Epigenetic Principles and Mechanisms Underlying Nervous System Function in Health and Disease Mark F. Mehler MD, FAAN

Size: px
Start display at page:

Download "Epigenetic Principles and Mechanisms Underlying Nervous System Function in Health and Disease Mark F. Mehler MD, FAAN"

Transcription

1 Epigenetic Principles and Mechanisms Underlying Nervous System Function in Health and Disease Mark F. Mehler MD, FAAN Institute for Brain Disorders and Neural Regeneration F.M. Kirby Program in Neural Repair and Protection Departments of Neurology, Neuroscience and Psychiatry and Behavioral Sciences Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities Einstein Cancer Center Albert Einstein College of Medicine

2 Unresolved Issues in Neuroscience Evolution of human brain form and function Limitations of bioenergetic reserve Basis of gene-environmental interactions Complexity of cellular identities and connectivity Plasticity/heritability of cognitive/behavioral traits Molecular genetics of neurological diseases

3 Cell Mol Life Sci 64:1531, 2007

4

5 The classical definition of epigenetics refers to modifications of gene expression and function not requiring primary changes in nucleotide sequence DNA methylation Histone code modifications Nucleosome positioning Higher-order chromatin remodeling

6 JAMA 299:1346, 2008 Organizational Structure of the Classical Epigenome I Higher-order chromatin remodeling Nucleosome positioning Post-translational histone tail modifications DNA methylation and methyl binding proteins

7 Epigenetic Regulatory Factors in Neurodevelopmental Diseases: Enzymes that directly modulate chromatin structure Van Bokhoven and Kramer Neurobiol. Dis. (2010)

8 Epigenetic Regulatory Factors in Neurodevelopmental Diseases: Enzymes that indirectly modulate chromatin structure Van Bokhoven and Kramer Neurobiol. Dis. (2010)

9 Novel Epigenetic Mechanisms Non-Protein-Coding RNAs RNA Editing

10 Explosive Growth of Non-Coding RNAs During Eukaryotic Evolution J Exp Biol 210:1526, 2007

11 Subclasses of Non-Coding RNAs (ncrnas) Signal recognition particle (SRP) RNAs Ribosomal RNAs (rrnas) Transfer RNAs (trnas) Transcription initiation RNAs (tirnas) Small nucleolar (spliceosomal) RNAs (snrnas) Small nucleolar RNAs (snornas) Sno-derived silencing RNAs (snirnas) Telomerase RNA MicroRNAs (mirnas) Small-interfering (cis-acting) RNAs (sirnas) Trans-acting antisense RNAs Tiny non-coding RNAs (tncrnas) Small modulatory double-stranded (dsrnas) RNAs (smrnas) Messenger RNA-like ncrnas Cytoplasmic ncrnas Heterogeneous nuclear RNAs (hnrnas) Genomic imprinting-related RNAs X-chromosome inactivation-related RNAs (rox RNAs) trna maturation-related RNAs (RNase P RNAs) MacroRNAs/long-expressed ncrnas (ENORs) Mehler & Mattick J. Physiol. 575:333, 2006

12 Non-Coding RNA Expression in Mammalian Brain PNAS 105:716, 2008

13 Non-Coding RNAs Associated with Neurological Genes PNAS 105:716, 2008 PNAS 105:716, 2008

14 RNA Editing Enzymes Recode Specific Base Pairs in Non-Coding and Coding RNAs to Fine-Tune Gene Expression and Function in Response to a Complex Environment RNA Biol 3:1, 2006

15

16 RNA Binding Proteins Regulate RNA Cellular Localization and Function Nat Rev Genet 8:533, 2007

17 The Role of RNA Binding Proteins in the Pathogenesis of Complex Diseases Nat Rev Genet 8:533, 2007

18 Short and Long Range Extracellular Trafficking of RNAs J Mol Endocrinol 40:151, 2007 Diverse RNA species may participate in signaling between adjacent neurons and across distributed neural networks RNAs may be transported to other organ systems through the systemic circulation RNAs may play a role in intergenerational inheritance through germline transmission

19 Expression of Receptors for Intercellular Transport of RNAs in Adult Brain J Mol Endocrinol 40:151, 2007

20 The New RNA Biology Science 319:1787, 2008

21 Towards Understanding and Treating Complex Neurological Diseases

22 Metabolic/homeostatic/environmental cues Genome regulation genomic imprinting gene dosage effect long-range gene modulation genomic stability epigenetic reprogramming -DNA/RNA/protein multigenerational heritability Essential cellular functions cell cycle regulation DNA replication/repair/recombination nuclear reorganization telomere maintenance gene transcription post-translational processing Neural development neural induction regional neural patterning stem cell self-renewal/maturation neuronal/glial subtype specification terminal differentiation synaptogenesis Adult brain functions neuronal homeostasis/plasticity neural network connectivity trans-neuronal signaling adult neurogenesis neural regeneration memory formation higher-order cognitive processing Ann Neurol. 64:602, 2008

23 Expansion Repeat Disorders Nature 447, (21 June 2007)

24 Ann Neurol. 64:602, 2008

25 Ann Neurol. 64:602, 2008

26 Ann Neurol. 64:602, 2008

27 Ann Neurol. 64:602, 2008

28 Ann Neurol. 64:602, 2008

29 Pharmacoepigenomics J Cell Physiol 212:330, 2007

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information

MicroRNA in Cancer Karen Dybkær 2013

MicroRNA in Cancer Karen Dybkær 2013 MicroRNA in Cancer Karen Dybkær RNA Ribonucleic acid Types -Coding: messenger RNA (mrna) coding for proteins -Non-coding regulating protein formation Ribosomal RNA (rrna) Transfer RNA (trna) Small nuclear

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

Genetics and Genomics in Medicine Chapter 6 Questions

Genetics and Genomics in Medicine Chapter 6 Questions Genetics and Genomics in Medicine Chapter 6 Questions Multiple Choice Questions Question 6.1 With respect to the interconversion between open and condensed chromatin shown below: Which of the directions

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins.

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. The RNA transcribed from a complex transcription unit

More information

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA Genetics Instructor: Dr. Jihad Abdallah Transcription of DNA 1 3.4 A 2 Expression of Genetic information DNA Double stranded In the nucleus Transcription mrna Single stranded Translation In the cytoplasm

More information

MicroRNAs, RNA Modifications, RNA Editing. Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM

MicroRNAs, RNA Modifications, RNA Editing. Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM MicroRNAs, RNA Modifications, RNA Editing Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM Expanding world of RNAs mrna, messenger RNA (~20,000) trna, transfer

More information

Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Prokaryotes and eukaryotes alter gene expression in response to their changing environment Chapter 18 Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences

More information

Session 2: Biomarkers of epigenetic changes and their applicability to genetic toxicology

Session 2: Biomarkers of epigenetic changes and their applicability to genetic toxicology Session 2: Biomarkers of epigenetic changes and their applicability to genetic toxicology Bhaskar Gollapudi, Ph.D The Dow Chemical Company Workshop: Genetic Toxicology: Opportunities to Integrate New Approaches

More information

Fragile X Syndrome. Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype

Fragile X Syndrome. Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype Fragile X Syndrome Genetics, Epigenetics & the Role of Unprogrammed Events in the expression of a Phenotype A loss of function of the FMR-1 gene results in severe learning problems, intellectual disability

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

Stem Cell Epigenetics

Stem Cell Epigenetics Stem Cell Epigenetics Philippe Collas University of Oslo Institute of Basic Medical Sciences Norwegian Center for Stem Cell Research www.collaslab.com Source of stem cells in the body Somatic ( adult )

More information

Are you the way you are because of the

Are you the way you are because of the EPIGENETICS Are you the way you are because of the It s my fault!! Nurture Genes you inherited from your parents? Nature Experiences during your life? Similar DNA Asthma, Autism, TWINS Bipolar Disorders

More information

Epigenetics: The Future of Psychology & Neuroscience. Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1

Epigenetics: The Future of Psychology & Neuroscience. Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1 Epigenetics: The Future of Psychology & Neuroscience Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1 Nature versus Nurture Despite the belief that the Nature vs. Nurture

More information

Epigenetics: Basic Principals and role in health and disease

Epigenetics: Basic Principals and role in health and disease Epigenetics: Basic Principals and role in health and disease Cambridge Masterclass Workshop on Epigenetics in GI Health and Disease 3 rd September 2013 Matt Zilbauer Overview Basic principals of Epigenetics

More information

Where Splicing Joins Chromatin And Transcription. 9/11/2012 Dario Balestra

Where Splicing Joins Chromatin And Transcription. 9/11/2012 Dario Balestra Where Splicing Joins Chromatin And Transcription 9/11/2012 Dario Balestra Splicing process overview Splicing process overview Sequence context RNA secondary structure Tissue-specific Proteins Development

More information

RNA (Ribonucleic acid)

RNA (Ribonucleic acid) RNA (Ribonucleic acid) Structure: Similar to that of DNA except: 1- it is single stranded polunucleotide chain. 2- Sugar is ribose 3- Uracil is instead of thymine There are 3 types of RNA: 1- Ribosomal

More information

Circular RNAs (circrnas) act a stable mirna sponges

Circular RNAs (circrnas) act a stable mirna sponges Circular RNAs (circrnas) act a stable mirna sponges cernas compete for mirnas Ancestal mrna (+3 UTR) Pseudogene RNA (+3 UTR homolgy region) The model holds true for all RNAs that share a mirna binding

More information

The RNA revolution: rewriting the fundamentals of genetics

The RNA revolution: rewriting the fundamentals of genetics RCH Grand Rounds - June 4 The RNA revolution: rewriting the fundamentals of genetics Ken Pang Overview 1. Genetics 101 2. Recent lessons from genomics 3. The expanding world of noncoding RNAs 4. Long noncoding

More information

September 20, Submitted electronically to: Cc: To Whom It May Concern:

September 20, Submitted electronically to: Cc: To Whom It May Concern: History Study (NOT-HL-12-147), p. 1 September 20, 2012 Re: Request for Information (RFI): Building a National Resource to Study Myelodysplastic Syndromes (MDS) The MDS Cohort Natural History Study (NOT-HL-12-147).

More information

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016 Bi 8 Lecture 17 REGulation by RNA interference Ellen Rothenberg 1 March 2016 Protein is not the only regulatory molecule affecting gene expression: RNA itself can be negative regulator RNA does not need

More information

Gene Regulation Part 2

Gene Regulation Part 2 Michael Cummings Chapter 9 Gene Regulation Part 2 David Reisman University of South Carolina Other topics in Chp 9 Part 2 Protein folding diseases Most diseases are caused by mutations in the DNA that

More information

Islamic University Faculty of Medicine

Islamic University Faculty of Medicine Islamic University Faculty of Medicine 2012 2013 2 RNA is a modular structure built from a combination of secondary and tertiary structural motifs. RNA chains fold into unique 3 D structures, which act

More information

An epigenetic approach to understanding (and predicting?) environmental effects on gene expression

An epigenetic approach to understanding (and predicting?) environmental effects on gene expression www.collaslab.com An epigenetic approach to understanding (and predicting?) environmental effects on gene expression Philippe Collas University of Oslo Institute of Basic Medical Sciences Stem Cell Epigenetics

More information

Phenomena first observed in petunia

Phenomena first observed in petunia Vectors for RNAi Phenomena first observed in petunia Attempted to overexpress chalone synthase (anthrocyanin pigment gene) in petunia. (trying to darken flower color) Caused the loss of pigment. Bill Douherty

More information

Alan Weiner BIOCHEM 530 Friday, MEB 248 October 23, 2015 RNA structure, the ribosome, structure-based drug design

Alan Weiner BIOCHEM 530 Friday, MEB 248 October 23, 2015 RNA structure, the ribosome, structure-based drug design Alan Weiner BIOCHEM 530 Friday, MEB 248 October 23, 2015 RNA structure, the ribosome, structure-based drug design Crick's "Central Dogma"? DNA makes RNA makes protein Crick's "Central Dogma"? DNA makes

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

Epigenetics and Environmental Health A Step-by-Step Tutorial

Epigenetics and Environmental Health A Step-by-Step Tutorial Powerful ideas for a healthier world Epigenetics and Environmental Health A Step-by-Step Tutorial Andrea Baccarelli, MD, PhD, MPH Laboratory of Environmental Epigenetics Objective of my presentation To

More information

Organization of genetic material in eukaryotes

Organization of genetic material in eukaryotes Organization of genetic material in eukaryotes biologiemoleculara.usmf.md pass.: bmgu e.usmf.md 1 DNA in eukaryotes Location: In nucleus In mitochondria biologiemoleculara.usmf.md e.usmf.md pass.: bmgu

More information

Epigenetics: A historical overview Dr. Robin Holliday

Epigenetics: A historical overview Dr. Robin Holliday Epigenetics 1 Rival hypotheses Epigenisis - The embryo is initially undifferentiated. As development proceeds, increasing levels of complexity emerge giving rise to the larval stage or to the adult organism.

More information

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular'

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular' '''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Anggraini'Barlian,' Iriawa-' Tjandra'Anggraeni' SITH4ITB' Five'Levels'of'Organiza-on' Molecular'

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

Interaktionen von RNAs und Proteinen

Interaktionen von RNAs und Proteinen Sonja Prohaska Computational EvoDevo Universitaet Leipzig May 5, 2017 RNA-protein binding vs. DNA-protein binding Is binding of proteins to RNA the same as binding of proteins to DNA? Will the same rules

More information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to the detection and repair of DNA damage DSBs induce a local decrease

More information

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON ... Epigenetics Lyle Armstrong f'ci Garland Science UJ Taylor & Francis Group NEW YORK AND LONDON Contents CHAPTER 1 INTRODUCTION TO 3.2 CHROMATIN ARCHITECTURE 21 THE STUDY OF EPIGENETICS 1.1 THE CORE

More information

MMB (MGPG) Non traditional Inheritance Epigenetics. A.Turco

MMB (MGPG) Non traditional Inheritance Epigenetics. A.Turco MMB (MGPG) 2017 Non traditional Inheritance Epigenetics A.Turco NON TRADITIONAL INHERITANCE EXCEPTIONS TO MENDELISM - Genetic linkage (2 loci close to each other) - Complex or Multifactorial Disease (MFD)

More information

Transcription and RNA processing

Transcription and RNA processing Transcription and RNA processing Lecture 7 Biology 3310/4310 Virology Spring 2018 It is possible that Nature invented DNA for the purpose of achieving regulation at the transcriptional rather than at the

More information

EPIGENOMICS PROFILING SERVICES

EPIGENOMICS PROFILING SERVICES EPIGENOMICS PROFILING SERVICES Chromatin analysis DNA methylation analysis RNA-seq analysis Diagenode helps you uncover the mysteries of epigenetics PAGE 3 Integrative epigenomics analysis DNA methylation

More information

V16: involvement of micrornas in GRNs

V16: involvement of micrornas in GRNs What are micrornas? V16: involvement of micrornas in GRNs How can one identify micrornas? What is the function of micrornas? Elisa Izaurralde, MPI Tübingen Huntzinger, Izaurralde, Nat. Rev. Genet. 12,

More information

Eukaryotic mrna is covalently processed in three ways prior to export from the nucleus:

Eukaryotic mrna is covalently processed in three ways prior to export from the nucleus: RNA Processing Eukaryotic mrna is covalently processed in three ways prior to export from the nucleus: Transcripts are capped at their 5 end with a methylated guanosine nucleotide. Introns are removed

More information

TITLE OF MODULE: Epigenetics in Development and Disease

TITLE OF MODULE: Epigenetics in Development and Disease TITLE OF MODULE: Epigenetics in Development and Disease MODULE NUMBER: BIO00013H ORGANISER: Dr. Louise Jones SUBJECT COMMITTEE: MBB VERSION: November 2011 TERM TAUGHT: Autumn 2012 PREREQUISITES: None ASSESSMENT:

More information

he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003)

he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function (D. Bartel Cell 2004) he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003) Vertebrate MicroRNA Genes (Lim et al. Science

More information

9/3/2009 DNA i DNA n euk euk yotes Organizatio Organ izatio n of o f gen ge e n tic Locati t on: In n ucleu e s material mater in e ial

9/3/2009 DNA i DNA n euk euk yotes Organizatio Organ izatio n of o f gen ge e n tic Locati t on: In n ucleu e s material mater in e ial DNA in eukaryotes Organization of genetic material in eukaryotes Location: In nucleus In mitochondria DNA in eukaryotes Nuclear DNA: Long, linear molecules; Chromatin chromosomes; 10% of DNA in genes,

More information

Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3

Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3 Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3 1 Department of Biotechnology, JMIT, Radaur, Haryana, India 2 KITM, Kurukshetra, Haryana, India 3 NIDDK, National Institute of Health,

More information

Cancer Problems in Indonesia

Cancer Problems in Indonesia mirna and Cancer : mirna as a Key Regulator in Cancer Sofia Mubarika 2 nd Symposium Biomolecular Update in Cancer PERABOI Padang 18 Mei 2013 Cancer Problems in Indonesia 1. Chemoresistency / recurrency

More information

Histones modifications and variants

Histones modifications and variants Histones modifications and variants Dr. Institute of Molecular Biology, Johannes Gutenberg University, Mainz www.imb.de Lecture Objectives 1. Chromatin structure and function Chromatin and cell state Nucleosome

More information

Chapter 11 How Genes Are Controlled

Chapter 11 How Genes Are Controlled Chapter 11 How Genes Are Controlled PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Mary

More information

Today. Genomic Imprinting & X-Inactivation

Today. Genomic Imprinting & X-Inactivation Today 1. Quiz (~12 min) 2. Genomic imprinting in mammals 3. X-chromosome inactivation in mammals Note that readings on Dosage Compensation and Genomic Imprinting in Mammals are on our web site. Genomic

More information

AN INTRODUCTION TO EPIGENETICS DR CHLOE WONG

AN INTRODUCTION TO EPIGENETICS DR CHLOE WONG AN INTRODUCTION TO EPIGENETICS DR CHLOE WONG MRC SGDP CENTRE, INSTITUTE OF PSYCHIATRY KING S COLLEGE LONDON Oct 2015 Lecture Overview WHY WHAT EPIGENETICS IN PSYCHIARTY Technology-driven genomics research

More information

High AU content: a signature of upregulated mirna in cardiac diseases

High AU content: a signature of upregulated mirna in cardiac diseases https://helda.helsinki.fi High AU content: a signature of upregulated mirna in cardiac diseases Gupta, Richa 2010-09-20 Gupta, R, Soni, N, Patnaik, P, Sood, I, Singh, R, Rawal, K & Rani, V 2010, ' High

More information

Campbell Biology 10. A Global Approach. Chapter 18 Control of Gene Expression

Campbell Biology 10. A Global Approach. Chapter 18 Control of Gene Expression Lecture on General Biology 2 Campbell Biology 10 A Global Approach th edition Chapter 18 Control of Gene Expression Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular

More information

Epigenetic Regulation of Health and Disease Nutritional and environmental effects on epigenetic regulation

Epigenetic Regulation of Health and Disease Nutritional and environmental effects on epigenetic regulation Epigenetic Regulation of Health and Disease Nutritional and environmental effects on epigenetic regulation Robert FEIL Director of Research CNRS & University of Montpellier, Montpellier, France. E-mail:

More information

JAI La Leche League Epigenetics and Breastfeeding: The Longterm Impact of Breastmilk on Health Disclosure Why am I interested in epigenetics?

JAI La Leche League Epigenetics and Breastfeeding: The Longterm Impact of Breastmilk on Health Disclosure Why am I interested in epigenetics? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 JAI La Leche League Epigenetics and Breastfeeding: The Longterm Impact of Breastmilk on Health By Laurel Wilson, IBCLC, CLE, CCCE, CLD Author of The Greatest Pregnancy

More information

Not IN Our Genes - A Different Kind of Inheritance.! Christopher Phiel, Ph.D. University of Colorado Denver Mini-STEM School February 4, 2014

Not IN Our Genes - A Different Kind of Inheritance.! Christopher Phiel, Ph.D. University of Colorado Denver Mini-STEM School February 4, 2014 Not IN Our Genes - A Different Kind of Inheritance! Christopher Phiel, Ph.D. University of Colorado Denver Mini-STEM School February 4, 2014 Epigenetics in Mainstream Media Epigenetics *Current definition:

More information

Chapter 18 Regulation of Gene Expression

Chapter 18 Regulation of Gene Expression Chapter 18 Regulation of Gene Expression Differential Expression of Genes Prokaryotes and eukaryotes precisely regulate gene expression in response to environmental conditions In multicellular eukaryotes,

More information

4/8/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Epigentics. Questions to Consider

4/8/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Epigentics. Questions to Consider Objectives Epigentics Lynda Britton, Ph.D., MLS(ASCP) CM Professor LSU Health Shreveport Discuss epigenetics and its role in cancer, imprinting and X chromosome inactivation. Describe the modifications/mechanisms

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

Chapter 19 Eukaryotic Genomes

Chapter 19 Eukaryotic Genomes Chapter 19 Eukaryotic Genomes Lecture Outline Overview: How Eukaryotic Genomes Work and Evolve Two features of eukaryotic genomes present a major information-processing challenge. First, the typical multicellular

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 NOVEMBER 2, 2006

More information

The Blueprint of Life: DNA to Protein. What is genetics? DNA Structure 4/27/2011. Chapter 7

The Blueprint of Life: DNA to Protein. What is genetics? DNA Structure 4/27/2011. Chapter 7 The Blueprint of Life: NA to Protein Chapter 7 What is genetics? The science of heredity; includes the study of genes, how they carry information, how they are replicated, how they are expressed NA Structure

More information

The Blueprint of Life: DNA to Protein

The Blueprint of Life: DNA to Protein The Blueprint of Life: NA to Protein Chapter 7 What is genetics? The science of heredity; includes the y; study of genes, how they carry information, how they are replicated, how they are expressed 1 NA

More information

p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs

p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs 2013, Katerina I. Leonova et al. Kolmogorov Mikhail Noncoding DNA Mammalian

More information

Morphogens: What are they and why should we care?

Morphogens: What are they and why should we care? Morphogens: What are they and why should we care? Historic, Theoretical Mechanism of Action Nucleoprotein: the specific trophic cellular material extracted from the cell nucleus. DNA and RNA which regulates

More information

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Non-messenger RNAs. Karin Lagesen

Non-messenger RNAs. Karin Lagesen Non-messenger RNAs Karin Lagesen Outline RNA is not DNA Kinds of non-messenger RNAs sirna, mirna trnas, rrnas ncrnas: Finding non-messenger RNA trnascan-se, RNammer RFAM RNA basepairing RNA is not DNA

More information

4/20/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Questions to Consider

4/20/2016. Objectives. Epigenetic Definitions. Gene Expression. More Questions. Questions to Consider Objectives Epigentics: You Might Be What Your Grandmother Ate Lynda Britton, Ph.D., MLS(ASCP) CM Professor LSU Health Shreveport Discuss epigenetics and its role in cancer, imprinting and X chromosome

More information

Novel RNAs along the Pathway of Gene Expression. (or, The Expanding Universe of Small RNAs)

Novel RNAs along the Pathway of Gene Expression. (or, The Expanding Universe of Small RNAs) Novel RNAs along the Pathway of Gene Expression (or, The Expanding Universe of Small RNAs) Central Dogma DNA RNA Protein replication transcription translation Central Dogma DNA RNA Spliced RNA Protein

More information

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms. PROTEIN SYNTHESIS It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.» GENES = a sequence of nucleotides in DNA that performs

More information

MCB Chapter 11. Topic E. Splicing mechanism Nuclear Transport Alternative control modes. Reading :

MCB Chapter 11. Topic E. Splicing mechanism Nuclear Transport Alternative control modes. Reading : MCB Chapter 11 Topic E Splicing mechanism Nuclear Transport Alternative control modes Reading : 419-449 Topic E Michal Linial 14 Jan 2004 1 Self-splicing group I introns were the first examples of catalytic

More information

Epigenetics: the language of the cell?

Epigenetics: the language of the cell? Epigenetics: the language of the cell? Epigenetics is one of the most rapidly developing fields of biological research. Breakthroughs in several technologies have enabled the possibility of genomewide

More information

Protein Synthesis

Protein Synthesis Protein Synthesis 10.6-10.16 Objectives - To explain the central dogma - To understand the steps of transcription and translation in order to explain how our genes create proteins necessary for survival.

More information

BIO 5099: Molecular Biology for Computer Scientists (et al)

BIO 5099: Molecular Biology for Computer Scientists (et al) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

RNA Processing in Eukaryotes *

RNA Processing in Eukaryotes * OpenStax-CNX module: m44532 1 RNA Processing in Eukaryotes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you

More information

Epigenetics and trauma

Epigenetics and trauma Epigenetics and trauma Influence of trauma on mental health Patrick McGowan, PhD Biological Sciences, UTSC Cell and Systems Biology, Psychology University of Toronto patrick.mcgowan@utoronto.ca Leuven,

More information

Regulation of Gene Expression

Regulation of Gene Expression Chapter 18 Regulation of Gene Expression PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Epigenetics 101. Kevin Sweet, MS, CGC Division of Human Genetics

Epigenetics 101. Kevin Sweet, MS, CGC Division of Human Genetics Epigenetics 101 Kevin Sweet, MS, CGC Division of Human Genetics Learning Objectives 1. Evaluate the genetic code and the role epigenetic modification plays in common complex disease 2. Evaluate the effects

More information

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have: BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

RNA-seq Introduction

RNA-seq Introduction RNA-seq Introduction DNA is the same in all cells but which RNAs that is present is different in all cells There is a wide variety of different functional RNAs Which RNAs (and sometimes then translated

More information

Gene Expression DNA RNA. Protein. Metabolites, stress, environment

Gene Expression DNA RNA. Protein. Metabolites, stress, environment Gene Expression DNA RNA Protein Metabolites, stress, environment 1 EPIGENETICS The study of alterations in gene function that cannot be explained by changes in DNA sequence. Epigenetic gene regulatory

More information

Eukaryotic Genetics. Expression & Regulation

Eukaryotic Genetics. Expression & Regulation Eukaryotic Genetics Expression & Regulation Molecular Basis of Inheritance I.Main Idea: Bacteria often respond to environmental change by regulating transcription. Regulating Gene Expression A cell s genome

More information

Transcription and RNA processing

Transcription and RNA processing Transcription and RNA processing Lecture 7 Biology W3310/4310 Virology Spring 2016 It is possible that Nature invented DNA for the purpose of achieving regulation at the transcriptional rather than at

More information

Repressive Transcription

Repressive Transcription Repressive Transcription The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Guenther, M. G., and R. A.

More information

DNA codes for RNA, which guides protein synthesis.

DNA codes for RNA, which guides protein synthesis. Section 3: DNA codes for RNA, which guides protein synthesis. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review synthesis New RNA messenger RNA ribosomal RNA transfer RNA transcription

More information

Studying Alternative Splicing

Studying Alternative Splicing Studying Alternative Splicing Meelis Kull PhD student in the University of Tartu supervisor: Jaak Vilo CS Theory Days Rõuge 27 Overview Alternative splicing Its biological function Studying splicing Technology

More information

Title: Chapter 5 Recorded Lecture. Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu

Title: Chapter 5 Recorded Lecture. Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu Title: Chapter 5 Recorded Lecture Speaker: Title: What Anthony is the title Berger/Angela of this lecture? Williams Speaker: Amit Dhingra Created by: (remove if same as speaker) online.wsu.edu Chapter

More information

Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure

Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure Frederick E. Domann, Ph.D. Associate Professor of Radiation Oncology The University of Iowa Iowa City,

More information

Chapter 10 - Post-transcriptional Gene Control

Chapter 10 - Post-transcriptional Gene Control Chapter 10 - Post-transcriptional Gene Control Chapter 10 - Post-transcriptional Gene Control 10.1 Processing of Eukaryotic Pre-mRNA 10.2 Regulation of Pre-mRNA Processing 10.3 Transport of mrna Across

More information

MicroRNAs: a new source of biomarkers in radiation response. Simone Moertl, Helmholtz Centre Munich

MicroRNAs: a new source of biomarkers in radiation response. Simone Moertl, Helmholtz Centre Munich MicroRNAs: a new source of biomarkers in radiation response Simone Moertl, Helmholtz Centre Munich The RNA World mrna rrna coding snorna trna scarna RNA snrna noncoding lincrna rasirna RNAi anti-sense

More information

Biology 2C03 Term Test #3

Biology 2C03 Term Test #3 Biology 2C03 Term Test #3 Instructors: Dr. Kimberley Dej, Ray Procwat Date: Monday March 22, 2010 Time: 10:30 am to 11:20 am Instructions: 1) This midterm test consists of 9 pages. Please ensure that all

More information

Imprinting. Joyce Ohm Cancer Genetics and Genomics CGP-L2-319 x8821

Imprinting. Joyce Ohm Cancer Genetics and Genomics CGP-L2-319 x8821 Imprinting Joyce Ohm Cancer Genetics and Genomics CGP-L2-319 x8821 Learning Objectives 1. To understand the basic concepts of genomic imprinting Genomic imprinting is an epigenetic phenomenon that causes

More information

BIOLOGY. Regulation of Gene Expression CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Regulation of Gene Expression CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 18 Regulation of Gene Expression Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Differential Expression of Genes

More information

Alternative splicing. Biosciences 741: Genomics Fall, 2013 Week 6

Alternative splicing. Biosciences 741: Genomics Fall, 2013 Week 6 Alternative splicing Biosciences 741: Genomics Fall, 2013 Week 6 Function(s) of RNA splicing Splicing of introns must be completed before nuclear RNAs can be exported to the cytoplasm. This led to early

More information

Lesson Flowchart. Why Gene Expression Regulation?; microrna in Gene Regulation: an overview; microrna Genomics and Biogenesis;

Lesson Flowchart. Why Gene Expression Regulation?; microrna in Gene Regulation: an overview; microrna Genomics and Biogenesis; micrornas Lesson Flowchart Why Gene Expression Regulation?; microrna in Gene Regulation: an overview; microrna Genomics and Biogenesis; How do micrornas function? micrornas and complex cellular circuits;

More information

Utility of Circulating micrornas in Cardiovascular Disease

Utility of Circulating micrornas in Cardiovascular Disease Utility of Circulating micrornas in Cardiovascular Disease Pil-Ki Min, MD, PhD Cardiology Division, Gangnam Severance Hospital, Yonsei University College of Medicine Introduction Biology of micrornas Circulating

More information

Lecture 27. Epigenetic regulation of gene expression during development

Lecture 27. Epigenetic regulation of gene expression during development Lecture 27 Epigenetic regulation of gene expression during development Development of a multicellular organism is not only determined by the DNA sequence but also epigenetically through DNA methylation

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors.

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors. Genetics - Problem Drill 21: Cytogenetics and Chromosomal Mutation No. 1 of 10 1. Why do some cells express one set of genes while other cells express a different set of genes during development? (A) Because

More information