The HIV Clock. Introduction. SimBio Virtual Labs

Size: px
Start display at page:

Download "The HIV Clock. Introduction. SimBio Virtual Labs"

Transcription

1 SimBio Virtual Labs The HIV Clock Introduction AIDS is a new disease. This pandemic, which has so far killed over 25 million people, was first recognized by medical professionals in The virus responsible for most cases of AIDS is HIV-1 (diagramed at right). Where did this devastating new pathogen originate? HIV-1 belongs to a family of viruses known as SIVs (for simian immunodeficiency viruses) that infect primates. In 1992, reporter Tom Curtis, writing in Rolling Stone, suggested that HIV-1 might be a direct descendent of an SIV that infects African green monkeys or some other African primate. Curtis alleged that this SIV had gotten into humans as a contaminant in oral polio vaccines administered in central Africa during the late 1950s and early 1960s. These polio vaccines were made by growing a weakened strain of polio virus in cultured primate kidney cells. Many of the vaccines were grown in kidney cells taken from African green monkeys. If these kidney cells harbored SIV, then this virus could have been inoculated into patients along with the weakened polio. The evolutionary tree diagram at the right rules out African green monkey SIV as an ancestor of HIV-1. This tree, produced by Beatrice Hahn and colleagues, shows the evolutionary relationships among six samples of HIV-1, three samples of HIV-2, and SIVs from chimps, African green monkeys, and several other primates. If you start at the branch ends or tips and measure the total distance along branches connecting different virus samples, the closer related samples will be connected by shorter distances, and more distantly related ones by larger distances. The 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 1

2 HIV-1 samples (at the top of the diagram) are much more closely related to the chimp SIVs than to the viruses from African greens or any other monkey. Indeed, the HIV-1 samples all arise within the chimp SIV branch of the tree. This shows that HIV-1 in humans originated in chimps. How did humans contract a chimpanzee virus? Reporter Edward Hooper has argued, in his 1999 book The River and subsequent writings, that Curtis was on the right track. Hooper believes that some of the early polio vaccines distributed in central Africa were grown in chimpanzee kidney cells, that some of these cells were infected with SIV, and that SIV virions rode the vaccines into human bodies, where they became the founding strains of HIV-1. This lab will explore one line of evidence biologist Bette Korber and colleagues used to test Hooper s hypothesis. Korber used a molecular clock to date the last common ancestor of the most prevalent group of HIV-1 strains. According to the simplest version of Hooper s hypothesis, this common ancestor should have lived in the late 1950s. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 2

3 Exercise 1: A Model of Molecular Evolution by Genetic Drift The first step toward developing the tools we need to estimate a date for the origin of HIV is to recognize that a viral infection is a population of individual virus particles (virions). The infection may be initiated by one or a few particles that invade the person s body. Soon the invaders begin to reproduce, establishing a large population. When mutations occur during viral reproduction, the population becomes genetically variable. The population of virions can then evolve. In thinking about how a population of virions might evolve, we will imagine that it does so in the absence of natural selection. [This no-selection assumption is unlikely to be entirely true, but it will hold for stretches of viral genome in which the variation does not affect function.] To see how populations evolve in the absence of selection, we will examine change over time in the composition of a simple model population. [ 1 ] Launch SIMBIO VIRTUAL LABS. Select HIV from the EVOBEAKER LABS options. [ 2 ] You will see a large box labeled HIV Patient. This box contains a population of virions living inside a patient. To view information about an individual particle, or virion, click on the SELECT tool (the arrow button). Then double-click (or control-click) on one of the virions. [ 3 ] A new window will appear giving you access to a 100-nucleotide-long piece of the virion s genome. You can scroll back and forth to move from one end of the sequence to the other. After examining the sequence, close the window by clicking the CLOSE button. [ 4 ] Look again at your population of virions, and notice that they are all the same color. In this model, this indicates that they are all genetically identical to each other. They are identical because they are all recent descendants of the virion that initiated your patient s infection. [ 5 ] Notice too that all but one of the virions in your population is small. The creators of EVOBEAKER have taken some artistic license and used size to distinguish virions that are under development versus virions that are complete and thus ready to infect new cells and reproduce. The small virions are immature; the large one is mature. [ 6 ] To see the EVOBEAKER model of viral evolution in action, click the GO button to start the model running. As the simulation runs, the first thing you will see is the immature viruses becoming mature. Once all the virions are mature you will see them begin to reproduce. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 3

4 Reproduction is modeled as follows. Each virion has an equal chance of being replicated. A mature virion is chosen at random and copied to generate the first offspring. Then another one is chosen at random and copied, generating the second offspring. If you watch closely, you will see offspring blip into existence and float away from their parents. The model repeats this process until there are 50 offspring. By chance, certain virions may be copied more than once. Other adults may never be copied. Once there are 50 offspring, all the adults die. The offspring mature and the process is repeated. You can keep track of how much time has passed by watching the modeled time counter at the bottom of your screen. A generation takes about 150 time-steps. In this model, the virions have no enemies, and experience no competition. They are born, have a chance to reproduce, then die. At first glance, you might expect that this virion population will not evolve. There is little or no variation, and no selection. Variation and selection are necessary ingredients for adaptive evolution. However, the model does incorporate mutation. As you ve seen, each virion has a genome, represented by a piece of RNA 100 nucleotides long. Each time an adult produces an offspring, its genome is copied. But the copying is not perfect; occasionally an A is substituted for a U, or a U for a G, and so on. These mistakes, or mutations, add genetic variation to the population. When a mutation occurs, the virion containing the new nucleotide sequence is given a new color. Watch closely as the simulation runs. Most offspring are identical to their parent, but occasionally you will see new mutants appear among the offspring in the population. Although no genotypes are at a selective advantage over any others, non-adaptive evolution can occur due to random chance. Some genotypes may reproduce more often than others and increase in frequency while others may reproduce less often and become rare, or disappear altogether. If the composition of the virion population changes over time, it does so because mutation creates new variants. Most of the new variants disappear, but occasionally virions of a particular nucleotide sequence will have a run of good luck and become more abundant. [ 7 ] Click on the RESET button to reset the model. Start the model running again by clicking on the GO button. Watch the simulation run for at least 1,000 time steps. [ 7.1 ] What happened to most of the new variants that appeared did they become common, remain rare, or vanish altogether? Why? 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 4

5 [ 7.2 ] Did any variants look as though they might become common? What would have to happen for one of them to take over the population? [NOTE: Remember that there is no selection in this model.] [ 7.3 ] Was your population more variable at the end of 1,000 time steps than it was at the beginning? If it was, why? This mechanism of evolution at work in our model is known as genetic drift. To understand genetic drift in more detail, we need to gather data covering longer time spans. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 5

6 Exercise 2: Evolution by Genetic Drift Over Long Time Spans [ 1 ] In the EXPERIMENT menu, select SEQUENCE DIFFERENCES. [ 2 ] In the new window that appears, click the GO button to run the simulation. You will notice that things happen faster in this window than they did in the window for the first experiment. Instead of letting you watch individual virions as they are produced, grow up, reproduce, and die, the display in this new experiment skips from each generation s adult population to the next generation s adult population. The underlying model, however, is exactly the same as in Exercise 1. [ 3 ] Notice, also, that the time counter in the control panel at the bottom keeps track of generations, not time steps. With the simulation moving more quickly, we can track the population over much longer spans of time. Watch the simulation run for a while. [ 3.1 ] What happens to the colors represented in the population over time? Why does this happen? [ 4 ] We need a precise way to track how mutations accumulate in our model population over time. Click the STOP button. [ 5 ] Make sure the SELECT tool (the arrow button) is activated. Pick a virion and use your mouse to drag the particle into the Sequence Comparator box on the upper right. Because the virion you picked is the first one placed into the Sequence Comparator, the Sequence Comparator stores it as the reference sequence. The virion s data, including its icon color, the generation in which it was collected, and its RNA sequence should appear above the box you dragged it into. [ 6 ] Pick a virion with a different color and drag it into the gray box in the Sequence Comparator. Its data will appear as the first line inside the box itself. The third column in the Sequence Comparator is labeled Diffs. It reports the number of nucleotide positions at which the reference sequence and the current sequence differ. [ 6.1 ] How many differences are there between the reference sequence and the one you just selected? [ 7 ] Use the horizontal scroll bar under the Sequence Comparator to move back and forth along the RNA sequences until you find a nucleotide position at which your new sequence differs from the reference sequence; the nucleotide at this position in the new sequence will be highlighted. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 6

7 [ 7.1 ] What is the nucleotide at this position in the reference sequence? What is it in the new sequence? [ 8 ] Now that you know how to use the Sequence Comparator, click the Comparator s CLEAR button. Then click Yes in the dialog box that appears. [ 9 ] Click the RESET button and then pick a virion at random from your population. A good way to do this is to pick the virion that happened to land closest to the upper right corner. Drag this virion into the Sequence Comparator to store it as a reference. [ 10 ] You are going to run the simulation for another 1,000 generations, periodically stopping the simulation to drag a virion into the Sequence Comparator. [ 10.1 ] Use the axes below to show how you think the number of differences between these new sequences and the reference sequence will change over time. Explain your reasoning in the space below the graph. [ 11 ] Click the GO button to run the simulation, let it run for about 100 generations, then click the STOP button. Randomly pick a virion and drag it into the Sequence Comparator. [ 12 ] Repeat the above steps until you have accumulated at least 10 additional samples collected over a span of at least 1,000 generations since you stored the reference sequence. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 7

8 [ 13 ] Once you have accumulated at least 10 additional samples, click the PLOT button underneath the Sequence Comparator. This will plot the data you have accumulated in the graph on your screen. [ 13.1 ] What is the pattern in the graph? [ 13.2 ] Compare the graph on your screen to the graph you drew on the previous page. Describe their similarities and differences. Was your prediction generally correct? [ 14 ] Click the FIT LINE button to the right of the scatterplot on your screen. This will use a standard statistical method to draw the best fit line through the data points on your graph. At the top of the graph, just under the label Differences vs. Generation you should see some numbers. The only one that concerns us here is the second one, labeled s. This is the slope of the best fit line. Recall that the slope of a line is the rise over the run; steeper lines have higher slopes. In our graph, the slope gives the number of sequence differences that have accumulated in the population per generation. [ 14.1 ] Record the slope of your best fit line here: [ 15 ] It would be a good idea at this point to save a copy of your graph. In order to copy your graph, mouse over the center of your graph and right-click (Windows) or Control-Click (OSX). Choose Copy View to Clipboard. Then open a document in a word processing program where you can paste the picture and use the PASTE command to place the screen shot in the document. Label the image Molecular evolution without selection, Trial 1. Your instructor may want you to print and turn in this and other screen shots. Before proceeding, switch back to the SELECT tool. [ 16 ] Click on the RESET button to obtain a new population. [ 17 ] Pick a virion at random and drag it into the Sequence Comparator for storage as a reference sequence. [ 18 ] Click the GO button to run the simulation, let it go for about 100 generations, then click the STOP button. Pick a virion at random and drag it into the Sequence Comparator. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 8

9 [ 19 ] Repeat until you have accumulated at least 10 additional samples collected over a span of at least 1,000 generations since you stored the reference sequence. [ 20 ] Once you have accumulated at least 10 additional samples, click the PLOT button. Compare your new graph to the one you saved for Trial 1. Think about what happened in your two experiments. [ 20.1 ] What was similar between them? What was different? What generalizations can you make about how populations evolve by genetic drift? [ 21 ] Click the FIT LINE button. [ 21.1 ] What is the slope of your best-fit line for Trial 2? [ 22 ] Mouse over the center of your graph and right-click (Windows) or Control-Click (OSX), choose Copy View to Clipboard, then paste the resulting screen shot into your text document. Label the image Molecular evolution without selection, Trial 2. [ 22.1 ] If someone gave you frozen samples of virions taken from your patient at different times, could you make an educated guess as to how far apart in time the samples were collected? Explain. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 9

10 [ 23 ] The following graphs plot data from real viruses. The one on the left, based on research by Raj Shankarappa and colleagues, tracks molecular evolution in a population of HIV virions inside an individual patient. The one on the right, by Walter Fitch and colleagues, tracks molecular evolution in the global flu virus population. Compare these graphs to your own. [ 23.1 ] Why might an evolutionary biologist think of these graphs as molecular clocks? Until now, our model population has experienced mutation and genetic drift, but not natural selection. Next, we will explore what will happen if we add selection to the model. [ 24 ] Imagine that new mutations were deleterious. That is, imagine that a virion carrying a mutation in its genome is less likely to reproduce than a virion with no mutations. [ 24.1 ] Would this change in our model affect the rate at which new mutations accumulate in the population? Explain. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 10

11 [ 25 ] Imagine that new mutations were beneficial. That is, imagine that a virion carrying a mutation in its genome is more likely to reproduce than a virion with no mutations. [ 25.1 ] Would this change in our model affect the rate at which new mutations accumulate in the population? Explain. NEW MUTATIONS ARE... FITNESS CHANGE TRIAL 1 TRIAL 2...Deleterious 5%...Neutral 0...Beneficial + 5% [ 25.2 ] Record the slopes of the best fit lines that you recorded in Questions 14.1 and 21.1 into the table above under Trial 1 and Trial 2 in the second row down (= Neutral). [ 26 ] There is a popup menu in the EVOBEAKER window under the population of virions in the HIV patient; it is labeled FITNESS CHANGE FOR MUTANTS. Make new mutations deleterious by selecting 5% from the popup menu. [ 27 ] RESET your simulation and drag a random virion into the Sequence Comparator to serve as the reference sequence. [ 28 ] Run the simulation for 100 generations, then STOP it and drag a random virion into the Sequence Comparator. [ 29 ] Repeat this process until you have accumulated at least 10 additional samples collected over a span of at least 1,000 generations since you stored the reference sequence. [ 30 ] Once you have accumulated at least 10 additional samples, click the PLOT button, then click the FIT LINE button. [ 30.1 ] Record the slope in the table above, placing it into the grid under Deleterious, Trial 1. [ 30.2 ] Repeat the steps and record the resulting slope in the table above under Deleterious, Trial 2. [ 31 ] Make new mutations beneficial by selecting +5% from the FITNESS CHANGE FOR MUTANTS popup menu. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 11

12 [ 32 ] Run two more trials of this experiment, being sure to RESET before each run. [ 32.1 ] Record the resulting slopes in the table on the previous page. [ 32.2 ] Based on the data in your table, how does natural selection affect the rate of molecular evolution in our virus population? [ 32.3 ] Look back at the predictions you recorded. Were they correct? Why or why not? 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 12

13 Exercise 3: Diverging Lineages In Experiment 2 we saw how a population of virions evolves by mutation and genetic drift to become ever more genetically distinct from its ancestral state. In this exercise we will look at how two populations that share a common ancestor evolve relative to each other. [ 1 ] In the EXPERIMENT menu, select DIVERGING LINEAGES. [ 2 ] The window that appears is similar to the one you worked with in Exercise 2, except that now you have two patients on the left side of the window instead of just one. At present, only the top patient is infected with HIV. [ 3 ] Infect HIV Patient 2 by dragging a virion from Patient 1 into Patient 2. [ 4 ] RUN the simulation for about 50 generations, then click the STOP button to stop it. [ 5 ] Drag a random virion from Patient 1 into the Sequence Comparator to serve as a reference. Then drag a random virion from Patient 2 into the Comparator. Click the PLOT button to enter a data point representing the difference in the scatterplot. [ 5.1 ] How many sequence differences are there between the virion from Patient 1 and the virion from Patient 2? [ 5.2 ] How do you expect the number of sequence differences between virions from the two populations to change over time? Explain your reasoning. [ 6 ] Clear the Sequence Comparator by clicking the CLEAR button, then hitting Yes in the dialog box that appears. Then run the simulation for another 50 generations. Drag a random virion from each population into the comparator, then click PLOT to add the data point to your graph. [ 7 ] Repeat until you have accumulated and plotted at least 10 additional comparisons over a span of at least 500 generations. Then click the FIT LINE button. [ 7.1 ] What is the pattern in your graph? What is the slope of the fitted line? What does this number mean? [ 7.2 ] Compare your graph to your expectation in Question 5.1. Was your prediction correct? If not, why? 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 13

14 [ 8 ] The graphs at right, by Thomas Leitner and Jan Albert, shows the accumulating genetic divergence between pairs of HIV viruses taken from different patients as a function of how long it had been since the viral populations in each pair of patients had shared a common ancestor. The top graph shows sequence divergence within a gene called V3. The bottom graph shows sequence divergence within a gene called p17. [ 8.1 ] How do these graphs compare to the one from your experiment? [ 8.2 ] Why might the V3 genes in different HIV populations evolve away from each other more quickly than the p17 genes? [ 8.3 ] Imagine you are a doctor with two patients, each infected with HIV. Do you think you could use a molecular clock to estimate how long it had been since the viral populations in your patients had shared a common ancestor? Explain how. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 14

15 Exercise 4: Estimating the Age of Common Ancestors In the next exercise, EvoBeaker will prepare a puzzle for you. You will run the simulation for 500 generations, but you won t be able to see what s happening. Behind the scenes, the model will start out with a single infected patient. At some point during the first 500 generations, a second patient will be infected with a virion from the first patient. After 500 generations, the viral populations inside your patients will become visible. Your job will be to use a molecular clock to estimate, within plus or minus ~100 generations, when Patient 2 acquired HIV from Patient 1. [ 1 ] In the EXPERIMENT menu, select COMMON ANCESTORS. [ 2 ] Click the GO button and then be patient with your patients as the model runs. Soon after 500 generations (as soon as the viral populations become visible), STOP the model. [ 3 ] Drag a random virion from each patient into the Sequence Comparator. [ 3.1 ] How different are the RNA sequences from the two virions? Does this difference, by itself, give you a clue as to how long ago Patient 2 became infected? Explain. [ 4 ] Click the PLOT button to add the first data point to the graph, then CLEAR the Sequence Comparator. [ 5 ] RUN the simulation for another 50 generations, then STOP it. Drag a random virion from each patient into the Sequence Comparator. Click the PLOT button, then clear the Sequence Comparator. [ 6 ] Repeat until you have accumulated at least 10 comparisons spread over 500 generations. [ 7 ] Now click the FIT LINE button and look at your best fit line. It shows how rapidly genetic differences have been accumulating between your two patients while you have been watching. You can also follow the line back to get an idea of what was happening before you started watching. It is dangerous to use a best fit line to extrapolate beyond the range of the data, but in this case the best fit line is all we have. Look under the graph titled Differences vs. Generation to find both the slope of this line (which you used in earlier exercises), and the y-intercept, which is labeled y0. [ 7.1 ] Write the equation of your best fit line here (use the standard form, y = mx + b). 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 15

16 [ 8 ] Keep in mind that y (the dependent variable) is the number of sequence differences, and x (the independent variable) is the generation number. We want to use the previous equation to estimate the time (i.e., the generation) Patient 2 acquired HIV from Patient 1. When would that have been? It would have been the point in time when the genetic difference between viral populations in your two patients was zero. To make your estimate, substitute y = 0 in your best fit line equation and solve for x. [ 8.1 ] What is your estimate of the date of Patient 2 s infection? (Show your work.) [ 9 ] In the real world, we would not be able to verify such an estimate by checking it against The Truth. EvoBeaker, however, offers some advantages over the real world. One of them is that EvoBeaker can record The Truth and reveal it when asked. Click on the Infection Time checkbox located above the Sequence Comparator. [ 9.1 ] How accurate was your estimate of the date Patient 2 got HIV? [ 9.2 ] Can you think of any assumptions of your estimation technique that might explain inaccuracies? Explain. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 16

17 Exercise 5: Estimating the Date of the First HIV Infection You are now ready to try a method similar to that used by Bette Korber to estimate how long ago HIV-1 made its jump from chimpanzees into humans. Again, you will need to run the simulation for a number of generations to generate your puzzle. This time, the simulation begins with a chimpanzee infected with SIV. At some point, a virion jumps from the chimp to one of the humans, where it becomes the first HIV-1. At various times after that, the HIV infection jumps from human to human. Eventually, all the humans are infected. This time, the viral populations will become visible at generation 800. [ 1 ] In the EXPERIMENT menu in the control panel, select HIV FIRST INFECTION. [ 2 ] Click the GO button to start the simulation running...then be patient... Very soon after 800 generations (when the viral populations have become visible), STOP the simulation. [ 3 ] Your job now is to estimate, with reasonable accuracy, when the virus first jumped from chimp to human. Start by dragging a random virion from the chimp to the Sequence Comparator, where it will serve as a reference sequence. Then, drag a random virion from each of the seven human patients into the Comparator. [ 3.1 ] How different is a typical human viral sequence versus the chimp sequence? [ 4 ] Click the PLOT button to add your data points to the graph. Then CLEAR the Sequence Comparator. [ 5 ] RUN the simulation for another 50 generations, then STOP it. Sample another reference sequence from the chimp and compare it to a viral sequence from each of the seven humans. Click the PLOT button to add your data to the graph and CLEAR the Sequence Comparator. [ 6 ] Repeat until you think you have enough data to make an estimate. [ 7 ] Click the FIT LINE button and use the best fit line to extrapolate back to a time when a typical chimp virion and a typical human virion would have been identical. [ 7.1 ] Estimate the date of the first HIV infection and record it here: 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 17

18 [ 7.2 ] Click on the INFECTION TIMES checkbox located above the Sequence Comparator. Find the date of the first human infection, and record it below. How does it compare to your estimate? [ 7.3 ] As mentioned earlier, we cannot expect too much precision from an extrapolation beyond the data. Was your estimate at least accurate enough to say with some confidence that the first human infection happened early, late, or somewhere in the middle of the 800-generation time span? Explain. [ 7.4 ] How could you make your estimate more accurate? 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 18

19 Was HIV-1 Carried From Chimps Into Humans by a Polio Vaccine? Recall from the introduction that Edward Hooper claimed that HIV-1 first gained entry into human bodies as a stow-away in oral polio vaccines tested in Africa in the late 1950s. Bette Korber and colleagues tested this hypothesis by using a molecular clock to estimate the date of the last common ancestor of all HIV-1 strains. Korber lacked one crucial asset you possessed in Exercise 5. She didn t know which chimpanzee SIV population served as the immediate source of the virus that became the first HIV-1. To get around this problem, she used a clever trick. Using genetic sequences from 159 HIV samples from all over the world, Korber reconstructed an evolutionary tree for the human viruses. Using her tree, Korber was able to infer the likely sequence of the last common ancestor. Once she had an estimated sequence for the last common ancestor, Korber could calculate the genetic divergence between the common ancestor and the 159 known sequences. She then plotted these values against the year in which each of the 159 sequences was collected. A copy of this plot appears at left. It is like the plots you prepared in Exercise 2. Each sequence is represented by a letter. The letters correspond to the main branches on the HIV evolutionary tree. Korber then calculated the best fit line through the data. Finally, Korber extrapolated back to the point at which a typical HIV-1 sequence would have been identical to the sequence of the last common ancestor, as shown at right. The dashed box contains the data on the 159 sequences. The heavy black line is the best fit line. Because she was extrapolating well beyond her data, Korber allowed for a wide margin of error, indicated by the gray area. Korber s estimate is far from perfect. But as Andrew Rambaut and colleagues have pointed out, in spite of its flaws, it is the best estimate we have so far. Reassuringly, Korber s best fit line, which was based only on samples collected in the 1980s and 1990s, passes close to the data point for the oldest known HIV-1 sample, which was found in blood taken from a patient in , SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 19

20 [ 1 ] Examine Korber s graph on the previous page. [ 1.1 ] Are the data and her estimate compatible with the hypothesis that HIV-1 jumped from chimps to humans in the late 1950s? If not, can you think of an alternative explanation for the relationship between chimpanzee SIV and human HIV-1? Explain. 2011, SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 20

21 References Curtis, T The origin of AIDS. Rolling Stone (March 19): 54-59, 61, 106, 108. Fitch, W. M., J. M. Leiter, et al Positive Darwinian evolution in human influenza A viruses. Proceedings of the National Academy of Sciences, USA 88: Hahn, B. H., G. M. Shaw et al AIDS as a Zoonosis: Scientific and Public Health Implications. Science 287: Hooper, E The river: A journey to the source of HIV and AIDS. London: Allen Lane. Korber, B, M. Muldoon, et al Timing the ancestor of the HIV-1 pandemic strains. Science 288: Leitner, T., and J. Albert The molecular clock of HIV-1 unveiled through analysis of a known transmission history. Proceedings of the National Academy of Sciences, USA 96: Moore, J The puzzling origin of AIDS. American Scientist 92: Rambaut, A., D. Posada, et al The causes and consequences of HIV evolution. Nature Reviews Genetics 5: Shankarappa, R., J.B. Margolick, et al Consistent viral evolutionary changes associated with the progression of human immunodeficiency virus type 1 infection. Journal of Virology 73: , SimBiotic Software for Teaching and Research, Inc. All Rights Reserved. 21

Did the surgeon give hepatitis C to his patient?

Did the surgeon give hepatitis C to his patient? ForensicEA Lite Tutorial Did the surgeon give hepatitis C to his patient? In a recent issue of the Journal of Medical Virology, R. Stephan Ross and colleagues (2002) report the story of a German surgeon

More information

An Evolutionary Story about HIV

An Evolutionary Story about HIV An Evolutionary Story about HIV Charles Goodnight University of Vermont Based on Freeman and Herron Evolutionary Analysis The Aids Epidemic HIV has infected 60 million people. 1/3 have died so far Worst

More information

Grade Level: Grades 9-12 Estimated Time Allotment Part 1: One 50- minute class period Part 2: One 50- minute class period

Grade Level: Grades 9-12 Estimated Time Allotment Part 1: One 50- minute class period Part 2: One 50- minute class period The History of Vaccines Lesson Plan: Viruses and Evolution Overview and Purpose: The purpose of this lesson is to prepare students for exploring the biological basis of vaccines. Students will explore

More information

LESSON 4.5 WORKBOOK. How do viruses adapt Antigenic shift and drift and the flu pandemic

LESSON 4.5 WORKBOOK. How do viruses adapt Antigenic shift and drift and the flu pandemic DEFINITIONS OF TERMS Gene a particular sequence of DNA or RNA that contains information for the synthesis of a protien or RNA molecule. For a complete list of defined terms, see the Glossary. LESSON 4.5

More information

Evolution of influenza

Evolution of influenza Evolution of influenza Today: 1. Global health impact of flu - why should we care? 2. - what are the components of the virus and how do they change? 3. Where does influenza come from? - are there animal

More information

MULTIPLE LINEAR REGRESSION 24.1 INTRODUCTION AND OBJECTIVES OBJECTIVES

MULTIPLE LINEAR REGRESSION 24.1 INTRODUCTION AND OBJECTIVES OBJECTIVES 24 MULTIPLE LINEAR REGRESSION 24.1 INTRODUCTION AND OBJECTIVES In the previous chapter, simple linear regression was used when you have one independent variable and one dependent variable. This chapter

More information

WEBQUEST: Viruses and Vaccines

WEBQUEST: Viruses and Vaccines WLHS / Biology / Monson / UNIT 8 Viruses & Bacteria Name Date Per Part 1: Viruses WEBQUEST: Viruses and Vaccines Go to the following website: http://science.howstuffworks.com/virus-human.htm 1) Name 5

More information

Bacteria and Viruses

Bacteria and Viruses CHAPTER 13 LESSON 3 Bacteria and Viruses What are viruses? Key Concepts What are viruses? How do viruses affect human health? What do you think? Read the two statements below and decide whether you agree

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

2.1 VIRUSES. 2.1 Learning Goals

2.1 VIRUSES. 2.1 Learning Goals 2.1 VIRUSES 2.1 Learning Goals To understand the structure, function, and how Viruses replicate To understand the difference between Viruses to Prokaryotes and Eukaryotes; namely that viruses are not classified

More information

Student Exploration: Virus Lytic Cycle

Student Exploration: Virus Lytic Cycle Name: Date: Student Exploration: Virus Lytic Cycle Vocabulary: bacteriophage, capsid, host cell, lyse, lytic cycle, virus Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. A computer virus

More information

Student Handout Bioinformatics

Student Handout Bioinformatics Student Handout Bioinformatics Introduction HIV-1 mutates very rapidly. Because of its high mutation rate, the virus will continue to change (evolve) after a person is infected. Thus, within an infected

More information

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations. Unit 2, Lesson 2: Teacher s Edition 1 Unit 2: Lesson 2 Influenza and HIV Lesson Questions: o What steps are involved in viral infection and replication? o Why are some kinds of influenza virus more deadly

More information

Two-Way Independent ANOVA

Two-Way Independent ANOVA Two-Way Independent ANOVA Analysis of Variance (ANOVA) a common and robust statistical test that you can use to compare the mean scores collected from different conditions or groups in an experiment. There

More information

Distinguishing epidemiological dependent from treatment (resistance) dependent HIV mutations: Problem Statement

Distinguishing epidemiological dependent from treatment (resistance) dependent HIV mutations: Problem Statement Distinguishing epidemiological dependent from treatment (resistance) dependent HIV mutations: Problem Statement Leander Schietgat 1, Kristof Theys 2, Jan Ramon 1, Hendrik Blockeel 1, and Anne-Mieke Vandamme

More information

CHAPTER 2 NATURAL SELECTION AND REPRODUCTION

CHAPTER 2 NATURAL SELECTION AND REPRODUCTION CHAPTER 2 NATURAL SELECTION AND REPRODUCTION 2.2.1: WARM-UP We agree that the newt population became more poisonous because the snakes in this environment caused poison to be an adaptive trait. Now, we

More information

Bio 1M: The evolution of apes (complete) 1 Example. 2 Patterns of evolution. Similarities and differences. History

Bio 1M: The evolution of apes (complete) 1 Example. 2 Patterns of evolution. Similarities and differences. History Bio 1M: The evolution of apes (complete) 1 Example Humans are an example of a biological species that has evolved Possibly of interest, since many of your friends are probably humans Humans seem unique:

More information

One-Way Independent ANOVA

One-Way Independent ANOVA One-Way Independent ANOVA Analysis of Variance (ANOVA) is a common and robust statistical test that you can use to compare the mean scores collected from different conditions or groups in an experiment.

More information

1. To review research methods and the principles of experimental design that are typically used in an experiment.

1. To review research methods and the principles of experimental design that are typically used in an experiment. Your Name: Section: 36-201 INTRODUCTION TO STATISTICAL REASONING Computer Lab Exercise Lab #7 (there was no Lab #6) Treatment for Depression: A Randomized Controlled Clinical Trial Objectives: 1. To review

More information

Lecture 19 Evolution and human health

Lecture 19 Evolution and human health Lecture 19 Evolution and human health The evolution of flu viruses The evolution of flu viruses Google Flu Trends data US data Check out: http://www.google.org/flutrends/ The evolution of flu viruses the

More information

Bouncing Ball Lab. Name

Bouncing Ball Lab. Name Bouncing Ball Lab Name Scientists use an organized set of steps when they solve problems or perform investigations. This organized set of steps is called the Scientific Method. There are many versions

More information

7.014 Problem Set 7 Solutions

7.014 Problem Set 7 Solutions MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Problem Set 7 Solutions Question 1 Part A Antigen binding site Antigen binding site Variable region Light chain Light chain Variable

More information

Sequencing. Deletion/Duplication Analysis. How Does Genetic Testing for Cancer Work?

Sequencing. Deletion/Duplication Analysis. How Does Genetic Testing for Cancer Work? There are several steps involved with genetic testing for cancer predisposition. The first step would be to meet with a specialist, such a genetic counselor, who can assess your medical and family history

More information

The Effectiveness of Captopril

The Effectiveness of Captopril Lab 7 The Effectiveness of Captopril In the United States, pharmaceutical manufacturers go through a very rigorous process in order to get their drugs approved for sale. This process is designed to determine

More information

SMPD 287 Spring 2015 Bioinformatics in Medical Product Development. Final Examination

SMPD 287 Spring 2015 Bioinformatics in Medical Product Development. Final Examination Final Examination You have a choice between A, B, or C. Please email your solutions, as a pdf attachment, by May 13, 2015. In the subject of the email, please use the following format: firstname_lastname_x

More information

BlueBayCT - Warfarin User Guide

BlueBayCT - Warfarin User Guide BlueBayCT - Warfarin User Guide December 2012 Help Desk 0845 5211241 Contents Getting Started... 1 Before you start... 1 About this guide... 1 Conventions... 1 Notes... 1 Warfarin Management... 2 New INR/Warfarin

More information

Exploring HIV Evolution: An Opportunity for Research Sam Donovan and Anton E. Weisstein

Exploring HIV Evolution: An Opportunity for Research Sam Donovan and Anton E. Weisstein Microbes Count! 137 Video IV: Reading the Code of Life Human Immunodeficiency Virus (HIV), like other retroviruses, has a much higher mutation rate than is typically found in organisms that do not go through

More information

Activities to Accompany the Genetics and Evolution App for ipad and iphone

Activities to Accompany the Genetics and Evolution App for ipad and iphone Activities to Accompany the Genetics and Evolution App for ipad and iphone All of the following questions can be answered using the ipad version of the Genetics and Evolution App. When using the iphone

More information

1SCIENTIFIC METHOD PART A. THE SCIENTIFIC METHOD

1SCIENTIFIC METHOD PART A. THE SCIENTIFIC METHOD 1SCIENTIFIC METHOD LEARNING OUTCOMES Upon successful completion of this lab, you will be able to: Describe the steps of the scientific method Formulate research questions, hypotheses, and predictions Design

More information

Five Features of Fighting the Flu

Five Features of Fighting the Flu Five Features of Fighting the Flu Public Health Emergency Preparedness Pandemic Influenza Prevention Curriculum Grades 9-12 1 Day One Understand the Flu Virus 2 Five Features of Flu Fighting Code 1: Understand

More information

Making Your Treatment Work Long-Term

Making Your Treatment Work Long-Term Making Your Treatment Work Long-Term How to keep your treatment working... and why you don t want it to fail Regardless of the particular drugs you re taking, your drugs will only work when you take them.

More information

Managing Immunizations

Managing Immunizations Managing Immunizations In this chapter: Viewing Immunization Information Entering Immunizations Editing Immunizations Entering a Lead Test Action Editing a Lead Test Action Entering Opt-Out Immunizations

More information

SURVEILLANCE TECHNICAL

SURVEILLANCE TECHNICAL CHAPTER 5 SURVEILLANCE TECHNICAL ASPECTS 55 Protect - detect - protect Polio eradication strategies can be summed up as protect and detect protect children against polio by vaccinating them, and detect

More information

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS 1 Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS What steps are involved in viral infection and replication? Why are some kinds of influenza virus more deadly than others? How do flu

More information

Natural Selection Simulation: Predation and Coloration

Natural Selection Simulation: Predation and Coloration Name Period Date Natural Selection Simulation: Predation and Coloration This simulation was invented by G. Ledyard Stebbins, a pioneer in the evolution of plants. The purpose of the game is to illustrate

More information

Living with Newton's Laws

Living with Newton's Laws Task #1 - Newton s 1 st Law - This is a pain in the neck Let's suppose you are in your car, waiting at a stop light. Like any good driver, you have your seat belt buckled. (It's the law.) Suddenly, a car

More information

We are an example of a biological species that has evolved

We are an example of a biological species that has evolved Bio 1M: Primate evolution (complete) 1 Patterns of evolution Humans as an example We are an example of a biological species that has evolved Many of your friends are probably humans Humans seem unique:

More information

Instructor Guide to EHR Go

Instructor Guide to EHR Go Instructor Guide to EHR Go Introduction... 1 Quick Facts... 1 Creating your Account... 1 Logging in to EHR Go... 5 Adding Faculty Users to EHR Go... 6 Adding Student Users to EHR Go... 8 Library... 9 Patients

More information

EVOLUTION. Reading. Research in my Lab. Who am I? The Unifying Concept in Biology. Professor Carol Lee. On your Notecards please write the following:

EVOLUTION. Reading. Research in my Lab. Who am I? The Unifying Concept in Biology. Professor Carol Lee. On your Notecards please write the following: Evolution 410 9/5/18 On your Notecards please write the following: EVOLUTION (1) Name (2) Year (3) Major (4) Courses taken in Biology (4) Career goals (5) Email address (6) Why am I taking this class?

More information

EVOLUTION: WHY DOES IT MATTER? What did evolution ever do for me?

EVOLUTION: WHY DOES IT MATTER? What did evolution ever do for me? EVOLUTION: WHY DOES IT MATTER? What did evolution ever do for me? www.christs.cam.ac.uk/darwin200 Evolution is change in living things through descent with modification Evolution is change in living things

More information

Special Supplement Part II. The AWAKENING Does Scientific Evidence Support the Existence of a Divine Creator?

Special Supplement Part II. The AWAKENING Does Scientific Evidence Support the Existence of a Divine Creator? Special Supplement Part II The AWAKENING Does Scientific Evidence Support the Existence of a Divine Creator? The Flawed Theory of Evolution FACT:Although science has developed a vernacular, which include

More information

MiSP Solubility Lab L3

MiSP Solubility Lab L3 MiSP Solubility Lab L3 Name Date In today s lab you will be working in groups to determine whether sugar or salt dissolves more quickly in water. The rate at which different substances dissolve depends

More information

A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel

A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel A Penny for Your Thoughts: Scientific Measurements and Introduction to Excel Pre-lab Assignment: Introduction Reading: 1. Chapter sections 1.4 through 1.6 in your course text. 2. This lab handout. Questions:

More information

Try using a number as an adjective when talking to children. Let s take three books home or There are two chairs at this table.

Try using a number as an adjective when talking to children. Let s take three books home or There are two chairs at this table. Ages 0-18 mos. Try using a number as an adjective when talking to children. Let s take three books home or There are two chairs at this table. Ages 0-18 mos. Use the words more and less to describe stacks

More information

Psy201 Module 3 Study and Assignment Guide. Using Excel to Calculate Descriptive and Inferential Statistics

Psy201 Module 3 Study and Assignment Guide. Using Excel to Calculate Descriptive and Inferential Statistics Psy201 Module 3 Study and Assignment Guide Using Excel to Calculate Descriptive and Inferential Statistics What is Excel? Excel is a spreadsheet program that allows one to enter numerical values or data

More information

Dementia Direct Enhanced Service

Dementia Direct Enhanced Service Vision 3 Dementia Direct Enhanced Service England Outcomes Manager Copyright INPS Ltd 2015 The Bread Factory, 1A Broughton Street, Battersea, London, SW8 3QJ T: +44 (0) 207 501700 F:+44 (0) 207 5017100

More information

Early Diagnosis: A Critical Step in Bird Flu Prevention

Early Diagnosis: A Critical Step in Bird Flu Prevention Early Diagnosis: A Critical Step in Bird Flu Prevention If avian influenza (bird flu) mutates sufficiently to jump from chickens and migratory birds to people, early diagnosis and identification of the

More information

Population Genetics Simulation Lab

Population Genetics Simulation Lab Name Period Assignment # Pre-lab: annotate each paragraph Population Genetics Simulation Lab Evolution occurs in populations of organisms and involves variation in the population, heredity, and differential

More information

Paper Airplanes & Scientific Methods

Paper Airplanes & Scientific Methods Paper Airplanes & Scientific Methods Scientific Inquiry refers to the many different ways in which scientists investigate the world. Scientific investigations are one to answer questions and solve problems.

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

GST: Step by step Build Diary page

GST: Step by step Build Diary page GST: At A Glance The home page has a brief overview of the GST app. Navigate through the app using either the buttons on the left side of the screen, or the forward/back arrows at the bottom right. There

More information

Tutorial: RNA-Seq Analysis Part II: Non-Specific Matches and Expression Measures

Tutorial: RNA-Seq Analysis Part II: Non-Specific Matches and Expression Measures : RNA-Seq Analysis Part II: Non-Specific Matches and Expression Measures March 15, 2013 CLC bio Finlandsgade 10-12 8200 Aarhus N Denmark Telephone: +45 70 22 55 09 Fax: +45 70 22 55 19 www.clcbio.com support@clcbio.com

More information

Lesson Title: Viruses vs. Cells Standards to be Addressed: Acquisition

Lesson Title: Viruses vs. Cells Standards to be Addressed: Acquisition Readiness Standards: 4.C: compare the structures of viruses to cells, describe viral reproduction, and describe the role of viruses in causing diseases such as human immunodeficiency virus (HIV) and influenza

More information

1) Complete the Table: # with Flu

1) Complete the Table: # with Flu Name: Date: The Math Behind Epidemics A Study of Exponents in Action Many diseases can be transmitted from one person to another in various ways: airborne, touch, body fluids, blood only, etc. How can

More information

Statisticians deal with groups of numbers. They often find it helpful to use

Statisticians deal with groups of numbers. They often find it helpful to use Chapter 4 Finding Your Center In This Chapter Working within your means Meeting conditions The median is the message Getting into the mode Statisticians deal with groups of numbers. They often find it

More information

The Epidemic Model 1. Problem 1a: The Basic Model

The Epidemic Model 1. Problem 1a: The Basic Model The Epidemic Model 1 A set of lessons called "Plagues and People," designed by John Heinbokel, scientist, and Jeff Potash, historian, both at The Center for System Dynamics at the Vermont Commons School,

More information

DISEASE HOW ARE DISEASES SPREAD?

DISEASE HOW ARE DISEASES SPREAD? DISEASE HOW ARE DISEASES SPREAD? Starter: How is your body like a castle? Our skin is like the castle walls but microbes can enter through gaps in the defences AIM Can use simple physical models to show

More information

For all of the following, you will have to use this website to determine the answers:

For all of the following, you will have to use this website to determine the answers: For all of the following, you will have to use this website to determine the answers: http://blast.ncbi.nlm.nih.gov/blast.cgi We are going to be using the programs under this heading: Answer the following

More information

A virus consists of a nucleic acid surrounded by a protein coat. [2]

A virus consists of a nucleic acid surrounded by a protein coat. [2] GUIDED READING - Ch. 19 - VIRUSES NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

Evolution Webquest. This website is a treasure trove of information about evolution. I encourage you to explore this website on your own time.

Evolution Webquest. This website is a treasure trove of information about evolution. I encourage you to explore this website on your own time. Name: Date: Per: Evolution Webquest In this webquest you will be exploring evolution and the mechanisms that drive evolution. You will use three websites to answer the following questions and complete

More information

Conduct an Experiment to Investigate a Situation

Conduct an Experiment to Investigate a Situation Level 3 AS91583 4 Credits Internal Conduct an Experiment to Investigate a Situation Written by J Wills MathsNZ jwills@mathsnz.com Achievement Achievement with Merit Achievement with Excellence Conduct

More information

Making charts in Excel

Making charts in Excel Making charts in Excel Use Excel file MakingChartsInExcel_data We ll start with the worksheet called treatment This shows the number of admissions (not necessarily people) to Twin Cities treatment programs

More information

Modeling Natural Selection Activity

Modeling Natural Selection Activity Name: Date: Modeling Natural Selection Activity This laboratory investigation is a simulation of natural selection. One definition of simulation is the act of representing the functioning of a system or

More information

Lightened Dream. Quick Start Guide Lightened Dream is a dream journal designed to wake you up in your dreams.

Lightened Dream. Quick Start Guide Lightened Dream is a dream journal designed to wake you up in your dreams. Lightened Dream Quick Start Guide Lightened Dream is a dream journal designed to wake you up in your dreams. Follow its directions and you will be bending the laws of reality while getting a good night

More information

Protein quantitation guidance (SXHL288)

Protein quantitation guidance (SXHL288) Protein quantitation guidance (SXHL288) You may find it helpful to print this document and have it to hand as you work onscreen with the spectrophotometer. Contents 1. Introduction... 1 2. Protein Assay...

More information

Lecture 12. Immunology and disease: parasite antigenic diversity. and. Phylogenetic trees

Lecture 12. Immunology and disease: parasite antigenic diversity. and. Phylogenetic trees Lecture 12 Immunology and disease: parasite antigenic diversity and Phylogenetic trees Benefits of antigenic variation 2. Infect hosts with prior exposure Hosts often maintain memory against prior infections,

More information

The Making of the Fittest: Natural Selection and Adaptation

The Making of the Fittest: Natural Selection and Adaptation OVERVIEW COLOR VARIATION OVER TIME IN ROCK POCKET MOUSE POPULATIONS This lesson serves to reinforce concepts of variation and natural selection presented in the short film The Making of the Fittest:, which

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

INRODUCTION TO TREEAGE PRO

INRODUCTION TO TREEAGE PRO INRODUCTION TO TREEAGE PRO Asrul Akmal Shafie BPharm, Pg Dip Health Econs, PhD aakmal@usm.my Associate Professor & Program Chairman Universiti Sains Malaysia Board Member HTAsiaLink Adjunct Associate Professor

More information

Section 9. Junaid Malek, M.D.

Section 9. Junaid Malek, M.D. Section 9 Junaid Malek, M.D. Mutation Objective: Understand how mutations can arise, and how beneficial ones can alter populations Mutation= a randomly produced, heritable change in the nucleotide sequence

More information

How Math (and Vaccines) Keep You Safe From the Flu

How Math (and Vaccines) Keep You Safe From the Flu How Math (and Vaccines) Keep You Safe From the Flu Simple math shows how widespread vaccination can disrupt the exponential spread of disease and prevent epidemics. By Patrick Honner BIG MOUTH for Quanta

More information

Name: Antibiotics. Class: Date: 30 minutes. Time: 30 marks. Marks: level 1, 2 and 3. Increasing demand. Comments:

Name: Antibiotics. Class: Date: 30 minutes. Time: 30 marks. Marks: level 1, 2 and 3. Increasing demand. Comments: Antibiotics Name: Class: Date: Time: 30 minutes Marks: 30 marks Comments: level, 2 and 3. Increasing demand Q. Pathogens are microorganisms that cause infectious diseases. The graph shows the percentage

More information

How to Become a Flu Fighter

How to Become a Flu Fighter How to Become a Flu Fighter Pandemic Influenza Prevention Curriculum Grades 6-8 1 Lesson One Understanding the Flu Virus 2 Five Codes of Flu Fighting Code 1: Understand the flu virus Code 2: Know what

More information

Speed Accuracy Trade-Off

Speed Accuracy Trade-Off Speed Accuracy Trade-Off Purpose To demonstrate the speed accuracy trade-off illustrated by Fitts law. Background The speed accuracy trade-off is one of the fundamental limitations of human movement control.

More information

Building complexity Unit 04 Population Dynamics

Building complexity Unit 04 Population Dynamics Building complexity Unit 04 Population Dynamics HIV and humans From a single cell to a population Single Cells Population of viruses Population of humans Single Cells How matter flows from cells through

More information

Protein Investigator. Protein Investigator - 3

Protein Investigator. Protein Investigator - 3 Protein Investigator Objectives To learn more about the interactions that govern protein structure. To test hypotheses regarding protein structure and function. To design proteins with specific shapes.

More information

In the mid-20th century the structure of DNA was discovered. What is a section of DNA which codes for one specific protein called?

In the mid-20th century the structure of DNA was discovered. What is a section of DNA which codes for one specific protein called? Q1.Our understanding of genetics and inheritance has improved due to the work of many scientists. (a) Draw one line from each scientist to the description of their significant work. Scientist Description

More information

Biology of Breeding: Considerations for maximizing genetic diversity of breeding groups

Biology of Breeding: Considerations for maximizing genetic diversity of breeding groups Dillon Damuth 03/01/2015 Biology of Breeding: Considerations for maximizing genetic diversity of breeding groups When a person joins the hobby of reptile keeping and make the decision to breed animals

More information

Pathogens, Antibodies, and Vaccines

Pathogens, Antibodies, and Vaccines STO-138 Pathogens, Antibodies, and Vaccines Part 1: Modeling Pathogens and Antibodies Three dangerous diseases: Pertussis (whooping cough) is caused by Bordetella pertussis bacteria Diphtheria is caused

More information

The Chromosomes of a Frimpanzee: An Imaginary Animal

The Chromosomes of a Frimpanzee: An Imaginary Animal The Chromosomes of a Frimpanzee: An Imaginary Animal Introduction By now, you have heard the terms chromosome, mitosis, and meiosis. You probably also know that chromosomes contain genetic information

More information

Section 3.2, Vaccinations, explores how and who discovered vaccines.

Section 3.2, Vaccinations, explores how and who discovered vaccines. Curriculum links: D5, D6, D7, R4 PSE: (1a), (1e). Unit of Study Unit 6 Micro-organisms Estimated Teaching Time 50 minutes Section 3.2, Vaccinations, explores how and who discovered vaccines. In this is

More information

You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful.

You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful. icausalbayes USER MANUAL INTRODUCTION You can use this app to build a causal Bayesian network and experiment with inferences. We hope you ll find it interesting and helpful. We expect most of our users

More information

Physiological Simulations: Plasma Glucose Regulation 1 Physiology Biology 390

Physiological Simulations: Plasma Glucose Regulation 1 Physiology Biology 390 Physiological Simulations: Plasma Glucose Regulation 1 Physiology Biology 390 I. An Introduction to this Lab and to Models 2 in General: The purpose of this exercise is to use a computer simulation to

More information

Determining the Concentration of Iron in Vitamin Supplements

Determining the Concentration of Iron in Vitamin Supplements Teacher Guide Determining the Concentration of Iron in Vitamin Supplements Background Information Colorimetry is the science of measuring color. Colorimetry is a useful technique for determining the concentration

More information

Finding protein sites where resistance has evolved

Finding protein sites where resistance has evolved Finding protein sites where resistance has evolved The amino acid (Ka) and synonymous (Ks) substitution rates Please sit in row K or forward The Berlin patient: first person cured of HIV Contracted HIV

More information

Chapter 11. Experimental Design: One-Way Independent Samples Design

Chapter 11. Experimental Design: One-Way Independent Samples Design 11-1 Chapter 11. Experimental Design: One-Way Independent Samples Design Advantages and Limitations Comparing Two Groups Comparing t Test to ANOVA Independent Samples t Test Independent Samples ANOVA Comparing

More information

QuantiPhi for RL78 and MICON Racing RL78

QuantiPhi for RL78 and MICON Racing RL78 QuantiPhi for RL78 and MICON Racing RL78 Description: Using cutting-edge model-based design tools, you will design a strategy for a Renesas MICON car, a miniature, autonomous electric vehicle. You will

More information

Sex frees viruses from genetic ratchet. By: Morell, Virginia

Sex frees viruses from genetic ratchet. By: Morell, Virginia Sex frees viruses from genetic ratchet. By: Morell, Virginia Science, 00368075, 11/28/97, Vol. 278, Issue 5343 Database: Academic Search Premier Find More Like ThisSEX FREES VIRUSES FROM GENETIC `RATCHET'

More information

Get Immunized Regularly

Get Immunized Regularly Key #4 Get Immunized Regularly In the United States, influenza is responsible for about 36,000 deaths annually, while pneumonia is responsible for about 40,000 deaths. All adults over age 50 are encouraged

More information

Chapter 3: Examining Relationships

Chapter 3: Examining Relationships Name Date Per Key Vocabulary: response variable explanatory variable independent variable dependent variable scatterplot positive association negative association linear correlation r-value regression

More information

Ali Alabbadi. Bann. Bann. Dr. Belal

Ali Alabbadi. Bann. Bann. Dr. Belal 31 Ali Alabbadi Bann Bann Dr. Belal Topics to be discussed in this sheet: Particles-to-PFU Single-step and multi-step growth cycles Multiplicity of infection (MOI) Physical measurements of virus particles

More information

HIV Drug Resistance. Together, we can change the course of the HIV epidemic one woman at a time.

HIV Drug Resistance. Together, we can change the course of the HIV epidemic one woman at a time. HIV Drug Resistance Together, we can change the course of the HIV epidemic one woman at a time. #onewomanatatime #thewellproject What Is Resistance? HIV drugs are designed to keep the amount of HIV virus

More information

Practice Problems 8. a) What do we define as a beneficial or advantageous mutation to the virus? Why?

Practice Problems 8. a) What do we define as a beneficial or advantageous mutation to the virus? Why? Life Sciences 1a Practice Problems 8 1. You have two strains of HIV one is a wild type strain of HIV and the second has acquired a mutation in the gene encoding the protease. This mutation has a dual effect

More information

November 9, 2009 Bioe 109 Fall 2009 Lecture 19 Evolution and human health. The evolution of flu viruses

November 9, 2009 Bioe 109 Fall 2009 Lecture 19 Evolution and human health. The evolution of flu viruses November 9, 2009 Bioe 109 Fall 2009 Lecture 19 Evolution and human health The evolution of flu viruses - the potential harm of disease epidemics in human populations has received considerable attention

More information

Lab 5: Testing Hypotheses about Patterns of Inheritance

Lab 5: Testing Hypotheses about Patterns of Inheritance Lab 5: Testing Hypotheses about Patterns of Inheritance How do we talk about genetic information? Each cell in living organisms contains DNA. DNA is made of nucleotide subunits arranged in very long strands.

More information

Section 6: Analysing Relationships Between Variables

Section 6: Analysing Relationships Between Variables 6. 1 Analysing Relationships Between Variables Section 6: Analysing Relationships Between Variables Choosing a Technique The Crosstabs Procedure The Chi Square Test The Means Procedure The Correlations

More information

Part III: Basic Immunology

Part III: Basic Immunology Part III: Basic Immunology Introduction: This is an introductory unit on immunology. Important topics addressed include bacterial pathogens, vaccines, antibiotics, and cells of the immune system. After

More information

Experiment 1: Scientific Measurements and Introduction to Excel

Experiment 1: Scientific Measurements and Introduction to Excel Experiment 1: Scientific Measurements and Introduction to Excel Reading: Chapter 1 of your textbook and this lab handout. Learning Goals for Experiment 1: To use a scientific notebook as a primary record

More information