Antigen presenting cells
|
|
- Julius Foster
- 1 years ago
- Views:
Transcription
1 Antigen recognition by T and B cells - T and B cells exhibit fundamental differences in antigen recognition - B cells recognize antigen free in solution (native antigen). - T cells recognize antigen after it has been phagocytosed, degraded and small pieces of the antigen have been bound by MHC molecules. Role of Antigen-Presenting Cells (APC) - Helper T cells: recognize antigen after processing and presentation by MHC-II on APC (dendritic cells, macrophages, B cells). - Cytotoxic T cells: recognize antigen when it is presented on MHC-I. - Since most nucleated cells in the body express class I MHC, most cells in the body can present antigen to cytotoxic T cells. Although they are presenting antigen, these cells are usually not referred to as antigen-presenting cells. If they are presenting antigen that will cause them to be killed by cytotoxic T cells, they are referred to as target cells. Antigen presenting cells Remember: ) MHC-II, ) deliver co-stimulatory signals Professional APC: DC> MΦ > B cells, why? DC: Always express high levels of MHC-II molecules and co-stimulatory activity (B7 molecule) MΦ: requires activation to up-regulate MHC-II molecules and co-stimulatory molecules (B7 molecules) B cells: always express MHC-II molecules but needs to be activated to express co-stimulatory activity (B7 molecule) Professional vs Non-Professional APCs Self MHC Restriction Both MHC-I and MHC-II molecules can only recognize antigens when presented by SELF-MHC molecules. No value for individual to have T cells that recognize foreign antigen associated with foreign MHC Self MHC restriction occurs in thymus Classic Experiment to show self -MHC restriction H- K H- K CD8 T cells H- K H- b (-) (+) (-)
2 Ag processing is required Role for APC? Classical experiment showing that B and T cells have different requirement for antigen recognition. Processing is required for Th activation Processing is a metabolic active process Points Concerning Antigen Processing and Presentation. Location of pathogen viruses in cytosol, MHC class I pathway, Tc response (Cytosolic pathway) extracellular bacteria, MHC class II pathway, Th response Ab formation (Endocytic pathway) intracellular bacteria, MHC class II pathway, Th response cellular response (Endocytic) Points Concerning Antigen Processing and Presentation. Peptides derived from both self and non-self proteins can associate with MHC class I and class II molecules.. Chemical nature of MHC groove determines which peptides it will bind. MHC-I and MHC-II associated with peptides processed in different intracellular compartments A) Class I MHC binds peptides derived from endogenous antigens B) Class I MHC binds peptides from antigens that have been processed via the cytosolic pathway (derived from the cytoplasm of the cell) C) Class II MHC molecules bind peptides derived from exogenous antigens. These antigens were internalized by phagocytosis or endocytosis. D) These peptides are said to have been processed within the endocytic pathway.
3 Endogenous Pathway Peptides are generated by proteasome degradation Peptides are transported from cytosol to the RER Peptides loading onto MHC-I is aided by chaperones Kuby Figure Size - Hydrophobicity - The cytosolic antigen processing pathway -. The role of the TAP (Transporter associated with Antigenic Processing). - Peptides from proteasome degradation of cytoplasmic proteins are transported across the membrane of the rough endoplasmic reticulum by a heterodimeric protein designated as TAP. - TAP is composed of two subunits - TAP and TAP- - TAP-mediated transport is ATP-dependent The genes for TAP and TAP are encoded within the MHC. The cytosolic antigen processing pathway -. Assembly of the class I-peptide complex. The class I alpha chain is stabilized by calnexin.. When the alpha chain binds beta--microglobulin: - calnexin is lost - calreticulin and tapasin bind. Tapasin & calreticulin brings the class I molecules into the vicinity of the TAP. Kuby Figure 8-6a Kuby Figure 8-6b. A cytoplasmic peptide transported through the TAP is loaded onto the class I molecule. 5. Class I MHC dissociates from calreticulin and tapasin. Class I MHC-peptide complex is transported to Golgi and to the cell surface. Peptide is presented by MHC-I to CD8 cytotoxic T cell Class I MHC Pathway 6 Plasma membrane Viral protein is made on cytoplasmic ribosomes Class II Processing: - The endocytic antigen processing pathway processing of Peptide passes with MHC from Golgi body to surface 5 Golgi body Peptide associates with MHC-I complex Peptide with MHC goes to Golgi body rer MHC class I alpha and beta proteins are made on the rer Globular viral protein - intact Proteasome degrades protein to peptides Peptide transporter protein moves peptide into ER - Antigen can be taken into cells by various means: phagocytosis, endocytosis, pinocytosis, receptormediated endocytosis - Antigen taken up in these ways passes through a series of intracellular compartments of increasing acidity - early endosome (ph ), late endosome (ph ), phagolysosome (ph <5.0)
4 The endocytic antigen processing Three major events occur in the endosomal pathway: ) Degradation of material that was taken in endosome goes through acidification and fusion with lysosome which contain a wide array of degradative enzymes The endocytic antigen processing The endosomal compartment is completely separate from the endoplasmic reticulum ---> So, externally derived peptides are usually not loaded on to MHC-I. ) Loading of peptides from this material on to class II MHC molecules ) Transport of class II MHC - peptide complexes back to the cell surface Figure 5-8 Figure 5-8 The endocytic antigen processing Invariant Chain- guides transport to endocytic Vesicles Class II MHC is synthesized in the ER, but is not loaded with peptides there because it's peptide binding site is blocked by the invariant chain (Ii). Once class II MHC enters the endosomal compartments, the invariant chain is degraded, leaving a small fragment - CLIP - in the peptide binding site. CLIP is removed by HLA-DM, which loads a peptide on to class II MHC HLA-DO inhibits HLA-DM until the cell is activated Figure 5-8 CLIP= Class II-associated invariant chain peptide HLA-DM mediates exchange HLA-DO inhibits HLA-DM Peptide MHC-II complex is presented to CD helper T cell Class II MHC Pathway CD helper T cell Globula r protein Globular protein Receptor (Ab)-Mediated Endocytosis Endosome fuses with plasma membrane Immunodominant peptide binds to class II MHC Golgi body Endosome Fusion of endosome and exocytic vesicle Exocytic vesicle fuses with endosome releasing Ii from αβ dimer Endocytosis Lysosome Protein is processed to peptides in endosome or lysosome Class II MHC α Synthesis β Ii chains: α,β and Ii Endoplasmic reticulum
5 Presentation of Non-Peptide Antigens CD molecules (CDa-d) Structurally related to MHC-I Encoded outside the MHC region Present in APC (DC>MØ>B cells) Presents peptides of - aa in size Presents to CD, CD8 and NK cells Present LIPIDS and glycolipids The End! 5
Significance of the MHC
CHAPTER 8 Major Histocompatibility Complex (MHC) What is is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) Significance of the MHC role in immune response role in organ
Significance of the MHC
CHAPTER 8 Major Histocompatibility Complex (MHC) What is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) - MHC molecules were initially discovered during studies aimed
Basic Immunology. Lecture 5 th and 6 th Recognition by MHC. Antigen presentation and MHC restriction
Basic Immunology Lecture 5 th and 6 th Recognition by MHC. Antigen presentation and MHC restriction Molecular structure of MHC, subclasses, genetics, functions. Antigen presentation and MHC restriction.
Antigen Presentation to T lymphocytes
Antigen Presentation to T lymphocytes Immunology 441 Lectures 6 & 7 Chapter 6 October 10 & 12, 2016 Jessica Hamerman jhamerman@benaroyaresearch.org Office hours by arrangement Antibodies and T cell receptors
B F. Location of MHC class I pockets termed B and F that bind P2 and P9 amino acid side chains of the peptide
Different MHC alleles confer different functional properties on the adaptive immune system by specifying molecules that have different peptide binding abilities Location of MHC class I pockets termed B
The Major Histocompatibility Complex (MHC)
The Major Histocompatibility Complex (MHC) An introduction to adaptive immune system before we discuss MHC B cells The main cells of adaptive immune system are: -B cells -T cells B cells: Recognize antigens
MHC class I MHC class II Structure of MHC antigens:
MHC class I MHC class II Structure of MHC antigens: MHC class I antigens consist of a transmembrane heavy chain (α chain) that is non-covalently associated with β2- microglobulin. Membrane proximal domain
Significance of the MHC
CHAPTER 7 Major Histocompatibility Complex (MHC) What is is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) Significance of the MHC role in immune response role in organ
How T cells recognize antigen. How T cells recognize antigen -concepts
Adaptive immunity How T cells recognize antigen Starting point: 2. Diversity in antigen recognition is accomplished, in part, by rearrangements in the TCR loci. This occurs in the thymus 3. The T cell
Alleles: the alternative forms of a gene found in different individuals. Allotypes or allomorphs: the different protein forms encoded by alleles
Nomenclature Alleles: the alternative forms of a gene found in different individuals Allotypes or allomorphs: the different protein forms encoded by alleles Genotype: the collection of genes in an individual,
Summary of Endomembrane-system
Summary of Endomembrane-system 1. Endomembrane System: The structural and functional relationship organelles including ER,Golgi complex, lysosome, endosomes, secretory vesicles. 2. Membrane-bound structures
White Blood Cells (WBCs)
YOUR ACTIVE IMMUNE DEFENSES 1 ADAPTIVE IMMUNE RESPONSE 2! Innate Immunity - invariant (generalized) - early, limited specificity - the first line of defense 1. Barriers - skin, tears 2. Phagocytes - neutrophils,
BIOC 372x Study Guide
BIOC 372x Study Guide This study guide covers Part Two: Cellular Immunity and Signaling Contents Lecture L08- The Major Histocompatibility Complex Lecture L09- Antigen Processing and Presentation Lecture
The Adaptive Immune Responses
The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start
Intracellular vesicular traffic. B. Balen
Intracellular vesicular traffic B. Balen Three types of transport in eukaryotic cells Figure 12-6 Molecular Biology of the Cell ( Garland Science 2008) Endoplasmic reticulum in all eucaryotic cells Endoplasmic
3- Cell Structure and Function How do things move in and out of cells? A Quick Review Taft College Human Physiology
3- Cell Structure and Function How do things move in and out of cells? A Quick Review Taft College Human Physiology How do things move in and out of cells? Things may move through cell membranes by Passive
The Major Histocompatibility Complex
The Major Histocompatibility Complex Today we will discuss the MHC The study of MHC is necessary to understand how an immune response is generated. And these are the extra notes with respect to slides
First discovered in 1665 since then every organism observed with microscopes shows cells
The Cell Cell theory (1838): 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the
There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell
There are 2 major lines of defense: Non-specific (Innate Immunity) and Specific (Adaptive Immunity) Photo of macrophage cell Development of the Immune System ery pl neu mφ nk CD8 + CTL CD4 + thy TH1 mye
ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY
ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through
REVIEWS. The ins and outs of MHC class IImediated antigen processing and presentation
The ins and outs of MHC class IImediated antigen processing and presentation Paul A. Roche 1 and Kazuyuki Furuta 2 Abstract Antigenic peptide-loaded MHC class II molecules (peptide MHC class II) are constitutively
Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy
7.4 - Translation 7.4.1 - Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy Each amino acid has a specific trna-activating
4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100
Ch. 2 Cell Structure and Func.on BIOL 100 Cells Fundamental units of life Cell theory All living things are composed of one or more cells. The cell is the most basic unit of life. All cells come from pre-existing
Keystone Biology Remediation A4: Homeostasis and Transport
Keystone Biology Remediation A4: Homeostasis and Transport Assessment Anchors: to describe how the structure of the plasma allows it to function as a regulatory structure and/or protective barrier for
Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell
Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport
17/01/2017. Protein trafficking between cell compartments. Lecture 3: The cytosol. The mitochondrion - the power plant of the cell
ell biology 2017 version 13/1 2017 ote endosome vs lysosome handout Lecture 3: Text book Alberts et al.: hapter 12-14 (Topics covered by the lecture) A lot of reading! Focus on principles ell Biology interactive
SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells
SBI3U7 Cell Structure & Organelles 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells No nucleus Prokaryotic Cells No membrane bound organelles Has a nucleus Eukaryotic Cells Membrane bound organelles Unicellular
The Adaptive Immune Response. T-cells
The Adaptive Immune Response T-cells T Lymphocytes T lymphocytes develop from precursors in the thymus. Mature T cells are found in the blood, where they constitute 60% to 70% of lymphocytes, and in T-cell
5/12/2015. Cell Size. Relative Rate of Reaction
Cell Makeup Chapter 4 The Cell: The Fundamental Unit of Life We previously talked about the cell membrane The cytoplasm is everything inside the membrane, except the nucleus Includes Cytosol = liquid portion
Antigen Presentation to T lymphocytes
Antigen Presentation to T lymphocytes Immunology 441 Lectures 6 & 7 Chapter 6 October 10 & 12, 2016 Jessica Hamerman jhamerman@benaroyaresearch.org Office hours by arrangement Antigen processing: How are
Antigen Receptor Structures October 14, Ram Savan
Antigen Receptor Structures October 14, 2016 Ram Savan savanram@uw.edu 441 Lecture #8 Slide 1 of 28 Three lectures on antigen receptors Part 1 (Today): Structural features of the BCR and TCR Janeway Chapter
Class I Ag processing. TAP= transporters associated with antigen processing Transport peptides into ER
Antigen processing Class I Ag processing TAP= transporters associated with antigen processing Transport peptides into ER Proteosome degrades cytosolic proteins Large, multi-subunit complex Degrades foreign
Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells
IN: Unit 2: More on Matter & Energy in Ecosystems Macromolecules to Organelles to Cells Where are cells on the biological scale? Sub-Atomic Particles Atoms Molecules Macromolecules (proteins, lipids, nucleic
Clinical Basis of the Immune Response and the Complement Cascade
Clinical Basis of the Immune Response and the Complement Cascade Bryan L. Martin, DO, MMAS, FACAAI, FAAAAI, FACOI, FACP Emeritus Professor of Medicine and Pediatrics President, American College of Allergy,
T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:
Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,
Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18
Introduction to pathology lecture 5/ Cell injury apoptosis Dr H Awad 2017/18 Apoptosis = programmed cell death = cell suicide= individual cell death Apoptosis cell death induced by a tightly regulated
Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell
Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional
Antigen presentation. How sweet?!!
Antigen presentation. How sweet?!! Thesis to complete the master programme Immunity and Infection Author: Ewaldus Bernardus Compeer, BSc Supervisor: Marianne Boes, PhD, Associate Professor Reviewer: Debby
WHY IS THIS IMPORTANT?
CHAPTER 16 THE ADAPTIVE IMMUNE RESPONSE WHY IS THIS IMPORTANT? The adaptive immune system protects us from many infections The adaptive immune system has memory so we are not infected by the same pathogen
Name: Class: Date: Unit 1 Test: Cells. Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: _ Date: _ Unit 1 Test: Cells Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which of the following is true of integral membrane proteins? A) They
Eukaryotic Cell Structure
5 Eukaryotic Cell Structure 1 5.1 A typical eukaryotic cell 1. Compare and contrast eukaryotic, bacterial, and archaeal cells in terms of their use of membranes, size, morphological diversity, and organelles.
Class IX Chapter 5 The Fundamental Unit of Life Science
1 Class IX Chapter 5 The Fundamental Unit of Life Science Question 1: Who discovered cells and how? Cells were discovered in 1665 by an English Botanist, Robert Hooke. He used a primitive microscope to
A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)
Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective
1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?
Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped
Structure and Function of Cells
Structure and Function of Cells Learning Outcomes Explain the cell theory Explain why cell size is usually very small Describe the Fluid Mosaic Model of membranes Describe similarities and differences
Question 1: Who discovered cells and how? Cells were discovered in 1665 by an English Botanist, Robert Hooke. He used a primitive microscope to observe cells in a cork slice. Question 2: Why is the cell
IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS
LECTURE: 07 Title: IMMUNE CELL SURFACE RECEPTORS AND THEIR FUNCTIONS LEARNING OBJECTIVES: The student should be able to: The chemical nature of the cellular surface receptors. Define the location of the
Arianne Brandsma Regulation of MHC class II surface expression in dendritic cells by ubiquitination 2
Regulation of MHC class II surface expression in dendritic cells by ubiquitination Arianne Brandsma Supervisor: Dr. J.H.W. Leusen August 2011 Biomedical Sciences Bachelor Thesis Utrecht University Cover
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following are synthesized along various sites of the endoplasmic reticulum
6 functions of membrane proteins integral & peripheral proteins Membrane Junctions
Cells Cells are the structural units of all living organisms ranging from unicellular to multicellular organisms. Biochemical activities of cells are dictated by cell shape and specific subcellular structures.
T Cell Effector Mechanisms I: B cell Help & DTH
T Cell Effector Mechanisms I: B cell Help & DTH Ned Braunstein, MD The Major T Cell Subsets p56 lck + T cells γ δ ε ζ ζ p56 lck CD8+ T cells γ δ ε ζ ζ Cα Cβ Vα Vβ CD3 CD8 Cα Cβ Vα Vβ CD3 MHC II peptide
2.4 : Cell Transport
2.4 : Cell Transport At the end of the lesson, you should be able to : Explain the various transport mechanisms across the membrane : Active transport - Sodium-Potassium Pump Endocytosis and Exocytosis
Chapter 5 Cell Membrane Structure and Organelles
Part II Principles of Individual Cell Function Chapter 5 Cell structures consist of biological membranes essentially mobile lipid bilayers to which many membrane proteins attach. The cell membrane separates
What are the parts of a eukaryotic cell? What is the function of each part of a eukaryotic cell?
CHAPTER 3 SECTION 2 Cells: The Basic Units of Life Eukaryotic Cells BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the parts of a eukaryotic cell? What
BIO 5099: Molecular Biology for Computer Scientists (et al)
BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes
Cell Structure and Function
Cell Structure and Function Agre and cells in the news Cells Smallest living unit Most are microscopic Discovery of Cells Robert Hooke (mid-1600s) Observed sliver of cork Saw row of empty boxes Coined
Cells & Cell Organelles
Cells & Cell Organelles The Building Blocks of Life AP Biology 2008-2009 Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal
Chapter 22: The Lymphatic System and Immunity
Immunity or Resistance Chapter 22: The Lymphatic System and Immunity Ability to ward off damage or disease through our defenses 2 types of immunity Innate or nonspecific immunity present at birth No specific
Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)
Chapter 16 CELL MEDIATED IMMUNITY Cell Mediated Immunity Also known as Cellular Immunity or CMI The effector phase T cells Specificity for immune recognition reactions TH provide cytokines CTLs do the
Cell Theory. Passive Transport
Cell Theory 4 basic concepts of cell theory are: Cells are the units of structure (building blocks) of all animals and plants. Cells are the smallest unit of function in all animals and plants. Cells originate
1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6
Allergy and Immunology Review Corner: Cellular and Molecular Immunology, 8th Edition By Abul K. Abbas, MBBS, Andrew H. H. Lichtman, MD, PhD and Shiv Pillai, MBBS, PhD. Chapter 4 (pages 62-74): Innate Immunity
Cell-Mediated Defense against Infection
6 Cell-Mediated Defense against Infection Tobias M. Hohl The principal function of the mammalian immune system is to combat infectious diseases. Immune responses to antigens and microbial pathogens are
Bacterial Diseases IMMUNITY TO BACTERIAL INFECTIONS. Gram Positive Bacteria. Gram Negative Bacteria. Many Infectious agents and many diseases
IMMUNITY TO BACTERIAL INFECTIONS Chapter 18 Bacterial Diseases Many Infectious agents and many diseases Bacteria can Infect any part of the body Cause disease due to Growth of the microbe in a tissue Produce
Cells. Review. Structure and Function of the Cell
Review Structure and Function of the Cell The cell is the basic functional unit of all living things. The plasma membrane (cell membrane) bounds the cell and encloses the nucleus and cytoplasm. The cytoplasm
Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69
Cell Structure and Function Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages 45 59 and 68-69 Assignments for this Unit Pick up the notes/worksheet for this unit and the project There
Defensive mechanisms include :
Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral
Adaptive Immunity: Specific Defenses of the Host
17 Adaptive Immunity: Specific Defenses of the Host SLOs Differentiate between innate and adaptive immunity, and humoral and cellular immunity. Define antigen, epitope, and hapten. Explain the function
Membrane Structure and Function. Eukaryotic Cell: Neuron
Membrane Structure and Function Eukaryotic Cell: Neuron Membrane Structure and Function All cells have a plasma or cell membrane, which contains the cell. Scanning electron micrograph (SEM) of adipocytes
The most valuable lipid ever?
The most valuable lipid ever? Spermaceti whale oil Used by sperm whales in a special organ in the huge head cavity Largely comprised of cetyl palmitate ww.thisrecording.com www.greenpeace.org Peer Instruction
Bulk Transport * OpenStax. 1 Endocytosis
OpenStax-CNX module: m44419 1 Bulk Transport * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will be able
MHC Class I Antigen Processing and Presenting Machinery: Organization, Function, and Defects in Tumor Cells
DOI:10.1093/jnci/djt184 Advance Access publication July 12, 2013 The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Disease causing organisms Resistance Immunity
Part 1 Disease causing organisms Resistance Immunity Bacteria Most common pathogens Anthrax Cholera Staphylococcus epidermidis bacteria Bacterial diseases Tuberculosis Cholera Bubonic Plague Tetanus Effects
Endomembrane system, *Chloroplasts, *Mitochondria. *Learn these from text/connect1. Fertilization of a human cell
Key Concepts: - Cells are the Basic Unit of Life Cell Theory, Surface to Volume - 2 Cell Types Prokaryotic, Eukaryotic - Cell Membrane Membrane Structure - Cell Organelles Endomembrane system, *Chloroplasts,
Concept 7.5: Bulk transport across the plasma membrane occurs by exocytosis and endocytosis
Concept 7.5: Bulk transport across the plasma membrane occurs by exocytosis and endocytosis Small molecules and water enter or leave the cell through the lipid bilayer or by transport proteins Large molecules,
Introduction to Immunology Part 2 September 30, Dan Stetson
Introduction to Immunology Part 2 September 30, 2016 Dan Stetson stetson@uw.edu 441 Lecture #2 Slide 1 of 26 CLASS ANNOUNCEMENT PLEASE NO TREE NUTS IN CLASS!!! (Peanuts, walnuts, almonds, cashews, etc)
HLA and more. Ilias I.N. Doxiadis. Geneva 03/04/2012.
www.ebmt.org HLA and more Ilias I.N. Doxiadis Geneva 03/04/2012 HLA and more HLA and more / Doxiadis 2 Topic of the day Compatibility testing is a type of testing used to ensure compatibility of the system/application/website
Immune Surveillance. Immune Surveillance. Immune Surveillance. Neutrophil granulocytes Macrophages. M-cells
he immune system is everywhere Some organs have developed strategies towards the immune system to keep it out or to put it under control Immune privileged organs: Brain Eye estis hyroid gland Humoral immunity
Innate Immunity. By Dr. Gouse Mohiddin Shaik
Innate Immunity By Dr. Gouse Mohiddin Shaik Types of immunity Immunity Innate / inborn Non-specific Acquired / adaptive Specific 3rd line of defense Physical barriers Skin, Saliva, Mucous, Stomach acid,
Smart cell lesson (1).notebook February 02, 2015
Cells 1 TEKS Related to the Lesson (12) Organisms and environments. The student knows that living systems at all levels of organization demonstrate the complementary nature of structure and function. The
The Plasma Membrane - Gateway to the Cell
The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition
Last time we talked about the few steps in viral replication cycle and the un-coating stage:
Zeina Al-Momani Last time we talked about the few steps in viral replication cycle and the un-coating stage: Un-coating: is a general term for the events which occur after penetration, we talked about
Innate Immunity. Hathairat Thananchai, DPhil Department of Microbiology Faculty of Medicine Chiang Mai University 2 August 2016
Innate Immunity Hathairat Thananchai, DPhil Department of Microbiology Faculty of Medicine Chiang Mai University 2 August 2016 Objectives: Explain how innate immune system recognizes foreign substances
General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center
General Overview of Immunology Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center Objectives Describe differences between innate and adaptive immune responses
MEMBRANES: STRUCTURE AND FUNCTION TOPIC 4
MEMBRANES: STRUCTURE AND FUNCTION TOPIC 4 1 BIOMEDICAL IMPORTANCE Plasma membranes- form closed compartments around cellular protoplasm to separate one cell from another Selective permeabilities- provided
The World of Cells. Organelle Description Function Animal, Plant or Both
The World of Cells Name Organelle Description Function Animal, Plant or Both CELL WALL CELL MEMBRANE CYTOPLASM NUCLEUS NUCLEAR MEMBRANE NUCLEOLUS CHROMATIN SMOOTH ENDOPLASMIC RETICULUM ROUGH ENDOPLASMIC
Main differences between plant and animal cells: Plant cells have: cell walls, a large central vacuole, plastids and turgor pressure.
Main differences between plant and animal cells: Plant cells have: cell walls, a large central vacuole, plastids and turgor pressure. Animal cells have a lysosome (related to vacuole) and centrioles (function
Chapter 02 Cytology - The Study of Cells
Chapter 02 Cytology - The Study of Cells Multiple Choice Questions 1. Cells of the small intestine and kidney tubule have a "brush border" composed of, which are cell extensions that increase surface area.
Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)
Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the
Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells
Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Andrew H. Lichtman, M.D. Ph.D. Department of Pathology Brigham and Women s Hospital and Harvard
Plasma Membrane Structure and Function
Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The
The Cell Study Guide, Chapter 2
Part I. Clinical Applications Name: The Cell Study Guide, Chapter 2 Lab Time: 1 1. Johnny lacerated his arm and rushed home to Mom so she could fix it. His mother poured hydrogen peroxide over the area,
Overview of the Cellular Basis of Life. Copyright 2009 Pearson Education, Inc., publishing as Benjamin Cummings
Overview of the Cellular Basis of Life Cells and Tissues Cells: Carry out all chemical activities needed to sustain life Cells are the building blocks of all living things Tissues Cells vary in length,
Chapter 24 The Immune System
Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific