Supplementary Figure 1 Cytokine receptors on developing thymocytes that can potentially signal Runx3d expression.

Size: px
Start display at page:

Download "Supplementary Figure 1 Cytokine receptors on developing thymocytes that can potentially signal Runx3d expression."

Transcription

1 Supplementary Figure 1 Cytokine receptors on developing thymocytes that can potentially signal Runx3d expression.

2 (a) Characterization of c-independent SP8 cells. Stainings for maturation markers (top) and CD8 lineage markers (bottom) are shown for B6 (black) and c cko (red) SP8 (CD8SP TCR hi ) cells, compared to DP (CD4 + CD8 + ) cells (shaded curves). (b) List of cytokines, cytokine receptor chains, and signaling molecules examined in this study. (c) Identification of intermediate stage (CD4 + CD8 lo CD69 + ) thymocytes that have been signaled by MHC class I-dependent ligands to undergo positive selection and to differentiate into SP8 thymocytes. MHC class I-signaled thymocytes were obtained from MHCII KO CD1d KO mice because MHCI-signaled thymocytes in these mice do not differentiate into CD4 + NKT cells. (d) Surface expression of non- c cytokine receptor chains on intermediate stage thymocytes from MHCII KO CD1d KO mice. Cytokine receptor stainings are shown in red, control stainings are in gray. One of two experiments is shown. (e) Schematic of the DP stimulation assay. Pre-selection DP thymocytes (CD69 - CD4 + CD8 + ) were electronically sorted and stimulated with PMA+Ionomycin for 16h; washed and rested in medium for 10h; and then cultured with cytokines for 16-20h. Cells were then harvested and their gene expression analyzed by quantitative PCR. (f) List of cytokines that we tested in the B6 DP stimulation assay and their upregulation of mrnas encoding Runx3d, Runx1, Runx2, Cbfb and Bcl2 (, no gene up-regulation; +, minimal gene up-regulation; ++, intermediate gene up-regulation; +++, high gene up-regulation).

3 Supplementary Figure 2 Effect of cytokines on the generation of SP8 cells in fetal thymic organ culture. (a) Thymocyte profiles of E16.5 B6 thymic lobes before and after 5 days FTOC in medium (top and middle rows). Profile of TCR hi thymocytes on d5 of FTOC (bottom row) and numbers in boxes within

4 the profiles indicate frequency of cells within that box. (b) SP8 cell generation in c cko FTOCs by non- c cytokines. Bar graph of SP8 cell frequencies from c cko FTOCs cultured with the indicated cytokines, with SP8 cell frequencies in each cytokine group compared to medium alone (horizontal red dashed line). As an additional comparison, SP8 cell frequencies from B6 FTOCs are also shown. Data are from 4-17 individual lobes combined from 2-6 experiments. (c) IL-13 fails to induce SP8 cell generation in FTOCs. Comparison of SP8 cell frequencies (left) and numbers (right) in c cko FTOCs cultured for 5 days with or without IL-13. SP8 cells from B6 FTOC are shown for comparison (black bar). (d) Exogenous addition of any lineage-specifying cytokine increases SP8 cell generation in B6 FTOCs. Bar graph of SP8 cell frequencies (left) and numbers (right) in B6 FTOCs cultured for 5 days with the indicated cytokines compared to medium alone cultures. Mean and s.e.m. are shown. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <

5 Supplementary Figure 3 Lymph node SP8 cells in CytoQuad mice. Numbers of CD8 TCR + LN T cells in the indicated mice. Mean and s.e.m. are shown.

6 Supplementary Figure 4 c cytokines and non- c cytokines signal overlapping CD8 + T cell populations. Onion diagram for schematic representation of cytokine redundancy. We think that, in normal mice, all SP8 cell generation is signaled by the c cytokine IL-7. In the absence of IL-7 signaling, fewer SP8 cells are generated and these are signaled by the c cytokine IL-15. In the absence of c signaling, still fewer SP8 cells are generated and these are signaled by four non- c cytokines (IL-6, IFN-, TSLP, and TGF- ). It is only in the absence of in vivo signaling by the other three non- c cytokines (IL-6, IFN-, and TSLP) that the contribution of TGF- signaling to SP8 cell generation is appreciated. Most importantly, elimination of in vivo signaling by all six of these cytokines eliminates SP8 cell generation.

7 Supplementary Figure 5 Analysis of STAT- and SMAD-binding sites in the Runx3d locus. (a) Vista conservation analysis of murine and human Runx3d genomic regions. Peaks represent degree of conservation. Colored circles indicate potential binding sites for STATs (red) and SMADs (blue). (b) Comparison of surface CD103 expression on SP8 thymocytes from the indicated mice.

8 Supplementary Figure 6 Lineage-specifying transcription factors and the generation of SP8 cells. (a) The Runx3d YFP/YFP DP stimulation assay (schematized in supplementary Fig. 1e) was performed with pre-selection DP thymocytes from Runx3d-deficient (Runx3d YFP/YFP ) mice. After PMA+ionomycin stimulation, the Runx3d YFP/YFP DP thymocytes were stimulated with various cytokines and assessed for expression of Runx1 mrna. (b) Generation of MHC-II specific SP8 cells in ThPOK-deficient mice requires cytokine signaling. Thymocyte profiles from the indicated mice. Numbers in boxes in the profiles indicate CD8SP cell frequencies. Mean and s.e.m. are shown.

9 Supplementary Figure 7 Signaling events in the thymus that generate SP8 thymocytes: all generation of SP8 cells requires signaling by lineage-specifying cytokines. TCR signaling of DP thymocytes selectively terminates Cd8 gene expression, causing surface CD8

10 protein expression to decline. (a) In wildtype mice, MHC-I-specific TCR signaling eventually ceases because of the loss of surface CD8 protein expression, which allows cells to then be signaled by lineage-specifying cytokines. Signaling of positively selected thymocytes by lineage-specifying cytokines induces high Runx3d expression which both inhibits Runx1 and mediates co-receptor reversal (i.e. Cd4 gene silencing and Cd8 gene re-expression), resulting in differentiation into SP8 cells. (b) In the absence of intra-thymic signaling by lineage-specifying cytokines, Runx3d expression is not induced and Runx1 is unable to generate SP8 cells. (c) In Runx3d-deficient mice, intra-thymic signaling by lineage-specifying cytokines augments the ability of Runx1 to mediate coreceptor reversal and promote SP8 cell generation. (d) In ThPOK-deficient mice, CD4-lineage specification cannot occur. Because MHC-II-specific TCR signaling in the thymus must eventually cease, perhaps because of limiting ligand expression, cessation of TCR signaling allows the cells to then be signaled by lineage-specifying cytokines that induce high Runx3d expression which then inhibits Runx1 and mediates co-receptor reversal with the result that MHC-II-specific thymocytes differentiate into SP8 cells.

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/3/114/ra23/dc1 Supplementary Materials for Regulation of Zap70 Expression During Thymocyte Development Enables Temporal Separation of CD4 and CD8 Repertoire Selection

More information

Nature Immunology: doi: /ni Supplementary Figure 1. DNA-methylation machinery is essential for silencing of Cd4 in cytotoxic T cells.

Nature Immunology: doi: /ni Supplementary Figure 1. DNA-methylation machinery is essential for silencing of Cd4 in cytotoxic T cells. Supplementary Figure 1 DNA-methylation machinery is essential for silencing of Cd4 in cytotoxic T cells. (a) Scheme for the retroviral shrna screen. (b) Histogram showing CD4 expression (MFI) in WT cytotoxic

More information

Akt and mtor pathways differentially regulate the development of natural and inducible. T H 17 cells

Akt and mtor pathways differentially regulate the development of natural and inducible. T H 17 cells Akt and mtor pathways differentially regulate the development of natural and inducible T H 17 cells Jiyeon S Kim, Tammarah Sklarz, Lauren Banks, Mercy Gohil, Adam T Waickman, Nicolas Skuli, Bryan L Krock,

More information

T cell development October 28, Dan Stetson

T cell development October 28, Dan Stetson T cell development October 28, 2016 Dan Stetson stetson@uw.edu 441 Lecture #13 Slide 1 of 29 Three lectures on T cells (Chapters 8, 9) Part 1 (Today): T cell development in the thymus Chapter 8, pages

More information

ECM1 controls T H 2 cell egress from lymph nodes through re-expression of S1P 1

ECM1 controls T H 2 cell egress from lymph nodes through re-expression of S1P 1 ZH, Li et al, page 1 ECM1 controls T H 2 cell egress from lymph nodes through re-expression of S1P 1 Zhenhu Li 1,4,Yuan Zhang 1,4, Zhiduo Liu 1, Xiaodong Wu 1, Yuhan Zheng 1, Zhiyun Tao 1, Kairui Mao 1,

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Characteristics of SEs in T reg and T conv cells.

Nature Immunology: doi: /ni Supplementary Figure 1. Characteristics of SEs in T reg and T conv cells. Supplementary Figure 1 Characteristics of SEs in T reg and T conv cells. (a) Patterns of indicated transcription factor-binding at SEs and surrounding regions in T reg and T conv cells. Average normalized

More information

Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured

Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured Supplemental Figure 1. Signature gene expression in in vitro differentiated Th0, Th1, Th2, Th17 and Treg cells. (A) Naïve CD4 + T cells were cultured under Th0, Th1, Th2, Th17, and Treg conditions. mrna

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1! a! b! Nfatc1!! Nfatc1"! P1! P2! pa1! pa2! ex1! ex2! exons 3-9! ex1! ex11!!" #" Nfatc1A!!" Nfatc1B! #"!" Nfatc1C! #" DN1! DN2! DN1!!A! #A!!B! #B!!C! #C!!A!

More information

Supporting Information Table of Contents

Supporting Information Table of Contents Supporting Information Table of Contents Supporting Information Figure 1 Page 2 Supporting Information Figure 2 Page 4 Supporting Information Figure 3 Page 5 Supporting Information Figure 4 Page 6 Supporting

More information

T Cell Development II: Positive and Negative Selection

T Cell Development II: Positive and Negative Selection T Cell Development II: Positive and Negative Selection 8 88 The two phases of thymic development: - production of T cell receptors for antigen, by rearrangement of the TCR genes CD4 - selection of T cells

More information

Supplementary. presence of the. (c) mrna expression. Error. in naive or

Supplementary. presence of the. (c) mrna expression. Error. in naive or Figure 1. (a) Naive CD4 + T cells were activated in the presence of the indicated cytokines for 3 days. Enpp2 mrna expression was measured by qrt-pcrhr, infected with (b, c) Naive CD4 + T cells were activated

More information

The kinesin motor protein Kif7 is required for T-cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus

The kinesin motor protein Kif7 is required for T-cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus /, 2017, Vol. 8, (No. 15), pp: 24163-24176 The kinesin motor protein Kif7 is required for T-cell development and normal MHC expression on thymic epithelial cells (TEC) in the thymus Ching-In Lau 1,*, Alessandro

More information

Supplemental Table I.

Supplemental Table I. Supplemental Table I Male / Mean ± SEM n Mean ± SEM n Body weight, g 29.2±0.4 17 29.7±0.5 17 Total cholesterol, mg/dl 534.0±30.8 17 561.6±26.1 17 HDL-cholesterol, mg/dl 9.6±0.8 17 10.1±0.7 17 Triglycerides,

More information

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model.

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model. A B16F1 s.c. Lung LN Distant lymph nodes Colon B B16F1 s.c. Supplementary Figure 1. Deletion of Smad3 prevents B16F1 melanoma invasion and metastasis in a mouse s.c. tumor model. Highly invasive growth

More information

The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep

The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep SUPPLEMENTARY INFORMATION The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness Jinyi Zhang, Naima

More information

Supplementary Fig. 1 p38 MAPK negatively regulates DC differentiation. (a) Western blot analysis of p38 isoform expression in BM cells, immature DCs

Supplementary Fig. 1 p38 MAPK negatively regulates DC differentiation. (a) Western blot analysis of p38 isoform expression in BM cells, immature DCs Supplementary Fig. 1 p38 MAPK negatively regulates DC differentiation. (a) Western blot analysis of p38 isoform expression in BM cells, immature DCs (idcs) and mature DCs (mdcs). A myeloma cell line expressing

More information

T Cell Development. Xuefang Cao, MD, PhD. November 3, 2015

T Cell Development. Xuefang Cao, MD, PhD. November 3, 2015 T Cell Development Xuefang Cao, MD, PhD November 3, 2015 Thymocytes in the cortex of the thymus Early thymocytes development Positive and negative selection Lineage commitment Exit from the thymus and

More information

ndln NK Cells (x10 3 ) Days post-infection (A/PR/8) *** *** *** Liver NK Cells (x10 4 ) Days post-infection (MCMV)

ndln NK Cells (x10 3 ) Days post-infection (A/PR/8) *** *** *** Liver NK Cells (x10 4 ) Days post-infection (MCMV) A mln NK Cells(x ) 6 1 * ndln NK Cells (x ) ns C Lung NK Cells(x ) 1 1 7 * D LN NK Cells (x ) 1 7 1 7 Days post-infection (A/PR/8) * * E Liver NK Cells (x ) 1 7 Days post-infection (A/PR/8) * * * 1 7 Days

More information

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk -/- mice were stained for expression of CD4 and CD8.

More information

Supplemental Figure 1

Supplemental Figure 1 Supplemental Figure 1 1a 1c PD-1 MFI fold change 6 5 4 3 2 1 IL-1α IL-2 IL-4 IL-6 IL-1 IL-12 IL-13 IL-15 IL-17 IL-18 IL-21 IL-23 IFN-α Mut Human PD-1 promoter SBE-D 5 -GTCTG- -1.2kb SBE-P -CAGAC- -1.kb

More information

Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was

Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was Supplementary Figure 1. mrna expression of chitinase and chitinase-like protein in splenic immune cells. Each splenic immune cell population was sorted by FACS. Surface markers for sorting were CD11c +

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Gene expression profile of CD4 + T cells and CTL responses in Bcl6-deficient mice.

Nature Immunology: doi: /ni Supplementary Figure 1. Gene expression profile of CD4 + T cells and CTL responses in Bcl6-deficient mice. Supplementary Figure 1 Gene expression profile of CD4 + T cells and CTL responses in Bcl6-deficient mice. (a) Gene expression profile in the resting CD4 + T cells were analyzed by an Affymetrix microarray

More information

Development of all CD4 T lineages requires nuclear factor TOX

Development of all CD4 T lineages requires nuclear factor TOX ARTICLE Development of all CD4 T lineages requires nuclear factor TOX Parinaz Aliahmad and Jonathan Kaye Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037 The Journal of Experimental

More information

CD44

CD44 MR1-5-OP-RU CD24 CD24 CD44 MAIT cells 2.78 11.2 WT RORγt- GFP reporter 1 5 1 4 1 3 2.28 1 5 1 4 1 3 4.8 1.6 8.1 1 5 1 4 1 3 1 5 1 4 1 3 3.7 3.21 8.5 61.7 1 2 1 3 1 4 1 5 TCRβ 2 1 1 3 1 4 1 5 CD44 1 2 GFP

More information

Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus

Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus Mst1 regulates integrin-dependent thymocyte trafficking and antigen recognition in the thymus Yoshihiro Ueda, Koko Katagiri, Takashi Tomiyama, Kaneki Yasuda, Katsuyoshi Habiro, Tomoya Katakai, Susumu Ikehara,

More information

Transcriptional control of CD4 and CD8 coreceptor expression during T cell development

Transcriptional control of CD4 and CD8 coreceptor expression during T cell development Cell. Mol. Life Sci. (2013) 70:4537 4553 DOI 10.1007/s00018-013-1393-2 Cellular and Molecular Life Sciences Review Transcriptional control of CD4 and CD8 coreceptor expression during T cell development

More information

Kerdiles et al - Figure S1

Kerdiles et al - Figure S1 Kerdiles et al - Figure S1 a b Homo sapiens T B ce ce l ls c l M ls ac r PM oph N ag es Mus musculus Foxo1 PLCγ Supplementary Figure 1 Foxo1 expression pattern is conserved between mouse and human. (a)

More information

Supplementary Figure S1. PTPN2 levels are not altered in proliferating CD8+ T cells. Lymph node (LN) CD8+ T cells from C57BL/6 mice were stained with

Supplementary Figure S1. PTPN2 levels are not altered in proliferating CD8+ T cells. Lymph node (LN) CD8+ T cells from C57BL/6 mice were stained with Supplementary Figure S1. PTPN2 levels are not altered in proliferating CD8+ T cells. Lymph node (LN) CD8+ T cells from C57BL/6 mice were stained with CFSE and stimulated with plate-bound α-cd3ε (10µg/ml)

More information

<10. IL-1β IL-6 TNF + _ TGF-β + IL-23

<10. IL-1β IL-6 TNF + _ TGF-β + IL-23 3 ns 25 ns 2 IL-17 (pg/ml) 15 1 ns ns 5 IL-1β IL-6 TNF

More information

Tbk1-TKO! DN cells (%)! 15! 10!

Tbk1-TKO! DN cells (%)! 15! 10! a! T Cells! TKO! B Cells! TKO! b! CD4! 8.9 85.2 3.4 2.88 CD8! Tbk1-TKO! 1.1 84.8 2.51 2.54 c! DN cells (%)! 4 3 2 1 DP cells (%)! 9 8 7 6 CD4 + SP cells (%)! 5 4 3 2 1 5 TKO! TKO! TKO! TKO! 15 1 5 CD8

More information

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus T cell precursors migrate from the bone marrow via the blood to the thymus to mature 1 2 The cellular organization of the thymus The proportion of thymus that produces T cells decreases with age 3 4 1

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Id2 and Id3 define polyclonal T H 1 and T FH cell subsets.

Nature Immunology: doi: /ni Supplementary Figure 1. Id2 and Id3 define polyclonal T H 1 and T FH cell subsets. Supplementary Figure 1 Id2 and Id3 define polyclonal T H 1 and T FH cell subsets. Id2 YFP/+ (a) or Id3 GFP/+ (b) mice were analyzed 7 days after LCMV infection. T H 1 (SLAM + CXCR5 or CXCR5 PD-1 ), T FH

More information

Krishnamoorthy et al.,

Krishnamoorthy et al., Krishnamoorthy et al., c d e ND ND Supplementary Figure 1 RSV-induces inflammation even in the asence of allergen. Tolerized pups were either infected with RSV or not. The mice were sacrificed a week following

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature89 IFN- (ng ml ) 5 4 3 1 Splenocytes NS IFN- (ng ml ) 6 4 Lymph node cells NS Nfkbiz / Nfkbiz / Nfkbiz / Nfkbiz / IL- (ng ml ) 3 1 Splenocytes IL- (ng ml ) 1 8 6 4 *** ** Lymph node cells

More information

The Tec Family Tyrosine Kinases Itk and Rlk Regulate the Development of Conventional CD8 + T Cells

The Tec Family Tyrosine Kinases Itk and Rlk Regulate the Development of Conventional CD8 + T Cells Immunity 25, 79 91, July 2006 ª2006 Elsevier Inc. DOI 10.1016/j.immuni.2006.05.012 The Tec Family Tyrosine Kinases Itk and Rlk Regulate the Development of Conventional CD8 + T Cells Luana O. Atherly, 3

More information

T Cell Differentiation

T Cell Differentiation T Cell Differentiation Ned Braunstein, MD MHC control of Immune Responsiveness: Concept Whether or not an individual makes an immune response to a particular antigen depends on what MHC alleles an individual

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Identification of IFN-γ-producing CD8 + and CD4 + T cells with naive phenotype by alternative gating and sample-processing strategies. a. Contour 5% probability plots show definition

More information

The development of T cells in the thymus

The development of T cells in the thymus T cells rearrange their receptors in the thymus whereas B cells do so in the bone marrow. The development of T cells in the thymus The lobular/cellular organization of the thymus Immature cells are called

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

Supplementary Figure 1 IL-27 IL

Supplementary Figure 1 IL-27 IL Tim-3 Supplementary Figure 1 Tc0 49.5 0.6 Tc1 63.5 0.84 Un 49.8 0.16 35.5 0.16 10 4 61.2 5.53 10 3 64.5 5.66 10 2 10 1 10 0 31 2.22 10 0 10 1 10 2 10 3 10 4 IL-10 28.2 1.69 IL-27 Supplementary Figure 1.

More information

activation with anti-cd3/cd28 beads and 3d following transduction. Supplemental Figure 2 shows

activation with anti-cd3/cd28 beads and 3d following transduction. Supplemental Figure 2 shows Supplemental Data Supplemental Figure 1 compares CXCR4 expression in untreated CD8 + T cells, following activation with anti-cd3/cd28 beads and 3d following transduction. Supplemental Figure 2 shows the

More information

Supplementary Table 1 Clinicopathological characteristics of 35 patients with CRCs

Supplementary Table 1 Clinicopathological characteristics of 35 patients with CRCs Supplementary Table Clinicopathological characteristics of 35 patients with CRCs Characteristics Type-A CRC Type-B CRC P value Sex Male / Female 9 / / 8.5 Age (years) Median (range) 6. (9 86) 6.5 (9 76).95

More information

Supplementary Figure 1. Efficiency of Mll4 deletion and its effect on T cell populations in the periphery. Nature Immunology: doi: /ni.

Supplementary Figure 1. Efficiency of Mll4 deletion and its effect on T cell populations in the periphery. Nature Immunology: doi: /ni. Supplementary Figure 1 Efficiency of Mll4 deletion and its effect on T cell populations in the periphery. Expression of Mll4 floxed alleles (16-19) in naive CD4 + T cells isolated from lymph nodes and

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

Maintaining T lymphocytes in sufficient numbers and at an

Maintaining T lymphocytes in sufficient numbers and at an NF-κB signaling mediates homeostatic maturation of new T cells Ana Silva, Georgina Cornish 1, Steven C. Ley, and Benedict Seddon 2,3 Division of Immune Cell Biology, Medical Research Council National Institute

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Fig. 1. Galectin-3 is present within tumors. (A) mrna expression levels of Lgals3 (galectin-3) and Lgals8 (galectin-8) in the four classes of cell lines as determined

More information

The Thymus as The Primary Site of T-cell Production

The Thymus as The Primary Site of T-cell Production The Thymus as The Primary Site of T-cell Production Thymus Histology Lobulated organ with outer cortex and inner medulla C M Ordered Microenvironments Support T-cell Development CD4-CD8- precursors CD4+CD8+

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

Nuclear Export of Histone Deacetylase 7 During Thymic Selection is required for Immune Self-tolerance

Nuclear Export of Histone Deacetylase 7 During Thymic Selection is required for Immune Self-tolerance The EMBO Journal Peer Review Process File - EMBO-2012-80891 Manuscript EMBO-2012-80891 Nuclear Export of Histone Deacetylase 7 During Thymic Selection is required for Immune Self-tolerance Herbert G Kasler,

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Cytokine pattern in skin in response to urushiol.

Nature Immunology: doi: /ni Supplementary Figure 1. Cytokine pattern in skin in response to urushiol. Supplementary Figure 1 Cytokine pattern in skin in response to urushiol. Wild-type (WT) and CD1a-tg mice (n = 3 per group) were sensitized and challenged with urushiol (uru) or vehicle (veh). Quantitative

More information

T Cell Receptor & T Cell Development

T Cell Receptor & T Cell Development T Cell Receptor & T Cell Development Questions for the next 2 lectures: How do you generate a diverse T cell population with functional TCR rearrangements? How do you generate a T cell population that

More information

E Protein Transcription Factors Are Required for the Development of CD4 + Lineage T Cells

E Protein Transcription Factors Are Required for the Development of CD4 + Lineage T Cells Article E Protein Transcription Factors Are Required for the Development of CD4 + Lineage T Cells Mary Elizabeth Jones-Mason, 1 Xudong Zhao, 2 Dietmar Kappes, 6 Anna Lasorella, 2,3,4 Antonio Iavarone,

More information

Supplementary Material

Supplementary Material Supplementary Material Taghon, Yui, and Rothenberg: Mast cell diversion of T-lineage precursor cells by the essential T-lineage transcription factor GATA Supplemental Table Supplemental Figures 1-6 Supplemental

More information

Supplemental Figure S1. Expression of Cirbp mrna in mouse tissues and NIH3T3 cells.

Supplemental Figure S1. Expression of Cirbp mrna in mouse tissues and NIH3T3 cells. SUPPLEMENTAL FIGURE AND TABLE LEGENDS Supplemental Figure S1. Expression of Cirbp mrna in mouse tissues and NIH3T3 cells. A) Cirbp mrna expression levels in various mouse tissues collected around the clock

More information

What determines the CD4:CD8 T cell ratio in the immune system?

What determines the CD4:CD8 T cell ratio in the immune system? What determines the CD4:CD8 T cell ratio in the immune system? Insights from genetic and mathematical modelling of thymocyte development Benedict Seddon 1 Cell of the immune system 2 Maintaining homeostasis

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10134 Supplementary Figure 1. Anti-inflammatory activity of sfc. a, Autoantibody immune complexes crosslink activating Fc receptors, promoting activation of macrophages, and WWW.NATURE.COM/NATURE

More information

Supplementary Figure 1.

Supplementary Figure 1. Supplementary Figure 1. Female Pro-ins2 -/- mice at 5-6 weeks of age were either inoculated i.p. with a single dose of CVB4 (1x10 5 PFU/mouse) or PBS and treated with αgalcer or control vehicle. On day

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplemental Figure 1. Furin is efficiently deleted in CD4 + and CD8 + T cells. a, Western blot for furin and actin proteins in CD4cre-fur f/f and fur f/f Th1 cells. Wild-type and furin-deficient CD4 +

More information

Nature Medicine doi: /nm.3957

Nature Medicine doi: /nm.3957 Supplementary Fig. 1. p38 alternative activation, IL-21 expression, and T helper cell transcription factors in PDAC tissue. (a) Tissue microarrays of pancreatic tissue from 192 patients with pancreatic

More information

Nature Immunology: doi: /ni Supplementary Figure 1

Nature Immunology: doi: /ni Supplementary Figure 1 Supplementary Figure 1 A β-strand positions consistently places the residues at CDR3β P6 and P7 within human and mouse TCR-peptide-MHC interfaces. (a) E8 TCR containing V β 13*06 carrying with an 11mer

More information

Nature Genetics: doi: /ng Supplementary Figure 1. HOX fusions enhance self-renewal capacity.

Nature Genetics: doi: /ng Supplementary Figure 1. HOX fusions enhance self-renewal capacity. Supplementary Figure 1 HOX fusions enhance self-renewal capacity. Mouse bone marrow was transduced with a retrovirus carrying one of three HOX fusion genes or the empty mcherry reporter construct as described

More information

Eosinophils! 40! 30! 20! 10! 0! NS!

Eosinophils! 40! 30! 20! 10! 0! NS! A Macrophages Lymphocytes Eosinophils Neutrophils Percentage (%) 1 ** 4 * 1 1 MMA SA B C Baseline FEV1, % predicted 15 p = 1.11 X 10-9 5 CD4:CD8 ratio 1 Supplemental Figure 1. Cellular infiltrate in the

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training. Supplementary Figure 1 Behavioral training. a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right choice and not left choice maze

More information

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features Loretta Gammaitoni, Lidia Giraudo, Valeria Leuci, et al. Clin Cancer Res

More information

Nature Immunology: doi: /ni Supplementary Figure 1. Huwe1 has high expression in HSCs and is necessary for quiescence.

Nature Immunology: doi: /ni Supplementary Figure 1. Huwe1 has high expression in HSCs and is necessary for quiescence. Supplementary Figure 1 Huwe1 has high expression in HSCs and is necessary for quiescence. (a) Heat map visualizing expression of genes with a known function in ubiquitin-mediated proteolysis (KEGG: Ubiquitin

More information

Supplementary Figure 1. Example of gating strategy

Supplementary Figure 1. Example of gating strategy Supplementary Figure 1. Example of gating strategy Legend Supplementary Figure 1: First, gating is performed to include only single cells (singlets) (A) and CD3+ cells (B). After gating on the lymphocyte

More information

L1 on PyMT tumor cells but Py117 cells are more responsive to IFN-γ. (A) Flow

L1 on PyMT tumor cells but Py117 cells are more responsive to IFN-γ. (A) Flow A MHCI B PD-L1 Fold expression 8 6 4 2 Fold expression 3 2 1 No tx 1Gy 2Gy IFN Py117 Py117 Supplementary Figure 1. Radiation and IFN-γ enhance MHCI expression and PD- L1 on PyMT tumor cells but Py117 cells

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Lick response during the delayed Go versus No-Go task. Supplementary Figure 1 Lick response during the delayed Go versus No-Go task. Trial-averaged lick rate was averaged across all mice used for pyramidal cell imaging (n = 9). Different colors denote different

More information

Comparison of open chromatin regions between dentate granule cells and other tissues and neural cell types.

Comparison of open chromatin regions between dentate granule cells and other tissues and neural cell types. Supplementary Figure 1 Comparison of open chromatin regions between dentate granule cells and other tissues and neural cell types. (a) Pearson correlation heatmap among open chromatin profiles of different

More information

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia

IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia Supplementary Figures IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia Yaming Wang, Kristy J. Szretter, William Vermi, Susan Gilfillan, Cristina

More information

CHAPTER 9 BIOLOGY OF THE T LYMPHOCYTE

CHAPTER 9 BIOLOGY OF THE T LYMPHOCYTE CHAPTER 9 BIOLOGY OF THE T LYMPHOCYTE Coico, R., Sunshine, G., (2009) Immunology : a short course, 6 th Ed., Wiley-Blackwell 1 CHAPTER 9 : Biology of The T Lymphocytes 1. 2. 3. 4. 5. 6. 7. Introduction

More information

Examples of questions for Cellular Immunology/Cellular Biology and Immunology

Examples of questions for Cellular Immunology/Cellular Biology and Immunology Examples of questions for Cellular Immunology/Cellular Biology and Immunology Each student gets a set of 6 questions, so that each set contains different types of questions and that the set of questions

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/ncb3399 a b c d FSP DAPI 5mm mm 5mm 5mm e Correspond to melanoma in-situ Figure a DCT FSP- f MITF mm mm MlanaA melanoma in-situ DCT 5mm FSP- mm mm mm mm mm g melanoma in-situ MITF MlanaA mm mm

More information

Supplementary Figure 1 Protease allergens induce IgE and IgG1 production. (a-c)

Supplementary Figure 1 Protease allergens induce IgE and IgG1 production. (a-c) 1 Supplementary Figure 1 Protease allergens induce IgE and IgG1 production. (a-c) Serum IgG1 (a), IgM (b) and IgG2 (c) concentrations in response to papain immediately before primary immunization (day

More information

The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23- induced production of the cytokine GM-CSF

The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23- induced production of the cytokine GM-CSF CORRECTION NOTICE Nat.Immunol. 12, 568 575 (2011) The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23- induced production of the cytokine GM-CSF Mohamed El-Behi, Bogoljub Ciric, Hong

More information

Transcription factor Foxp3 and its protein partners form a complex regulatory network

Transcription factor Foxp3 and its protein partners form a complex regulatory network Supplementary figures Resource Paper Transcription factor Foxp3 and its protein partners form a complex regulatory network Dipayan Rudra 1, Paul deroos 1, Ashutosh Chaudhry 1, Rachel Niec 1, Aaron Arvey

More information

Lectins: selected topics 3/2/17

Lectins: selected topics 3/2/17 Lectins: selected topics 3/2/17 Selected topics Regulation of T-cell receptor signaling Thymic selection of self vs. non-self T-cells Essentials of Glycobiology Second Edition Signaling pathways associated

More information

Supplementary Figure 1: TSLP receptor skin expression in dcssc. A: Healthy control (HC) skin with TSLP receptor expression in brown (10x

Supplementary Figure 1: TSLP receptor skin expression in dcssc. A: Healthy control (HC) skin with TSLP receptor expression in brown (10x Supplementary Figure 1: TSLP receptor skin expression in dcssc. A: Healthy control (HC) skin with TSLP receptor expression in brown (10x magnification). B: Second HC skin stained for TSLP receptor in brown

More information

Supplementary Figure 1. Repression of hepcidin expression in the liver of mice treated with

Supplementary Figure 1. Repression of hepcidin expression in the liver of mice treated with Supplementary Figure 1. Repression of hepcidin expression in the liver of mice treated with DMN Immunohistochemistry for hepcidin and H&E staining (left). qrt-pcr assays for hepcidin in the liver (right).

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Effect of HSP90 inhibition on expression of endogenous retroviruses. (a) Inducible shrna-mediated Hsp90 silencing in mouse ESCs. Immunoblots of total cell extract expressing the

More information

Nature Immunology: doi: /ni Supplementary Figure 1. RNA-Seq analysis of CD8 + TILs and N-TILs.

Nature Immunology: doi: /ni Supplementary Figure 1. RNA-Seq analysis of CD8 + TILs and N-TILs. Supplementary Figure 1 RNA-Seq analysis of CD8 + TILs and N-TILs. (a) Schematic representation of the tumor and cell types used for the study. HNSCC, head and neck squamous cell cancer; NSCLC, non-small

More information

Supplemental Information. Genomic Characterization of Murine. Monocytes Reveals C/EBPb Transcription. Factor Dependence of Ly6C Cells

Supplemental Information. Genomic Characterization of Murine. Monocytes Reveals C/EBPb Transcription. Factor Dependence of Ly6C Cells Immunity, Volume 46 Supplemental Information Genomic Characterization of Murine Monocytes Reveals C/EBPb Transcription Factor Dependence of Ly6C Cells Alexander Mildner, Jörg Schönheit, Amir Giladi, Eyal

More information

Supplementary Information. Tissue-wide immunity against Leishmania. through collective production of nitric oxide

Supplementary Information. Tissue-wide immunity against Leishmania. through collective production of nitric oxide Supplementary Information Tissue-wide immunity against Leishmania through collective production of nitric oxide Romain Olekhnovitch, Bernhard Ryffel, Andreas J. Müller and Philippe Bousso Supplementary

More information

Overview B cell development T cell development

Overview B cell development T cell development Topics Overview B cell development T cell development Lymphocyte development overview (Cont) Receptor diversity is produced by gene rearrangement and is random Includes specificities that will bind to

More information

Solution key Problem Set

Solution key Problem Set Solution key- 7.013 Problem Set 6-2013 Question 1 a) Our immune system is comprised of different cell types. Complete the table below by selecting all correct cell types from the choices provided. Cells

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figure 1. Generation of a conditional allele of the Kindlin-2 gene. (A) A restriction map of the relevant genomic region of Kindlin-2 (top), the targeting construct

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

The g c Family of Cytokines Prof. Warren J. Leonard M.D.

The g c Family of Cytokines Prof. Warren J. Leonard M.D. The Family of Cytokines Chief, Laboratory of Molecular Immunology Director, Immunology Center National Heart, Lung, and Blood Institute National Institutes of Health Department of Health and Human Services

More information

Supplementary Information

Supplementary Information Supplementary Information mediates STAT3 activation at retromer-positive structures to promote colitis and colitis-associated carcinogenesis Zhang et al. a b d e g h Rel. Luc. Act. Rel. mrna Rel. mrna

More information

Supporting Information

Supporting Information Supporting Information Aldridge et al. 10.1073/pnas.0900655106 Fig. S1. Flow diagram of sublethal (a) and lethal (b) influenza virus infections. (a) Infection of lung epithelial cells by influenza virus

More information

% of live splenocytes. STAT5 deletion. (open shapes) % ROSA + % floxed

% of live splenocytes. STAT5 deletion. (open shapes) % ROSA + % floxed Supp. Figure 1. a 14 1 1 8 6 spleen cells (x1 6 ) 16 % of live splenocytes 5 4 3 1 % of live splenocytes 8 6 4 b 1 1 c % of CD11c + splenocytes (closed shapes) 8 6 4 8 6 4 % ROSA + (open shapes) % floxed

More information

Supplementary Information. A vital role for IL-2 trans-presentation in DC-mediated T cell activation in humans as revealed by daclizumab therapy

Supplementary Information. A vital role for IL-2 trans-presentation in DC-mediated T cell activation in humans as revealed by daclizumab therapy Supplementary Information A vital role for IL-2 trans-presentation in DC-mediated T cell activation in humans as revealed by daclizumab therapy Simone C. Wuest 1, Jehad Edwan 1, Jayne F. Martin 1, Sungpil

More information

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development.

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Follicular Lymphoma 1. Characterized by t(14:18) translocation 2. Ig heavy

More information

SUPPLEMENTARY FIGURE 1

SUPPLEMENTARY FIGURE 1 SUPPLEMENTARY FIGURE 1 A LN Cell count (1 ) 1 3 1 CD+ 1 1 CDL lo CD hi 1 CD+FoxP3+ 1 1 1 7 3 3 3 % of cells 9 7 7 % of cells CD+ 3 1 % of cells CDL lo CD hi 1 1 % of CD+ cells CD+FoxP3+ 3 1 % of CD+ T

More information

T Cell Activation, Costimulation and Regulation

T Cell Activation, Costimulation and Regulation 1 T Cell Activation, Costimulation and Regulation Abul K. Abbas, MD University of California San Francisco 2 Lecture outline T cell antigen recognition and activation Costimulation, the B7:CD28 family

More information

Modulation de la différenciation lymphocytaire T par thérapie cellulaire et génique dans le thymus. Valérie Zimmermann

Modulation de la différenciation lymphocytaire T par thérapie cellulaire et génique dans le thymus. Valérie Zimmermann Modulation de la différenciation lymphocytaire T par thérapie cellulaire et génique dans le thymus Valérie Zimmermann Thymopoiesis Bone Marrow 2-28 days Thymus Periphery Hematopoietic progenitor Hematopoietic

More information

Development of B and T lymphocytes

Development of B and T lymphocytes Development of B and T lymphocytes What will we discuss today? B-cell development T-cell development B- cell development overview Stem cell In periphery Pro-B cell Pre-B cell Immature B cell Mature B cell

More information

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All MATERIALS AND METHODS Antibodies (Abs), flow cytometry analysis and cell lines Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All other antibodies used

More information