATF response element (Fig. 3A and B). Virus production was not detected in PBMCs cocultivated with CrFK cells after transfection with pppr AP-1/ATF (Fig. 3A and B) and pppr 4 (Fig. 3B) and was barely detectable after transfection with pppr ATF. In contrast, virus expression and production were detected following transfection of the AP-1 deletion mutant, pppr AP-1, although virus production was delayed when compared to transfection of pppr WT. High concentrations of viral antigen were observed in supernatants from PBMCs by 7 to 10 days after transfection with pppr WT. These observations suggested that the ATF or camp response element within the FIV U3 domain is critical

4 VOL. 75, 2001 NOTES 1057 FIG. 3. Expression of FIV LTR mutant proviruses posttransfection of CrFK cells and cocultivation with feline PBMCs. CrFK cells were transfected with 10 g of plasmid DNA and cocultivated with PBMCs 24 h later, as described in the text. Virus production was measured in cell culture supernatants every 3 to 5 days with an FIV p24 gag antigen-capture ELISA. Expression of type 1 FIV-pPPR LTR mutant proviruses (A and B) and type 2 mutant proviruses (C and D) after cocultivation is shown. The data shown are representative of three or more transfection experiments. for efficient provirus expression and that the AP-1 site is less critical for efficient FIV expression. To generate FIV LTR mutant virus stocks of sufficient titer for infection and replication assays, an FIV provirus driven by a chimeric 5 LTR encoding the SV40 early promoter enhancer and TATA sequences was constructed. The RU5 region, including nt 1 to 16 of the U3 region of the 5 LTR of the FIV-pPPR provirus, was PCR amplified with primers RU5-Bgl2 and RU5-Kas1 and cloned into a transient chloramphenicol acetyltransferase (CAT) expression vector (p22a2s) (34) by using restriction enzyme sites BamHI and PstI to create the construct U3-CAT. Next, the SV40 early promoter, including enhancer sequences and a TATA box, was PCR amplified with primers SV40-SpeI and SV40-BglII and cloned into plasmid U3-CAT with restriction enzyme sites BglII (3 terminus of the SV40 sequence) and SacI (introduced at the 5 terminus by PCR primer) to produce recombinant plasmid psvru5-cat containing the SV40pr/RU5 hybrid promoter (Fig. 2B). The SV40pr/RU5 hybrid promoter was inserted into the FIV-pPPR WT provirus to replace the 5 LTR and produce the provirus construct psv-pppr WT (psvwt) (35) (Fig. 2B). Subsequently, mutated LTRs replaced WT 3 LTRs in psvwt by using restriction enzyme sites NdeI and SalI to produce type 2 FIV-pPPR LTR mutants (Fig. 2C). The presence of the SV40pr/RU5 hybrid promoter and LTR deletions in all proviral constructs was confirmed by dideoxynucleotide DNA sequencing (U.S. Biochemicals, Cleveland, Ohio). The chimeric SV40pr/RU5 5 LTR included bp 1 to 16 of the U3 region to preserve the normal spacing between the SV40-derived TATA box and the first base of U5 and to maintain the FIV mrna cap site (Fig. 2B). The SV40pr/RU5 5 LTR was functional as a promoter when the construct psvru5-cat was tested in transient expression assays (data not shown). Replacement of the WT 5 LTR within pppr WT with the chimeric SV40pr/RU5 5 LTR produced an FIV provirus (psvwt) capable of replication and virus production similar to those of pppr WT (Fig. 3C) after transfection of CrFK cells and cocultivation with feline PBMCs. Levels of virus expression and production, as determined by FIV p24 gag production after transfection with psv AP-1, were comparable to those observed for pppr WT and psvwt, whereas the level of virus production after transfection with psv ATF and psv AP-1/ATF was reduced compared to that of WT viruses (Fig. 3C). Although virus production was extremely restricted after transfection of psv 4 (Fig. 3D), approximately 50% of the psv 4 transfections yielded low concentrations of virus detectable by FIV p24 gag antigen-capture ELISA. According-

5 1058 NOTES J. VIROL. FIG. 4. Replication of FIV LTR mutant viruses in feline PBMCs and MDMs. Feline PBMCs ( ) were infected with 10 2 TCID 50 of either WT FIV-pPPR, or psvwt, an LTR mutant virus stock generated from type 2 LTR mutant proviruses, or were mock infected, as described in the text (A and B). Feline MDMs were inoculated with 10 3 TCID 50 of a virus stock approximately 7 days after cultivation or were mock infected (C). Inocula were removed 24 h postinfection, and cell culture supernatants were assayed every 3 to 5 days by using an FIV p24 gag antigen-capture ELISA. The data shown are representative of two or more infection experiments. ly, substitution of the mutant 5 LTR in LTR mutants pppr AP-1, pppr ATF, and pppr AP-1/ATF with the chimeric SV40pr/RU5 produced proviruses capable of sufficient virus production to generate LTR mutant virus stocks for replication studies. To assess replication of FIV LTR mutant viruses in both primary feline PBMCs and macrophages, titered virus stocks were prepared by transfection of CrFK cells with either pppr WT, psvwt, or the type 2 FIV LTR mutant proviruses and cocultivation with SPF feline PBMCs for short-term passage (21 days or less) as previously described (9, 35). To confirm the retention of specific U3 deletions within FIV LTR mutant virus stocks, genomic DNA was extracted from mutant virusinfected PBMCs with a commercial kit (QIAamp; Qiagen, Chatsworth, Calif.). LTR sequences were amplified by a single round of PCR for 30 cycles (1 min of template denaturation at 94 C, 1 min of primer annealing at 55 C, and 1 min of primer extension at 72 C) in a thermal cycler (Perkin-Elmer Biosystems, Foster City, Calif.) using PCR primer LTR3.19 and either LTR-2 or LTR8.21. PCR products containing LTR sequences were then sequenced directly by dideoxynucleotide DNA sequencing. For virus infection studies, duplicate wells in a six-well microtiter plate were seeded with PBMCs and inoculated with % tissue culture infective doses (TCID 50 ) of a specific LTR mutant virus stock or with uninfected tissue culture media (mock infection control). For feline macrophage infections, feline monocyte-derived macrophages (MDMs) were prepared from feline PBMCs and cultivated in 24-well tissue culture plates as previously described (9). Duplicate wells (approximately 10 5 MDMs) of the 24-well plate were inoculated with 10 3 TCID 50 of a virus stock approximately 7 days after cultivation or were mock infected. Cells (PBMCs and macrophages) were incubated with virus inocula overnight, washed with Hanks buffered salt solution the following day, and fed fresh tissue culture media. Similar to transfection experiments, infected cell cultures were fed fresh media, and supernatant was collected every 3 to 4 days for up to 2 weeks after infection to assay virus production by FIV p24 gag antigencapture ELISA. Replication of virus prepared from psv AP-1 was comparable to that observed for pppr WT and psvwt, whereas virus production postinfection of feline PBMCs with psv ATF and psv AP-1/ATF was delayed and reduced (Fig. 4A). Virus production from feline PBMCs infected with psv 4 was severely restricted, with supernatant concentrations of FIV p24 gag below the level of detection of the assay until 14 days after infection (Fig. 4B). Similar to observations from PBMC infection studies, virus production after infection of primary feline MDMs with psv ATF and psv AP-1/ATF was delayed and reduced when compared to the WT and psv AP-1 virus stocks (Fig. 4C). Although the virus production observed from psv AP-1-infected MDMs was greater than that for either WT FIV virus stock in the experiment illustrated in Fig. 4C, data from other macrophage experiments revealed that psv AP-1 replication was very similar to that of WT virus (data not shown). Probable causes for the higher virus production from the AP-1 deletion mutant in this experiment are the variability associated with PBMC-derived macrophage preparations from different donor cats and the variation in adherence of monocytes and differentiation to macrophages observed from well to well for the same PBMC preparation. Due to the extremely low titer of the psv 4 virus stock, replication of this mutant was not tested in feline MDMs. Comparable to the results observed in the transfection studies, data from the PBMC and MDM infection studies indicated that the ATF site was necessary for efficient FIV expression and replication, whereas the AP-1 response element was dispensable for in vitro replication in PBMCs and macrophages. The observation that the AP-1 site was not essential for FIV replication in vitro has been observed previously in a report examining an AP-1 mutant characterized by a 31-bp deletion that removed an AP-1 and an AP-4 site and that was constructed with the FIV molecular clone TM2 (FIV subtype C) (26). The same FIV TM2 AP-1 deletion mutant was, however,

6 VOL. 75, 2001 NOTES 1059 slightly attenuated or restricted for virus replication in vivo (19). The dispensability of this transcriptional element does not correlate with observations from previous transient expression assay studies indicating that the AP-1 site was necessary for optimal basal promoter activity and for either phorbol ester- or fos-induced activation of the FIV LTR (26, 34). An AP-1 site encoded by the visna virus LTR was critical for basal activity and for transactivation of the visna virus LTR resulting from interactions of the visna virus Tat protein with cellular transcription factors Fos and Jun (4, 15, 27). Because the structure of OrfA, the putative FIV Tat protein, is very similar to that of visna virus Tat, the AP-1 site may still prove to play a critical role in FIV expression or replication in specific lymphoid subsets or stages of cell differentiation, and studies addressing these issues have not yet been reported. In contrast, this is the first report describing expression and replication of FIV LTR mutants encoding a deletion of the ATF-binding element and the first study to evaluate replication of LTR mutants in feline macrophages. Deletion of the ATF site markedly reduced viral gene expression and virus production in both primary feline PBMCs and MDMs. Virus expression after transfection with type 1 ATF deletion mutants, including pppr ATF and pppr AP-1/ATF, was negligible, and preparation of these viruses required transfection of type 2 ATF deletion mutants (psv ATF and psv AP-1/ATF). Differences were not observed between the expression and replication of mutants encoding both an ATF and AP-1 deletion and those of mutants encoding an ATF deletion only. These findings correlate with those of previous studies that found the ATF response element critical for FIV LTR basal activity, LTR activation by camp analogs, and binding of cellular proteins by DNase I footprinting and gel shift assays (17, 18, 34, 37). The importance of the ATFbinding site for virus replication suggests that FIV expression may be at least partially regulated by the ATF/CREB family of transcription factors that bind ATF or camp response elements. The LTRs of the retroviruses human T-lymphotropic virus type 1 and bovine leukemia virus also contain sequences homologous to cellular camp response elements (12, 24, 40, 42) and are regulated by interactions of their respective viral transactivators (Tax) with transcription factors of the ATF/ CREB family. Characterization of cellular proteins that bind either the FIV LTR or the putative FIV Tat protein (OrfA) will be necessary to further define the role of the ATF-binding site in FIV gene expression and replication. Removal of both the AP-1 and ATF sites coupled with deletion of the intervening transcriptional elements (AP4, C/EBP, and NF1 sites) produced LTR mutants almost completely restricted for expression, including the type 2 mutant psv 4. The reduced expression and replication demonstrated by psv 4-generated virus compared to those of psv AP-1/ ATF indicates that the additional deleted sites contribute to FIV LTR enhancer or promoter activity. Based on previous findings that demonstrated that the duplicated C/EBP sites are critical for FIV LTR promoter activity (22, 37), inclusion of the C/EBP site deletion is the most likely source for the increased attenuation of the 4 LTR mutant. In contrast, the AP-4 site and NF1 sites were not critical for either basal promoter or activation activity of the FIV LTR in earlier studies and may have contributed little to the attenuation of the 4 LTR mutant (11, 34, 37). However, possible effects on surrounding U3 DNA sequence and/or structure resulting from such a large deletion encoded by the 4 mutant may also play a role in the severe attenuation of this mutant, as well as the absence of multiple functional domains. Construction and testing of FIV LTR mutants with a deletion restricted to either the duplicated C/EBP sites, the AP4 site, or the NF1 site would be necessary to confirm the role of these sites in the attenuated replication observed for the 4 LTR mutant. Generation of infectious FIV and HIV proviruses by replacement of the WT 5 LTR with a chimeric LTR including the human cytomegalovirus immediate-early gene promoter (CMV promoter/ru5) has been described previously, and the resulting chimeric proviruses demonstrated altered cell tropisms, which are especially crucial to development of FIV vectors capable of expression in human cells (5, 21, 32). In this work, we replaced the mutant 5 LTR within the type 1 LTR mutant proviruses with a chimeric SV40pr/RU5 5 LTR to enhance virus expression and facilitate production of virus stocks from proviruses severely restricted for virus expression, including the ATF, AP-1/ATF, and 4 mutants. Experiments to characterize the range of host cells permissive for the expression of psvwt were not conducted in this study, but would be necessary to determine the utility of this construct for FIV vector development. Observations from these studies identify cis-acting elements within the FIV U3 domain that contribute to efficient viral replication in vitro in both feline lymphocytes and macrophages and demonstrate that deletion of these elements produces an attenuated virus. These attenuated FIV mutants provide opportunities to characterize the role of these cis-acting elements in virus replication in vivo and establishment of virus load. These mutants also provide opportunities to test LTR mutants as attenuated virus vaccines, including (i) moderately attenuated mutant proviruses that encode small, 4- to 5-bp deletions in their respective target sequences and (ii) a severely attenuated LTR mutant that encodes a 72-bp deletion removing multiple transcription factor-binding sites. Studies testing replication and virus load in cats inoculated with these mutants are currently in progress. We gratefully acknowledge the expert technical assistance of Joanne Higgins, Harry Louie, May Chien, and Ann Marie Ziomek and helpful discussions with Paul Luciw. These studies were supported by the George and Phyllis Miller Feline Health Fund, Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, and by NIAID grants AI-R (E.E.S.) and T 35 -AI (L.B.). REFERENCES 1. Beebe, A. M., N. Dua, T. G. Faith, P. F. Moore, N. C. Pedersen, and S. Dandekar The primary stage of feline immunodeficiency virus infection: viral dissemination and cellular targets. J. Virol. 68: Bendinelli, M., M. Pistello, S. Lombardi, A. Poli, C. Garzelli, D. Matteucci, L. Ceccherini-Nelli, G. Malvaldi, and F. Tozzini Feline immunodeficiency virus: an interesting model for AIDS studies and an important cat pathogen. Clin. Microbiol. Rev. 8: Brown, W. C., L. Bissey, K. S. Logan, N. C. Pedersen, J. H. Elder, and E. W. Collisson Feline immunodeficiency virus infects both CD4 and CD8 T lymphocytes. J. Virol. 65: Carruth, L. M., B. A. Morse, and J. E. Clements The leucine domain of the visna virus Tat protein mediates targeting to an AP-1 site in the viral long terminal repeat. J. Virol. 70: Chang, L.-J., E. McNulty, and M. Martin Human immunodeficiency viruses containing heterologous enhancer/promoters are replication competent and exhibit different lymphocyte tropisms. J. Virol. 67:

7 1060 NOTES J. VIROL. 6. Cullen, B. R Human immunodeficiency virus as a prototypic complex retrovirus. J. Virol. 65: Cullen, B. R., and W. C. Greene Regulatory pathways governing HIV-1 replication. Cell 58: Dandekar, S., A. M. Beebe, J. Barlough, T. Phillips, J. Elder, M. Torten, and N. Pedersen Detection of feline immunodeficiency virus (FIV) nucleic acids in FIV-seronegative cats. J. Virol. 66: Dean, G. A., S. Himathongkham, and E. E. Sparger Differential cell tropism of feline immunodeficiency virus molecular clones in vivo. J. Virol. 73: Dean, G. A., G. H. Reubel, P. F. Moore, and N. C. Pedersen Proviral burden and infection kinetics of feline immunodeficiency virus in lymphocyte subsets of blood and lymph node. J. Virol. 70: de Parseval, A., and J. H. Elder Demonstration that orf2 encodes the feline immunodeficiency virus transactivating (Tat) protein and characterization of a unique gene product with partial Rev activity. J. Virol. 73: Derse, D Bovine leukemia virus transcription is controlled by a virusencoded trans-acting factor and by cis-acting response elements. J. Virol. 61: Dow, S. W., C. K. Mathiason, and E. A. Hoover In vivo monocyte tropism of pathogenic feline immunodeficiency viruses. J. Virol. 73: English, R. V., C. M. Johnson, D. H. Gebhard, and M. B. Tompkins In vivo lymphocyte tropism of feline immunodeficiency virus. J. Virol. 67: Hess, J. L., J. A. Small, and J. E. Clements Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and transactivation. J. Virol. 63: Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: Ikeda, Y., Y. Inoshima, Y. Kawaguchi, K. Maeda, M. Kohmoto, C. Kai, T. Miyazawa, and T. Mikami Protein-binding properties of the putative AP-1 and ATF sequence in the feline immunodeficiency virus long terminal repeat. J. Gen. Virol. 79: Ikeda, Y., Y. Kawaguchi, K. Tomonaga, Y. Inoshima, M. Kohmoto, T. Miyazawa, and T. Mikami Regulatory properties of the integrated long terminal repeat of the feline immunodeficiency virus. Virus Res. 41: Inoshima, Y., M. Kohmoto, Y. Ikeda, H. Yamada, Y. Kawaguchi, K. Tomonaga, T. Miyazawa, C. Kai, T. Umemura, and T. Mikami Roles of the auxiliary genes and AP-1 binding site in the long terminal repeat of feline immunodeficiency virus in the early stage of infection in cats. J. Virol. 70: Inoshima, Y., Y. Miyazawa, and T. Mikami In vivo functions of the auxiliary genes and regulatory elements of feline immunodeficiency virus. Vet. Microbiol. 60: Johnston, J. C., M. Gasmi, L. E. Lim, J. H. Elder, J.-K. Yee, D. J. Jolly, K. P. Campbell, B. L. Davidson, and S. L. Sauter Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73: Kawaguchi, Y., K. Tomonaga, K. Maeda, M. Ono, T. Miyazawa, M. Kohmoto, Y. Tohya, and T. Mikami The site in the feline immunodeficiency virus (FIV) long terminal repeat (LTR) is necessary for its efficient replication and is also involved in the inhibition of FIV LTR-directed gene expression by pseudorabies virus ICP4. Virology 208: Kiyomasu, T., T. Miyazawa, T. Furuya, R. Shibata, H. Sakai, J.-I. Sakuragi, M. Fukasawa, N. Maki, A. Hasegawa, T. Mikami, and A. Adachi Identification of feline immunodeficiency virus rev gene activity. J. Virol. 65: Kwok, R. P. S., M. E. Laurance, J. R. Lundblad, P. S. Goldman, H. M. Shih, L. M. Connor, S. J. Marriott, and R. H. Goodman Control of campregulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature 380: Miyazawa, T., M. Fukasawa, A. Hasegawa, N. Maki, K. Ikuta, K. Takahashi, M. Hayami, and T. Mikami Molecular cloning of a novel isolate of feline immunodeficiency virus biologically and genetically different from the original U.S. isolate. J. Virol. 65: Miyazawa, T., M. Kohmoto, Y. Kawaguchi, K. Tomonaga, T. Toyosaki, K. Kiuta, A. Adachi, and T. Mikami The AP-1 binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes. J. Gen. Virol. 74: Morse, B. A., L. M. Carruth, and J. E. Clements Targeting of the visna virus Tat protein to Ap-1 sites: interactions with the bzip domains of Fos and Jun in vitro and in vivo. J. Virol. 73: Olmsted, R. A., V. M. Hirsch, R. H. Purcell, and P. R. Johnson Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses. Proc. Natl. Acad. Sci. USA 86: Phillips, T. R., C. Lamont, D. A. M. Konings, B. L. Shacklett, C. A. Hamson, P. A. Luciw, and J. H. Elder Identification of the Rev transactivation and Rev-responsive elements of feline immunodeficiency virus. J. Virol. 66: Phillips, T. R., R. L. Talbott, C. Lamont, S. Muir, K. Lovelace, and J. H. Elder Comparison of two host cell range variants of feline immunodeficiency virus. J. Virol. 64: Poeschla, E. M., and D. J. Looney CXCR4 is required by a nonprimate lentivirus: heterologous expression of feline immunodeficiency virus in human, rodent, and feline cells. J. Virol. 72: Poeschla, E. M., F. Wong-Staal, and D. Looney Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat. Med. 4: Richardson, J., G. Pancino, R. Merat, T. Leste-Lasserre, A. Moraillon, J. Schneider-Mergener, M. Alizon, P. Sonigo, and N. Heveker Shared usage of the chemokine receptor CXCR4 by primary and laboratory-adapted strains of feline immunodeficiency virus. J. Virol. 73: Sparger, E. E., B. L. Shacklett, L. Renshaw-Gegg, P. A. Barry, N. C. Pedersen, J. H. Elder, and P. A. Luciw Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus. Virology 187: Sparger, E. E., A. Ziomek, H. Louie, and P. A. Luciw Infection of cats by injection with DNA of a feline immunodeficiency virus molecular clone. Virology 238: Talbott, R. L., E. E. Sparger, K. M. Lovelace, W. M. Fitch, N. C. Pedersen, P. A. Luciw, and J. H. Elder Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc. Natl. Acad. Sci. USA 86: Thompson, F. J., J. Elder, and J. C. Neil Cis- and trans-regulation of feline immunodeficiency virus: identification of functional binding sites in the long terminal repeat. J. Gen. Virol. 75: Tomonaga, K., T. Miyazawa, J.-I. Sakuragi, T. Mori, A. Adachi, and T. Mikami The feline immunodeficiency virus ORF-A gene facilitates efficient viral replication in established T-cell lines and peripheral blood lymphocytes. J. Virol. 67: Waters, A. K., A. P. De Parseval, D. L. Lerner, J. C. Neil, F. J. Thompson, and J. H. Elder Influence of ORF2 on host cell tropism of feline immunodeficiency virus. Virology 215: Willems, L., R. Kettmann, G. Chen, D. Portetelle, A. Burny, and D. Derse A cyclic AMP-responsive DNA-binding protein (CREB2) is a cellular transactivator of the bovine leukemia virus long terminal repeat. J. Virol. 66: Willett, B. J., L. Picard, M. J. Hosie, J. D. Turner, K. Adema, and P. R. Clapham Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J. Virol. 71: Zhao, L. J., and C. Z. Giam Interaction of the human T-cell lymphotropic virus type I (HTLV-I) transcriptional activator Tax with cellular factors that bind specifically to the 21-base-pair repeats in the HTLV-I enhancer. Proc. Natl. Acad. Sci. USA 88:

Differential Cell Tropism of Feline Immunodeficiency Virus Molecular Clones In Vivo

Differential Cell Tropism of Feline Immunodeficiency Virus Molecular Clones In Vivo JOURNAL OF VIROLOGY, Apr. 1999, p. 2596 2603 Vol. 73, No. 4 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Differential Cell Tropism of Feline Immunodeficiency

More information

Activation of Gene Expression by Human Herpes Virus 6

Activation of Gene Expression by Human Herpes Virus 6 Activation of Gene Expression by Human Herpes Virus 6 M. E. M. Campbell and S. McCorkindale 1 Introduction Human herpes virus type 6 (HHV-6) was first detected by Salahuddin et al. [6] and has been isolated

More information

JANELLE MARISA NOVAK UNIVERSITY OF FLORIDA

JANELLE MARISA NOVAK UNIVERSITY OF FLORIDA ORF-A/2 DEFICIENT MOLECULAR CLONE OF FELINE IMMUNODEFICIENCY VIRUS (FIV) DEMONSTRATES DIMINISHED VIRAL GENE EXPRESSION IN LYMPHOID TISSUES OF NEONATAL CATS DURING ACUTE AND LATENT INFECTION By JANELLE

More information

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA.

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA. Viral Load DNA >> Standard PCR standard 0 Copies Catalog Number: 1122 Lot Number: 150298 Release Category: A Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

Feline Immunodeficiency Virus Cell Entry

Feline Immunodeficiency Virus Cell Entry JOURNAL OF VIROLOGY, June 2001, p. 5433 5440 Vol. 75, No. 11 0022-538X/01/$04.00 0 DOI: 10.1128/JVI.75.11.5433 5440.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Feline Immunodeficiency

More information

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors VIROLOGY Engineering Viral Genomes: Retrovirus Vectors Viral vectors Retrovirus replicative cycle Most mammalian retroviruses use trna PRO, trna Lys3, trna Lys1,2 The partially unfolded trna is annealed

More information

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP 1 Learning Objectives Recognize hazards associated with viral vectors in research and animal

More information

Expression of CXCR4 on feline peripheral blood mononuclear. cells: effect of feline immunodeficiency virus (FIV) infection

Expression of CXCR4 on feline peripheral blood mononuclear. cells: effect of feline immunodeficiency virus (FIV) infection Expression of CXCR4 on feline peripheral blood mononuclear cells: effect of feline immunodeficiency virus (FIV) infection BRIAN J. WILLETT*, CELIA A. CANNON & MARGARET J. HOSIE Retrovirus Research Laboratory,

More information

Association of Plasma Viral RNA Load with Prognosis in Cats Naturally Infected with Feline Immunodeficiency Virus

Association of Plasma Viral RNA Load with Prognosis in Cats Naturally Infected with Feline Immunodeficiency Virus JOURNAL OF VIROLOGY, Oct. 2002, p. 10079 10083 Vol. 76, No. 19 0022-538X/02/$04.00 0 DOI: 10.1128/JVI.76.19.10079 10083.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved. Association

More information

A Single Mutation within the V3 Envelope Neutralization Domain of Feline Immunodeficiency Virus Determines Its Tropism for CRFK Cells

A Single Mutation within the V3 Envelope Neutralization Domain of Feline Immunodeficiency Virus Determines Its Tropism for CRFK Cells JOURNAL OF VIROLOGY, Aug. 1995, p. 4752 4757 Vol. 69, No. 8 0022-538X/95/$04.00 0 Copyright 1995, American Society for Microbiology A Single Mutation within the V3 Envelope Neutralization Domain of Feline

More information

Human Immunodeficiency Virus

Human Immunodeficiency Virus Human Immunodeficiency Virus Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Viruses and hosts Lentivirus from Latin lentis (slow), for slow progression of disease

More information

Virus neutralization reveals antigenic variation among feline immunodeficiency virus isolates

Virus neutralization reveals antigenic variation among feline immunodeficiency virus isolates Journal of General Virology (1994), 75, 3641 3645. Printed in Great Britain 3641 Virus neutralization reveals antigenic variation among feline immunodeficiency virus isolates Robert Osborne, l* Mark Rigby,

More information

Temperature Sensitivity of Two Different Steps in the Viral Life Cycle of Feline Immunodeficiency Virus

Temperature Sensitivity of Two Different Steps in the Viral Life Cycle of Feline Immunodeficiency Virus Virology 253, 309 318 (1999) Article ID viro.1998.9506, available online at http://www.idealibrary.com on Temperature Sensitivity of Two Different Steps in the Viral Life Cycle of Feline Immunodeficiency

More information

Xenoinfection of nonhuman primates by feline immunodeficiency virus James B. Johnston*, Merle E. Olson*, Erling W. Rud, and Christopher Power*

Xenoinfection of nonhuman primates by feline immunodeficiency virus James B. Johnston*, Merle E. Olson*, Erling W. Rud, and Christopher Power* Brief Communication 1109 Xenoinfection of nonhuman primates by feline immunodeficiency virus James B. Johnston*, Merle E. Olson*, Erling W. Rud, and Christopher Power* New viral infections in humans usually

More information

~Lentivirus production~

~Lentivirus production~ ~Lentivirus production~ May 30, 2008 RNAi core R&D group member Lentivirus Production Session Lentivirus!!! Is it health threatening to lab technician? What s so good about this RNAi library? How to produce

More information

Primate and Feline Lentivirus Vector RNA Packaging and Propagation by Heterologous Lentivirus Virions

Primate and Feline Lentivirus Vector RNA Packaging and Propagation by Heterologous Lentivirus Virions JOURNAL OF VIROLOGY, June 2001, p. 5129 5140 Vol. 75, No. 11 0022-538X/01/$04.00 0 DOI: 10.1128/JVI.75.11.5129 5140.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Primate

More information

Temporal patterns of feline immunodeficiency virus transcripts in peripheral blood cells during the latent stage of infection

Temporal patterns of feline immunodeficiency virus transcripts in peripheral blood cells during the latent stage of infection Journal of General Virology (1995), 76, 2193 2204. Printed in Great Britain 2193 Temporal patterns of feline immunodeficiency virus transcripts in peripheral blood cells during the latent stage of infection

More information

Comparative Analyses of Human Immunodeficiency Virus Type 1 (HIV-1) and HIV-2 Vif Mutants

Comparative Analyses of Human Immunodeficiency Virus Type 1 (HIV-1) and HIV-2 Vif Mutants JOURNAL OF VIROLOGY, June 1995, p. 3549 3553 Vol. 69, No. 6 0022-538X/95/$04.00 0 Copyright 1995, American Society for Microbiology Comparative Analyses of Human Immunodeficiency Virus Type 1 (HIV-1) and

More information

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase.

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase. Retroviruses ---The name retrovirus comes from the enzyme, reverse transcriptase. ---Reverse transcriptase (RT) converts the RNA genome present in the virus particle into DNA. ---RT discovered in 1970.

More information

Feline Immunodeficiency Virus: an Interesting Model for AIDS Studies and an Important Cat Pathogen

Feline Immunodeficiency Virus: an Interesting Model for AIDS Studies and an Important Cat Pathogen CLINICAL MICROBIOLOGY REVIEWS, Jan. 1995, p. 87 112 Vol. 8, No. 1 0893-8512/95/$04.00 0 Copyright 1995, American Society for Microbiology Feline Immunodeficiency Virus: an Interesting Model for AIDS Studies

More information

Proviral Organization and Sequence Analysis of Feline Immunodeficiency Virus Isolated from a Pallas Cat

Proviral Organization and Sequence Analysis of Feline Immunodeficiency Virus Isolated from a Pallas Cat VIROLOGY 228, 84 91 (1997) ARTICLE NO. VY968358 Proviral Organization and Sequence Analysis of Feline Immunodeficiency Virus Isolated from a Pallas Cat MARGARET C. BARR, 1 LILY ZOU, 2 FAN LONG, 3 WENDY

More information

Isolation, Propagation, and Titration of Human Immunodeficiency Virus Type 1 From Peripheral Blood of Infected Individuals

Isolation, Propagation, and Titration of Human Immunodeficiency Virus Type 1 From Peripheral Blood of Infected Individuals Isolation of HIV-1 From PBMC of Infected Individuals 17 2 Isolation, Propagation, and Titration of Human Immunodeficiency Virus Type 1 From Peripheral Blood of Infected Individuals Hanneke Schuitemaker

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia 1 of 7 I. Diseases Caused by Retroviruses RETROVIRUSES A. Human retroviruses that cause cancers 1. HTLV-I causes adult T-cell leukemia and tropical spastic paraparesis 2. HTLV-II causes hairy T-cell leukemia

More information

Qin Yu and Casey D. Morrow 1. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294

Qin Yu and Casey D. Morrow 1. Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294 Virology 254, 160 168 (1999) Article ID viro.1998.9542, available online at http://www.idealibrary.com on Complementarity between 3 Terminal Nucleotides of trna and Primer Binding Site Is a Major Determinant

More information

The AP-I binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes

The AP-I binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes Journal of General Virology (1993), 74, 1573-1580. Printed in Great ritain 1573 The AP-I binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in

More information

Minimum Requirements for Efficient Transduction of Dividing and Nondividing Cells by Feline Immunodeficiency Virus Vectors

Minimum Requirements for Efficient Transduction of Dividing and Nondividing Cells by Feline Immunodeficiency Virus Vectors JOURNAL OF VIROLOGY, June 1999, p. 4991 5000 Vol. 73, No. 6 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Minimum Requirements for Efficient Transduction

More information

Even Transcriptionally Competent Proviruses Are Silent in Bovine Leukemia Virus Induced Tumor Cells*

Even Transcriptionally Competent Proviruses Are Silent in Bovine Leukemia Virus Induced Tumor Cells* Even Transcriptionally Competent Proviruses Are Silent in Bovine Leukemia Virus Induced Tumor Cells* A. van den Broeke 1, Y. Cleuter 2, G. Chen 3, D. Portetelle 3, M. Mammerickx\ D. Zagury5, M. Fouchard

More information

Delineating Minimal Protein Domains and Promoter Elements for Transcriptional Activation by Lentivirus Tat Proteins

Delineating Minimal Protein Domains and Promoter Elements for Transcriptional Activation by Lentivirus Tat Proteins JOURNAL OF VIROLOGY, Apr. 1995, p. 2605 2610 Vol. 69, No. 4 0022-538X/95/$04.00 0 Copyright 1995, American Society for Microbiology Delineating Minimal Protein Domains and Promoter Elements for Transcriptional

More information

Sequences in the 5 and 3 R Elements of Human Immunodeficiency Virus Type 1 Critical for Efficient Reverse Transcription

Sequences in the 5 and 3 R Elements of Human Immunodeficiency Virus Type 1 Critical for Efficient Reverse Transcription JOURNAL OF VIROLOGY, Sept. 2000, p. 8324 8334 Vol. 74, No. 18 0022-538X/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. Sequences in the 5 and 3 R Elements of Human

More information

Molecularly Cloned Feline Immunodeficiency Virus NCSU 1 JSY3 Induces Immunodeficiency in Specific-Pathogen-Free Cats

Molecularly Cloned Feline Immunodeficiency Virus NCSU 1 JSY3 Induces Immunodeficiency in Specific-Pathogen-Free Cats JOURNAL OF VIROLOGY, May 1996, p. 3011 3017 Vol. 70, No. 5 0022-538X/96/$04.00 0 Copyright 1996, American Society for Microbiology Molecularly Cloned Feline Immunodeficiency Virus NCSU 1 JSY3 Induces Immunodeficiency

More information

are considered to be dead end products of reverse transcription

are considered to be dead end products of reverse transcription JOURNAL OF VIROLOGY, Sept. 2001, p. 7944 7955 Vol. 75, No. 17 0022-538X/01/$04.00 0 DOI: 10.1128/JVI.75.17.7944 7955.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Human Immunodeficiency

More information

Viral Genetics. BIT 220 Chapter 16

Viral Genetics. BIT 220 Chapter 16 Viral Genetics BIT 220 Chapter 16 Details of the Virus Classified According to a. DNA or RNA b. Enveloped or Non-Enveloped c. Single-stranded or double-stranded Viruses contain only a few genes Reverse

More information

Dox-Dependent SIVmac with Tetracycline-Inducible Promoter in the U3 Promoter Region

Dox-Dependent SIVmac with Tetracycline-Inducible Promoter in the U3 Promoter Region Virology 269, 268 275 (2000) doi:10.1006/viro.2000.0213, available online at http://www.idealibrary.com on Dox-Dependent SIVmac with Tetracycline-Inducible Promoter in the U3 Promoter Region Yong Xiao,

More information

X/01/$ DOI: /JVI Copyright 2001, American Society for Microbiology. All Rights Reserved.

X/01/$ DOI: /JVI Copyright 2001, American Society for Microbiology. All Rights Reserved. JOURNAL OF VIROLOGY, Apr. 2001, p. 3753 3765 Vol. 75, No. 8 0022-538X/01/$04.00 0 DOI: 10.1128/JVI.75.8.3753 3765.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Route of Simian

More information

Evolution of Replication Efficiency following Infection with a Molecularly Cloned Feline Immunodeficiency Virus of Low Virulence

Evolution of Replication Efficiency following Infection with a Molecularly Cloned Feline Immunodeficiency Virus of Low Virulence JOURNAL OF VIROLOGY, June 2002, p. 6062 6072 Vol. 76, No. 12 0022-538X/02/$04.00 0 DOI: 10.1128/JVI.76.12.6062 6072.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved. Evolution

More information

A Detailed Phylogenetic Analysis of FIV in the United States

A Detailed Phylogenetic Analysis of FIV in the United States A Detailed Phylogenetic Analysis of FIV in the United States Eric A. Weaver* Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America

More information

Helper virus-free transfer of human immunodeficiency virus type 1 vectors

Helper virus-free transfer of human immunodeficiency virus type 1 vectors Journal of General Virology (1995), 76, 691 696. Printed in Great Britabz 691 Helper virus-free transfer of human immunodeficiency virus type 1 vectors Jennifer H. Riehardson,~ Jane F. Kaye, Lisa A. Child

More information

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR Supplemental Materials and Methods Plasmids and viruses To generate pseudotyped viruses, the previously described recombinant plasmids pnl4-3-δnef-gfp or pnl4-3-δ6-drgfp and a vector expressing HIV-1 X4

More information

CDC site UNAIDS Aids Knowledge Base http://www.cdc.gov/hiv/dhap.htm http://hivinsite.ucsf.edu/insite.jsp?page=kb National Institute of Allergy and Infectious Diseases http://www.niaid.nih.gov/default.htm

More information

Feline Immunodeficiency Virus Infects both CD4+ and

Feline Immunodeficiency Virus Infects both CD4+ and JOURNAL OF VIROLOGY, June 1991, p. 3359-3364 0022-538X/91/063359-06$02.00/0 Copyright 1991, American Society for Microbiology Vol. 65, No. 6 Feline Immunodeficiency Virus Infects both CD4+ and CD8+ T Lymphocytes

More information

CRISPRaTest Functional dcas9-activator Assay Kit v1 Last update: 2018/07/04 Cellecta, Inc.

CRISPRaTest Functional dcas9-activator Assay Kit v1 Last update: 2018/07/04 Cellecta, Inc. CRISPRaTest Functional dcas9-activator Assay Kit v1 Last update: 2018/07/04 Cellecta, Inc. Copyright (c) 2018 Cellecta, Inc. All Rights Reserved. Table of Contents 1. CRISPRaTest Functional dcas9-activator

More information

Choosing Optimal Viral Vector for T-cell Transduction. Viral vectors for blood cells

Choosing Optimal Viral Vector for T-cell Transduction. Viral vectors for blood cells Choosing Optimal Viral Vector for T-cell Transduction Max Mamonkin, PhD Center for Cell and Gene Therapy Baylor College of Medicine PACT Webinar Nov 08, 2018 Viral for blood cells Short/long term gene

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis Catalog No. Amount Lot Number 631987 10 μg Specified on product label. Product Information plvx-ef1α-ires-mcherry is a bicistronic lentiviral expression vector that can be used

More information

CXCR4 Is Required by a Nonprimate Lentivirus: Heterologous Expression of Feline Immunodeficiency Virus in Human, Rodent, and Feline Cells

CXCR4 Is Required by a Nonprimate Lentivirus: Heterologous Expression of Feline Immunodeficiency Virus in Human, Rodent, and Feline Cells JOURNAL OF VIROLOGY, Aug. 1998, p. 6858 6866 Vol. 72, No. 8 0022-538X/98/$04.00 0 Copyright 1998, American Society for Microbiology. All Rights Reserved. CXCR4 Is Required by a Nonprimate Lentivirus: Heterologous

More information

Supplementary Information. Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases

Supplementary Information. Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases Supplementary Information Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases Ulrike Mock 1, Kristoffer Riecken 1, Belinda Berdien 1, Waseem Qasim 2, Emma Chan

More information

Received 4 December 2001/Accepted 29 April 2002

Received 4 December 2001/Accepted 29 April 2002 JOURNAL OF VIROLOGY, Aug. 2002, p. 8433 8445 Vol. 76, No. 16 0022-538X/02/$04.00 0 DOI: 10.1128/JVI.76.16.8433 8445.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved. The Relationship

More information

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid.

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid. HEK293T

More information

Recombinant Protein Expression Retroviral system

Recombinant Protein Expression Retroviral system Recombinant Protein Expression Retroviral system Viruses Contains genome DNA or RNA Genome encased in a protein coat or capsid. Some viruses have membrane covering protein coat enveloped virus Ø Essential

More information

Certificate of Analysis

Certificate of Analysis Certificate of Analysis plvx-ef1α-ires-puro Vector Table of Contents Product Information... 1 Description... 2 Location of Features... 3 Additional Information... 3 Quality Control Data... 4 Catalog No.

More information

Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus

Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus Journal of General Virology (1999), 80, 2639 2646. Printed in Great Britain... Envelope gene sequences encoding variable regions 3 and 4 are involved in macrophage tropism of feline immunodeficiency virus

More information

Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors

Development of a replication-competent lentivirus assay for dendritic cell-targeting lentiviral vectors Citation: Molecular Therapy Methods & Clinical Development (2015) 2, 15017; doi:10.1038/mtm.2015.17 All rights reserved 2329-0501/15 www.nature.com/mtm Article Development of a replication-competent lentivirus

More information

HIV INFECTION: An Overview

HIV INFECTION: An Overview HIV INFECTION: An Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ

More information

VIRAL TITER COUNTS. The best methods of measuring infectious lentiviral titer

VIRAL TITER COUNTS. The best methods of measuring infectious lentiviral titer VIRAL TITER COUNTS The best methods of measuring infectious lentiviral titer FLUORESCENCE CYCLES qpcr of Viral RNA SUMMARY Viral vectors are now routinely used for gene transduction in a wide variety of

More information

DNA context and promoter activity affect gene expression in lentiviral vectors

DNA context and promoter activity affect gene expression in lentiviral vectors ACTA BIOMED 2008; 79: 192-196 Mattioli 1885 O R I G I N A L A R T I C L E DNA context and promoter activity affect gene expression in lentiviral vectors Gensheng Mao 1, Francesco Marotta 2, Jia Yu 3, Liang

More information

Supplementary Information. Supplementary Figure 1

Supplementary Information. Supplementary Figure 1 Supplementary Information Supplementary Figure 1 1 Supplementary Figure 1. Functional assay of the hcas9-2a-mcherry construct (a) Gene correction of a mutant EGFP reporter cell line mediated by hcas9 or

More information

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also 6/1/2011 Biology of HIV Biology of HIV HIV belongs to a class of viruses known as retroviruses. Retroviruses are viruses that contain RNA (ribonucleic acid) as their genetic material. After infecting a

More information

Packaging and Abnormal Particle Morphology

Packaging and Abnormal Particle Morphology JOURNAL OF VIROLOGY, OCt. 1990, p. 5230-5234 0022-538X/90/105230-05$02.00/0 Copyright 1990, American Society for Microbiology Vol. 64, No. 10 A Mutant of Human Immunodeficiency Virus with Reduced RNA Packaging

More information

Micropathology Ltd. University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ

Micropathology Ltd. University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ www.micropathology.com info@micropathology.com Micropathology Ltd Tel 24hrs: +44 (0) 24-76 323222 Fax / Ans: +44 (0) 24-76 - 323333 University of Warwick Science Park, Venture Centre, Sir William Lyons

More information

Pathogenicity and Rapid Growth Kinetics of Feline Immunodeficiency Virus Are Linked to 3' Elements

Pathogenicity and Rapid Growth Kinetics of Feline Immunodeficiency Virus Are Linked to 3' Elements University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2011 Pathogenicity and Rapid Growth Kinetics of Feline Immunodeficiency Virus

More information

RAPID COMMUNICATION. Canine Cyclin T1 Rescues Equine Infectious Anemia Virus Tat Trans-Activation in Human Cells

RAPID COMMUNICATION. Canine Cyclin T1 Rescues Equine Infectious Anemia Virus Tat Trans-Activation in Human Cells Virology 268, 7 11 (2000) doi:10.1006/viro.1999.0141, available online at http://www.idealibrary.com on RAPID COMMUNICATION Canine Cyclin T1 Rescues Equine Infectious Anemia Virus Tat Trans-Activation

More information

Feb 11, Gene Therapy. Sam K.P. Kung Immunology Rm 417 Apotex Center

Feb 11, Gene Therapy. Sam K.P. Kung Immunology Rm 417 Apotex Center Gene Therapy Sam K.P. Kung Immunology Rm 417 Apotex Center Objectives: The concept of gene therapy, and an introduction of some of the currently used gene therapy vector Undesirable immune responses to

More information

Molecular Biology and Pathogenesis of Animal Lentivirus Infections

Molecular Biology and Pathogenesis of Animal Lentivirus Infections CLINICAL MICROBIOLOGY REVIEWS, Jan. 1996, p. 100 117 Vol. 9, No. 1 0893-8512/96/$04.00 0 Copyright 1996, American Society for Microbiology Molecular Biology and Pathogenesis of Animal Lentivirus Infections

More information

Received 26 August 2002/Accepted 1 November 2002

Received 26 August 2002/Accepted 1 November 2002 JOURNAL OF VIROLOGY, Feb. 2003, p. 1894 1903 Vol. 77, No. 3 0022-538X/03/$08.00 0 DOI: 10.1128/JVI.77.3.1894 1903.2003 Copyright 2003, American Society for Microbiology. All Rights Reserved. A Mutant Form

More information

7.012 Quiz 3 Answers

7.012 Quiz 3 Answers MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Friday 11/12/04 7.012 Quiz 3 Answers A > 85 B 72-84

More information

Received 8 October 1997/Accepted 5 January 1998

Received 8 October 1997/Accepted 5 January 1998 JOURNAL OF VIROLOGY, Apr. 1998, p. 3248 3258 Vol. 72, No. 4 0022-538X/98/$04.00 0 Copyright 1998, American Society for Microbiology In Vivo Replication Capacity Rather Than In Vitro Macrophage Tropism

More information

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins Supplementary information inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins Takuya Tada, Yanzhao Zhang, Takayoshi Koyama, Minoru Tobiume, Yasuko Tsunetsugu-Yokota, Shoji

More information

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study Note: I have added some clarifying comments to the slides -- please click on Comments under View to see them. Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a

More information

In vitro DNase I foot printing. In vitro DNase I footprinting was performed as described

In vitro DNase I foot printing. In vitro DNase I footprinting was performed as described Supplemental Methods In vitro DNase I foot printing. In vitro DNase I footprinting was performed as described previously 1 2 using 32P-labeled 211 bp fragment from 3 HS1. Footprinting reaction mixes contained

More information

Immunogenicity of an Anti-Clade B Feline Immunodeficiency Fixed-Cell Virus Vaccine in Field Cats

Immunogenicity of an Anti-Clade B Feline Immunodeficiency Fixed-Cell Virus Vaccine in Field Cats JOURNAL OF VIROLOGY, Dec. 2000, p. 10911 10919 Vol. 74, No. 23 0022-538X/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. Immunogenicity of an Anti-Clade B Feline Immunodeficiency

More information

Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay

Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay Background ImQuest BioSciences has developed and qualified a single-plate method to expedite the screening of antiviral agents against

More information

Characterization of the Transcriptional trans Activator of

Characterization of the Transcriptional trans Activator of JOURNAL OF VIROLOGY, May 1991, p. 2589-2594 0022-538X/91/052589-06$02.00/0 Copyright 1991, American Society for Microbiology Vol. 65, No. 5 Characterization of the Transcriptional trans Activator of Human

More information

Jumpstart your research with ViraPower Lentiviral Expression Systems

Jumpstart your research with ViraPower Lentiviral Expression Systems ViraPower Lentiviral Expression Systems Jumpstart your research with ViraPower Lentiviral Expression Systems With ViraPower Lentiviral Systems you can: Efficiently transduce both dividing and non-dividing

More information

Received 3 September 2002/Accepted 15 January 2003

Received 3 September 2002/Accepted 15 January 2003 JOURNAL OF VIROLOGY, Apr. 2003, p. 4646 4657 Vol. 77, No. 8 0022-538X/03/$08.00 0 DOI: 10.1128/JVI.77.8.4646 4657.2003 Copyright 2003, American Society for Microbiology. All Rights Reserved. Ability of

More information

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA) http://hdl.handle.net/11245/2.2816 File ID Filename Version uvapub:2816 26745y.pdf unknown SOURCE (OR PART OF

More information

Early Emergence and Selection of a SIV-LTR C/EBP Site Variant in SIV-Infected Macaques That Increases Virus Infectivity

Early Emergence and Selection of a SIV-LTR C/EBP Site Variant in SIV-Infected Macaques That Increases Virus Infectivity Early Emergence and Selection of a SIV-LTR C/EBP Site Variant in SIV-Infected Macaques That Increases Virus Infectivity Shruthi Ravimohan 1 *, Lucio Gama 2, Elizabeth L. Engle 2, M. Christine Zink 2,4,

More information

A Novel Approach for Producing Lentiviruses That Are Limited to a Single Cycle of Infection

A Novel Approach for Producing Lentiviruses That Are Limited to a Single Cycle of Infection JOURNAL OF VIROLOGY, Nov. 2004, p. 11715 11725 Vol. 78, No. 21 0022-538X/04/$08.00 0 DOI: 10.1128/JVI.78.21.11715 11725.2004 Copyright 2004, American Society for Microbiology. All Rights Reserved. A Novel

More information

Transcriptional Regulation of Latent Feline Immunodeficiency Virus in Peripheral CD4+ T-lymphocytes

Transcriptional Regulation of Latent Feline Immunodeficiency Virus in Peripheral CD4+ T-lymphocytes Viruses 2012, 4, 878-888; doi:10.3390/v4050878 Brief Report OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Transcriptional Regulation of Latent Feline Immunodeficiency Virus in Peripheral

More information

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease) CANCER Affects 25% of US population Kills 19% of US population (2nd largest killer after heart disease) NOT one disease but 200-300 different defects Etiologic Factors In Cancer: Relative contributions

More information

MedChem 401~ Retroviridae. Retroviridae

MedChem 401~ Retroviridae. Retroviridae MedChem 401~ Retroviridae Retroviruses plus-sense RNA genome (!8-10 kb) protein capsid lipid envelop envelope glycoproteins reverse transcriptase enzyme integrase enzyme protease enzyme Retroviridae The

More information

Centers for Disease Control August 9, 2004

Centers for Disease Control August 9, 2004 HIV CDC site UNAIDS Aids Knowledge Base http://www.cdc.gov/hiv/dhap.htm http://hivinsite.ucsf.edu/insite.jsp?page=kb National Institute of Allergy and Infectious Diseases http://www.niaid.nih.gov/default.htm

More information

HIV & AIDS: Overview

HIV & AIDS: Overview HIV & AIDS: Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL SEMINAR VJ TEMPLE 1 What

More information

Received 26 October 2005/Accepted 1 December 2005

Received 26 October 2005/Accepted 1 December 2005 JOURNAL OF VIROLOGY, Feb. 2006, p. 1939 1948 Vol. 80, No. 4 0022-538X/06/$08.00 0 doi:10.1128/jvi.80.4.1939 1948.2006 Copyright 2006, American Society for Microbiology. All Rights Reserved. Human Immunodeficiency

More information

on August 19, 2018 by guest

on August 19, 2018 by guest JOURNAL OF VIROLOGY, Nov. 1999, p. 9589 9598 Vol. 73, No. 11 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. A Lentivirus Packaging System Based on Alternative

More information

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation J. Du 1, Z.H. Tao 2, J. Li 2, Y.K. Liu 3 and L. Gan 2 1 Department of Chemistry,

More information

Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma

Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma Excerpt from MACS&more Vol 8 1/2004 Application of μmacs Streptavidin MicroBeads for the analysis of HIV-1 directly from patient plasma L. Davis Lupo and Salvatore T. Butera HIV and Retrovirology Branch,

More information

Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review

Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review REVIEW Eckstrand et al., Journal of General Virology 2017;98:1985 1996 DOI 10.1099/jgv.0.000866 Central and peripheral reservoirs of feline immunodeficiency virus in cats: a review Chrissy D. Eckstrand,

More information

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION

Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION Page 32 AP Biology: 2013 Exam Review CONCEPT 6 REGULATION 1. Feedback a. Negative feedback mechanisms maintain dynamic homeostasis for a particular condition (variable) by regulating physiological processes,

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

Clinical Significance of Human Immunodeficiency Virus Type 1 Replication Fitness

Clinical Significance of Human Immunodeficiency Virus Type 1 Replication Fitness CLINICAL MICROBIOLOGY REVIEWS, Oct. 2007, p. 550 578 Vol. 20, No. 4 0893-8512/07/$08.00 0 doi:10.1128/cmr.00017-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. Clinical Significance

More information

Dynamics of lentiviral infection in vivo in the absence of adaptive immune responses

Dynamics of lentiviral infection in vivo in the absence of adaptive immune responses Dynamics of lentiviral infection in vivo in the absence of adaptive immune responses Elissa J. Schwartz Associate Professor School of Biological Sciences Department of Mathematics & Statistics Washington

More information

A Senior Honors Thesis. Presented in Partial Fulfillment of the Requirements for Graduation with Distinction in Microbiology.

A Senior Honors Thesis. Presented in Partial Fulfillment of the Requirements for Graduation with Distinction in Microbiology. Detection of Feline Immunodeficiency Virus DNA Products in Lytic Versus Latent Infection, Including Early Reverse Transcription, Intermediate Reverse Transcription, and Late Circle Junctions A Senior Honors

More information

Materials and Methods , The two-hybrid principle.

Materials and Methods , The two-hybrid principle. The enzymatic activity of an unknown protein which cleaves the phosphodiester bond between the tyrosine residue of a viral protein and the 5 terminus of the picornavirus RNA Introduction Every day there

More information

Virus and Prokaryotic Gene Regulation - 1

Virus and Prokaryotic Gene Regulation - 1 Virus and Prokaryotic Gene Regulation - 1 We have discussed the molecular structure of DNA and its function in DNA duplication and in transcription and protein synthesis. We now turn to how cells regulate

More information

Figure S1. Schematic presentation of genomic replication of idsiv after transfection and infection. After transfection of idsiv plasmid DNA into 293T

Figure S1. Schematic presentation of genomic replication of idsiv after transfection and infection. After transfection of idsiv plasmid DNA into 293T Figure S1. Schematic presentation of genomic replication of idsiv after transfection and infection. After transfection of idsiv plasmid DNA into 293T cells, the RNA genomes with all modifications are generated

More information

Institute of Virology, Erasmus University Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands 2

Institute of Virology, Erasmus University Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands 2 Journal of General Virology (1999), 80, 761 765. Printed in Great Britain... SHORT COMMUNICATION Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells,

More information

Detection of equine infectious anemia nucleic acid in asymptomatic carrier horses by nested PCR

Detection of equine infectious anemia nucleic acid in asymptomatic carrier horses by nested PCR Asian Biomedicine Vol. 4 No. 6 December 2010; 971-975 Brief communication (Original) Detection of equine infectious anemia nucleic acid in asymptomatic carrier horses by nested PCR Sunutcha Suntrarachun

More information

A PROJECT ON HIV INTRODUCED BY. Abdul Wahab Ali Gabeen Mahmoud Kamal Singer

A PROJECT ON HIV INTRODUCED BY. Abdul Wahab Ali Gabeen Mahmoud Kamal Singer A PROJECT ON HIV INTRODUCED BY Abdul Wahab Ali Gabeen Mahmoud Kamal Singer Introduction: Three groups of nations have been identified in which the epidemiology of HIV(Human Immunodeficiency Virus) varies:

More information

WHO Prequalification of In Vitro Diagnostics PUBLIC REPORT. Product: Alere q HIV-1/2 Detect WHO reference number: PQDx

WHO Prequalification of In Vitro Diagnostics PUBLIC REPORT. Product: Alere q HIV-1/2 Detect WHO reference number: PQDx WHO Prequalification of In Vitro Diagnostics PUBLIC REPORT Product: Alere q HIV-1/2 Detect WHO reference number: PQDx 0226-032-00 Alere q HIV-1/2 Detect with product codes 270110050, 270110010 and 270300001,

More information