The CFTR and ENaC debate: how important is ENaC in CF lung disease?

Size: px
Start display at page:

Download "The CFTR and ENaC debate: how important is ENaC in CF lung disease?"

Transcription

1 Am J Physiol Lung Cell Mol Physiol 302: L1141 L1146, First published April 6, 2012; doi: /ajplung The CFTR and ENaC debate: how important is ENaC in CF lung disease? James F. Collawn, 2,3,4 Ahmed Lazrak, 1,3 Zsuzsa Bebok, 2,3,4 and Sadis Matalon 1,2,3,4 1 Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; 2 Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; 3 Department of Pulmonary Injury and Repair, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and 4 Gregory Fleming James Cystic Fibrosis Centers, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama Submitted 19 March 2012; accepted in final form 2 April 2012 Collawn JF, Lazrak A, Bebok Z, Matalon S. The CFTR and ENaC debate: how important is ENaC in CF lung disease? Am J Physiol Lung Cell Mol Physiol 302: L1141 L1146, First published April 6, 2012; doi: /ajplung Cystic fibrosis (CF) is caused by the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) function and results in a respiratory phenotype that is characterized by dehydrated mucus and bacterial infections that affect CF patients throughout their lives. Much of the morbidity and mortality in CF results from a failure to clear bacteria from the lungs. What causes the defect in the bacterial clearance in the CF lung has been the subject of an ongoing debate. Here we discuss the arguments for and against the role of the epithelial sodium channel, ENaC, in the development of CF lung disease. cystic fibrosis; sodium channel; mouse models; pathogenesis CYSTIC FIBROSIS (CF) is characterized by viscous secretions of the exocrine glands in multiple organs and elevated levels of sweat chloride. The most life-threatening features of this disease include chronic bacterial respiratory infections, airway obstruction, bronchiectasis, and respiratory failure (for an excellent review, see Ref. 7). In a landmark discovery in 1983, Paul Quinton demonstrated that CF is caused by a chloride transport defect (31). Two subsequent studies by Knowles, Boucher, and colleagues provided evidence that sodium reabsorption was elevated in the airways (4, 17). These initial studies led to the idea that both sodium and chloride transport were altered in the CF airways. When the CF gene was cloned in 1989, it was named the cystic fibrosis transmembrane conductance regulator (CFTR) (33) and the gene product was shown to be a camp-regulated chloride channel (1). Furthermore, there was substantial support for the idea that part of the pathophysiology found in CF is due to enhanced amiloride-sensitive sodium currents (3, 15, 20, 21, 37, 39) and as discussed below, -ENaC-overexpressing transgenic mice develop CF-like lung disease (25). A recent study by Grubb and colleagues (13), however, indicated that overexpression of human CFTR failed to correct the CF-like lung phenotype previously observed in the -ENaCoverexpressing transgenic mouse (13, 25). This is a significant and important finding since the -ENaC transgenic mouse has been utilized as a model of CF lung disease (25). Moreover, two other reports question the basic premise that loss of CFTR results in ENaC dysregulation in the respiratory system (5, 16). The focus of this is to highlight the importance of Address for reprint requests and other correspondence: J. F. Collawn, Univ. of Alabama at Birmingham, 1918 Univ. Blvd., Birmingham, AL ( jcollawn@uab.edu). these recent studies and to discuss how these findings impact our view of the role of ENaC in CF. What Causes the Lung Pathology in CF? Before discussing the function of CFTR in regulating ENaC activity, background information is needed to explain the nature of the CF mouse models and the evidence they have provided regarding the role of ENaC in CF pathogenesis. The major consequences of CF include chronic bacterial respiratory infections that are the result of compromised mucociliary clearance (25). Two models have been proposed to explain this defect. In the first model, the compositional hypothesis, loss of the CFTR chloride transport is thought to produce an airway surface liquid (ASL) composition that inactivates antimicrobial peptides (34, 40). In a second model, the low-volume hypothesis, loss of CFTR is believed to promote increased sodium and water absorption and therefore cause a corresponding depletion of ASL volume, resulting in decreased mucus transport and poor bacterial clearance (28, 40). The second model clearly supports the view that loss of CFTR results in an increase in sodium absorption through the ENaC channel. Murine Models of CF The controversy over the cause of the CF lung disease been argued for decades. What was needed was an animal model to clarify this issue. CF mouse models first appeared 3 years after the cloning of the CFTR gene, but, surprisingly, these CFTR knockout mice did not develop lung disease (reviewed in Ref. 12). A number of mouse models were created that included a CFTR knockout mouse (Cftr tm1unc ) (35) and a F508 CFTR mouse (Cftr tm1kth ) (12, 41), the latter being a model for the most common mutation found in CF patients. Interestingly, all of the CF mouse models possess an intestinal phenotype, with some of them having a more severe small bowel obstruction than others (12). The mouse models listed above have a severe phenotype with intestinal blockage that causes a large percentage of littermates to die either soon after birth or postweaning (12, 35, 41). The F508 CFTR mice exhibit growth retardation, diminished survival (only 40% survive the postweaning crisis), intestinal pathology, a loss of camp-activated chloride transport, but no obvious lung pathology (41). Autopsies of these animals indicate severe bowel obstruction, whereas the lungs appear unaffected (41). So although CF mice proved useful for studying the intestinal pathology of CF, they did not provide a good model for respiratory pathology. Unfortunately, in contrast to the mouse models, respiratory symptoms account for the vast majority of the mortality and morbidity in humans suffering from CF (7) /12 Copyright 2012 the American Physiological Society L1141

2 L1142 So why is there no lung pathology in the CF mouse? One commonly cited explanation is that epithelial cells lining the murine airways express an alternative (i.e., non-cftr) chloride channel, whereas mouse intestinal epithelial cells do not (6). Human respiratory epithelial cells also appear to express this alternative, calcium-activated chloride channel (2). Yet the calcium-activated chloride transport mechanism fails to correct the lung pathology in CF patients. With the failure of the classic CF mouse models to mimic the human CF respiratory phenotype, it became clear that the development of novel CF models would be necessary. The -ENaC Mouse In an effort to clarify conflicting hypotheses relating to the basic defect underlying CF lung pathology, Mall, Grubb, Boucher, and colleagues (25) generated transgenic mice to directly test the low-volume hypothesis. They proposed that if the CF lung disease was caused by increased sodium and water absorption from the airways, then overexpression of ENaC in airway epithelial cells should mimic the lack of CFTR-mediated ENaC inhibition in the CF respiratory epithelia (25). Significantly, overexpressing -ENaC mimics the human lung pathology that the Cftr knockout mice lacked. Epithelia isolated from the -ENaC mouse airways showed enhanced sodium absorption and the mice exhibited the clinical features of CF airway disease including airway obstruction with dehydrated mucus, neutrophilic inflammation, and poor bacterial clearance (25). The importance and significance of this study are best summarized by a commentary at the time entitled Finally, mice with CF lung disease (9). To generate mice with elevated ENaC levels, Mall and colleagues (25) utilized a Clara cell secretory protein (CCSP) promoter to drive the expression of each subunit of ENaC [Scnn1a ( subunit), Scnn1b ( subunit), and Scnn1c ( subunit)] to target the lower airway epithelia. Transgenic mice overexpressing each of the transgenes with high transcript levels were analyzed from two different founder lines. Surprisingly, only the -ENaC-overexpressing animals (hereafter referred to as -ENaC mice) had elevated ENaC activity (25). The authors also demonstrated that the camp-activated and calcium-activated chloride activities were not altered in the -ENaC mice, demonstrating that the effects were due to the overexpressed -ENaC rather than changes in chloride transport. Since the relative endogenous message levels of the three ENaC genes were Scnn1a Scann1b Scann1c, why the Scann1b gene was functionally limiting remained unclear. Even so, the effects of the ENaC -subunit overexpression were unequivocal. ASL volume as monitored by ex vivo periciliary liquid (PCL) height in cultured epithelial monolayers indicated that the PCL height was reduced in -ENaC animals compared with the controls, which is exactly what had been predicted by the low-volume hypothesis. Complete analysis of the -ENaC mice revealed a number additional features concordant with CF lung disease (25). In addition to the ASL volume depletion, these mice displayed reduced mucus transport, airway obstruction, and 50% postnatal mortality rate at 4 wk, caused by severe airway obstruction. The mice also exhibited neutrophilic lung infiltration and decreased bacterial clearance. These pathological features, found specifically in -ENaC mice, are consistent with the hypothesis that sodium hyperabsorption is a major contributor to the CF lung phenotype (25). Rescuing the -ENaC Mouse Lung Pathology The functional interaction between CFTR and ENaC is a critical element in the low-volume hypothesis. Therefore, it is notable that in the -ENaC mouse, the endogenous mouse CFTR is still present. As in any physiological process, a fine balance of all ion transport pathways is necessary for maintaining homeostasis. Thus, in the -ENaC mouse, the regulatory interaction between CFTR and ENaC expression may well have been altered. In this case, it appears that the endogenous mouse CFTR is unable to suppress the excess -ENaC effect on ion transport. A simple way to explain this phenomenon is that the ratio of ENaC to CFTR is too great to overcome the enhanced sodium transport. Another possibility is that -ENaC is expressed in cells where the endogenous CFTR is either absent or extremely low, and these are the airway epithelial cells that specifically promote the CF-like lung phenotype. A third possibility involves the significant differences between the mouse and human lung architecture, making this type of analysis more difficult. Clearly, the cartilaginous mouse lower airways (trachea and bronchi) contain greater than 50% Clara cells, whereas these regions in the human airways contain mostly ciliated cells (14) (Fig. 1). To reverse the -ENaC mouse phenotype, Grubb, Boucher, and colleagues generated another transgenic mouse strain overexpressing human CFTR (hcftr), using the same CCSP promoter as for the -ENaC (13). Given that the -ENaC mouse had CF-like lung pathology, they hypothesized that increasing CFTR expression above endogenous levels should compensate for the excess -ENaC function. This strategy was important for two reasons. First, the idea here was to shift the balance to a more physiological CFTR-to-ENaC ratio. Second, this strategy would assure that CFTR and ENaC are expressed in the same cell type, Clara cells. Founder animals (C57Bl/6J DBA2/J F1) were bred with CB57Bl/6J DBA2/J F1 animals, and six mouse lines were established. Line 6 was bred with the -ENaC murine model (C57Bl/6J C3H/J). These crosses produced -ENaC, hcftr, and the hcftr/ -ENaC (double transgenic) mice on a mixed genetic background (13). Analysis of the hcftr-overexpressing transgenic mice revealed normal lung histology (13). The hcftr mrna was expressed at higher levels ( 5-fold) than endogenous murine CFTR mrna (13). Ussing chamber analysis of isolated tracheal epithelia demonstrated that the amiloride-sensitive currents were similar in hcftr transgenic mice and control wild-type mice. Surprisingly, the forskolin and UTP-activated currents (for activation of CFTR and Ca -activated chloride channels, respectively) were much smaller in the hcftr transgenic mice. However, considering that the basal currents were also dramatically higher in the tracheal epithelia of mice overexpressing hcftr, it is likely that the overall constitutive activity of CFTR was elevated in these animals (13). Taken together, overexpression of hcftr increased basal chloride transport without any respiratory phenotype. On the other hand, comparisons between the hcftr, the hcftr/ -ENaC, and the -ENaC transgenic mice proved to be quite interesting. For example, Ussing chamber analysis of tracheal epithelial cells from both the hcftr and hcftr/ -

3 L1143 Fig. 1. Schematic illustration of mouse and human lower airways. Note the cellular diversity of the epithelial cell types lining the airways and submucosal glands. Clara cells are present throughout the lower airway epithelia in mice. Submucosal (mixed serous and mucous) glands are only found in the proximal trachea in mice. The number of Clara cells increases in the bronchiole. Submucosal glands are present throughout the cartilaginous airways (trachea, bronchi) in the human airways and Clara cells only appear in bronchioles. In the alveoli, type I and type II alveolar epithelial cells (AEC) are present both in mouse and human. Type I AECs provide majority of the alveoli lining surface and type II cells secrete surfactant. The -ENaC and the hcftr -ENaC mice were developed by using a Clara cell-specific promoter to express -ENaC or hcftr -ENaC only in Clara cells. The architecture of the porcine airways is similar to human with submucosal, mixed glands throughout the cartilaginous airways. ENaC transgenic mice showed elevated basal currents and decreased responses to UTP (13). More significantly, the double transgenic mice (hcftr/ -ENaC) demonstrated many of the same phenotypic traits found in -ENaC mice. Specifically, the mice had a decreased survival rate, significant mucus plugging, and reduced ASL height, indicating that the transgenic coexpression of hcftr with -ENaC in Clara cells failed to reverse the lung pathology associated with the -ENaC overexpression (13). Why Doesn t CFTR Rescue the -ENaC Mouse? The authors provide a number of potential reasons (13). One simple explanation is that the human CFTR cannot regulate the murine ENaC channel. However, as the authors point out, this is certainly not true when both channels are expressed in oocytes (39). A second possibility is that the presence of another protein is required for a CFTR-ENaC regulatory network, and this protein is not expressed in Clara cells. Third, they noted that -ENaC expression appeared to be higher in the upper airways, whereas hcftr expression was higher in the distal airways, suggesting that location matters. Furthermore, the authors estimated that levels of -ENaC were 25- to 100-fold above levels of endogenous protein expression (13), again eliciting the question how much CFTR is enough to inhibit ENaC activity? Both the hcftr and mouse -ENaC were expressed only in Clara cells, and it is possible that these cells do not endogenously expresses CFTR and, therefore, lack important binding partners that are necessary for the orchestrated regulation of the ENaC channels (13). Perhaps the most compelling argument that may explain the failure of hcftr overexpression to rescue the -ENaC mouse phenotype involves studies comparing a mouse model of Liddle s syndrome with the -ENaC mouse (27). Liddle s syndrome is caused by a mutation in the -subunit of ENaC gene that results in a premature termination codon and creates a gain-of-function sodium channel with elevated activity. Patients with Liddle s syndrome have hypertension, but paradoxically no lung disease (27). Examination of nasal and tracheal

4 L1144 epithelial cells from Liddle and wild-type mice revealed several critical points. First, CFTR mrna expression in nasal and tracheal tissues is similar in Liddle and wild-type mice. Second, CFTR expression is 20-fold higher in nasal vs. tracheal tissues. Third, CFTR inhibits the enhanced ENaC function in nasal epithelia from Liddle mice, but not in the trachea, suggesting that the level of CFTR matters for suppression of ENaC activity. Mall and colleagues also suggest that endogenous human CFTR expression is high in both the upper and lower airways (19), unlike what is found in the mouse (27), and perhaps this could explain the observation that Liddle s patients do not develop lung disease associated with ENaC hyperfunction. Another interesting point raised by Mall and colleagues is that tracheal epithelia from -ENaC mice express a pool of -ENaC channels that are constitutively active and cannot be further activated by proteolysis (trypsin) (27). However, if the mechanism by which CFTR regulates ENaC activity is to suppress the proteolytic activation of ENaC (10), then presumably an -ENaC channel that does not require proteolytic activation would not be regulated by CFTR, even if expressed in the same cell type. This could explain the -ENaC mouse phenotype and why CFTR (either the endogenous or the overexpressed hcftr) is unable to rescue the -ENaC phenotype. So what does this mean? Clearly, there are a large number of examples demonstrating that ENaC activity is regulated by CFTR (10, 11, 15, 18, 20 24, 37, 39, 40). One argument raised suggests that a certain threshold in CFTR function is required for repressing ENaC. However, a recent study that tested ENaC activity in mouse lung slices does not support this notion (22). In this work, Lazrak, Matalon, and colleagues (22) investigated alveolar epithelial cells in freshly harvested lung slices from wild-type, CFTR heterozygous (Cftr / ), knockout [Cftr / (Cftr tm1unc )], and Cftr- F508 mice (cftr tm1kth ) using patchclamp analysis. Cftr / and Cftr F508/ F508 mice were extensively backcrossed to C57BL/6 background to obtain congenic mice that varied only at the Cftr locus. Patch-clamp studies using the lung slices and single channel recordings by the cell-attached mode from alveolar type I and type II cells (ATI and ATII, distal airways, Fig. 1) revealed some striking findings (22). The open probabilities, P o, of the ENaC channels in ATII cells under basal conditions were (Cftr / ), (Cftr / ), (Cftr / ), and (Cftr F508/ F508 ). These measurements were performed on 8-wk-old mice and revealed a number of important facts. First, the basal ENaC activity was altered in different Cftr backgrounds. Second, surprisingly, the heterozygote (Cftr / )recordings were different from the homozygote (Cftr / ). In addition, Cftr-null ATII cells had what appeared to be an almost fully active ENaC channel under basal conditions; finally, basal currents from the Cftr F508/ F508 ATII cells were not the same as the null ATII cell currents, suggesting that even F508 CFTR had some effect on ENaC activity (22). These results in murine ATII cells establish that CFTR affects ENaC activity in situ. How much CFTR was expressed in these cells? Western blot analysis failed to demonstrate CFTR expression in isolated type II alveolar cells, but CFTR mrna was detectable, supporting the view that CFTR could regulate ENaC activity, even when the CFTR protein levels were minimal (22). Does Dysregulation of ENaC Result in the CF Respiratory Phenotype? Paul Quinton provides an additional hypothesis that may not rule out other ASL contributions. He suggests that the loss of bicarbonate transport rather than chloride transport through CFTR is the primary cause of increased mucus viscosity and reduced clearance (32). Furthermore, two recent studies, one performed in the neonatal CF pig and the other in human CF airway epithelial cells, dispute the role of ENaC in the development of the CF phenotype (5, 16). In the first study, Welsh, Zabner, and colleagues demonstrated that newborn CFTR / pigs spontaneously develop lung disease that is characterized by bacterial infections, lung inflammation, and mucus accumulation (5, 36). Interestingly, newborn F508 pigs also develop lung disease, despite the fact that they have a low-level CFTR-mediated chloride conductance (29). Porcine CFTR / epithelial cells show a dramatically reduced chloride transport, but remarkably do not show increased sodium and water absorption or reductions in the PCL height (5) as predicted by the low-volume model. Airway epithelia from the CFTR / pigs also demonstrate an increase in amiloride-sensitive voltage and short-circuit currents compared with CFTR / pigs. As the authors point out, it seems paradoxical that pig CF epithelia have a larger change in transepithelial voltage and short-circuit current after amiloride treatment than non-cf epithelia, given that the sodium transport is not affected (5, 36). Their argument for this amiloride effect is important for understanding whether sodium transport is altered in CF. Following Ussing chamber analysis of non-cf epithelia, Welsh, Zabner, and colleagues proposed that amiloride treatment hyperpolarizes apical membrane voltage, thereby increasing the driving force for chloride secretion, whereas lack of CFTR precludes chloride secretion in CF epithelia (5). In other words, they suggest that the greater drop in short-circuit currents in CF epithelia after amiloride treatment is due to the loss of the CFTR-mediated chloride conductance, not a greater drop in the sodium conductance. But is the pig CF model different from human CF? Welsh, Zabner, and colleagues (16) addressed this question directly by asking whether sodium hyperabsorption is an important component in human CF lung disease. When they tested primary cultures of tracheobronchial CF and non-cf epithelia in Ussing chambers, they found no evidence for elevated sodium transport. To support these findings, they tested the hypothesis that if the greater drop in transepithelial voltage and short-circuit current in CF epithelia were due to decreased chloride conductance, they should be able to mimic this effect in normal, non-cf epithelia (16). They performed three experiments to test this idea. In the first experiment, they added forskolin and IBMX to the culture medium for 24 h and withdrew it when the non-cf epithelia were mounted in Ussing chambers. This procedure minimizes basal CFTR activity (16, 40) and therefore mimics the loss of CFTR. In the second experiment, they performed Ussing chamber experiments in chloride-free solutions, and in the third, they used the inhibitor, CF inh -172, to block CFTR channels (16). In the first two experiments, the amiloride-sensitive drop in short-circuit current was significantly elevated in non-cf epithelia to levels very similar to those observed in CF, as predicted. In the third experiment performed in non-cf epithelia, pretreatment with CF inh -172

5 enhanced the drop in current as predicted (16). Each of these treatments has potential limitations as the authors suggest (16). For example, withdrawal of camp stimulation or removal of chloride could both affect ENaC activity, and CFTR inh -172 could have other effects besides inhibiting CFTR. That being said, these studies clearly argue against the sodium hyperabsorption model. Future and Unanswered Questions The introduction of the Cftr knockout mouse illustrated that loss of CFTR was not detrimental in the mouse lung, although it certainly resulted in an intestinal phenotype. Later, the generation of the -ENaC mouse dramatically raised expectations because of the severe respiratory phenotype. But clearly there were questions that remained unanswered since in the -ENaC mouse the endogenous mouse CFTR was present, although as noted above the endogenous CFTR and transgenic -ENaC must have been expressed in different cell types. Correction of the -ENaC phenotype was predicted in the hcftr/ -ENaC mice since these mice would express hcftr in the same Clara cells as the -ENaC subunit. The lack of correction in the double transgenic mouse was a surprise. Does this mean that Clara cells are the wrong cell type for these studies? What cell types express both CFTR and ENaC at levels that grant measurable functional interaction? Comparisons between mouse nasal and tracheal epithelia suggest that nasal cells express 20 times more CFTR mrna than tracheal cells (27), and mouse nasal epithelia contains 90% ciliated cells compared with less than 40% in the trachea (38). This suggests that the mouse upper airway epithelial cells may be the more relevant mouse model system for studying CF airway pathogenesis. Does the cell type matter? A recent study reports ENaC expression on motile cilia in human bronchial epithelial cells, whereas CFTR was found in the apical membranes (8). Does this expression pattern eliminate the possibility of functional interactions between the two transporters in ciliated cells? Does expression of -ENaC channels in the -ENaC mouse provide an explanation for the failure of hcftr to rescue the respiratory phenotype in the double transgenic mice? Is mimicking the human CF lung pathology so difficult because the lung architecture and distribution of the airway epithelial cell types differ fundamentally in the mouse lung compared with human? If so, why does the -ENaC mouse model seem to mimic CF lung disease so well? If sodium hyperabsorption is really a critical component in CF lung disease, does amiloride treatment help CF patients? In an early clinical trial using inhalation therapy, amiloride treatment had no beneficial effects (30). However, it is quite possible that longer-acting and more potent analogs of amiloride will work (26). Given the recent data on the newborn CF pig and primary human tracheobronchial epithelia, the role of ENaC in the development of the CF respiratory phenotype is still being argued. Simply put, the CFTR and ENaC debate is far from over. GRANTS This work was supported by grants from the NIH (DK to J. F. Collawn, HL to Z. Bebok, and 5U01ES and 5R01HL to S. Matalon). DISCLOSURES All authors confirm that they have no competing interests regarding the content, investigations, and results outlined in this manuscript. REFERENCES L Anderson MP, Gregory RJ, Thompson S, Souza DW, Paul S, Mulligan RC, Smith AE, Welsh MJ. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity. Science 253: , Anderson MP, Welsh MJ. Calcium and camp activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci USA 88: , Boucher RC, Cotton CU, Gatzy JT, Knowles MR, Yankaskas JR. Evidence for reduced Cl and increased Na permeability in cystic fibrosis human primary cell cultures. J Physiol 405: , Boucher RC, Stutts MJ, Knowles MR, Cantley L, Gatzy JT. Na transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest 78: , Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, Zabner J, Welsh MJ. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 143: , Clarke LL, Grubb BR, Yankaskas JR, Cotton CU, McKenzie A, Boucher RC. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr( / ) mice. Proc Natl Acad Sci USA 91: , Davis PB. Cystic fibrosis since Am J Respir Crit Care Med 173: , Enuka Y, Hanukoglu I, Edelheit O, Vaknine H, Hanukoglu A. Epithelial sodium channels (ENaC) are uniformly distributed on motile cilia in the oviduct and the respiratory airways. Histochem Cell Biol 137: , Frizzell RA, Pilewski JM. Finally, mice with CF lung disease. Nat Med 10: , Gentzsch M, Dang H, Dang Y, Garcia-Caballero A, Suchindran H, Boucher RC, Stutts MJ. The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na channel. J Biol Chem 285: , Greger R, Mall M, Bleich M, Ecke D, Warth R, Riedemann N, Kunzelmann K. Regulation of epithelial ion channels by the cystic fibrosis transmembrane conductance regulator. J Mol Med 74: , Grubb BR, Boucher RC. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol Rev 79: S193 S214, Grubb BR, O Neal WK, Ostrowski LE, Kreda SM, Button B, Boucher RC. Transgenic hcftr expression fails to correct -ENaC mouse lung disease. Am J Physiol Lung Cell Mol Physiol 302: L238 L247, Harkema JR, Mariassy A, St. George J, Hyde DM, Plopper CG. Epithelial cells of the conducting airways: a species comparison. In: The Airway Epithelium Physiology, Pathology, and Pharmacology, edited by Farmer SG and Hay DWP. New York: Decker, 1991, p Ismailov II, Awayda MS, Jovov B, Berdiev BK, Fuller CM, Dedman JR, Kaetzel M, Benos DJ. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator. J Biol Chem 271: , Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney-Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced Cl conductance but not increased Na conductance. Proc Natl Acad Sci USA 108: , Knowles MR, Stutts MJ, Spock A, Fischer N, Gatzy JT, Boucher RC. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science 221: , Konig J, Schreiber R, Voelcker T, Mall M, Kunzelmann K. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl concentration. EMBO Rep 2: , Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas J, Riordan JR, Boucher RC. Characterization of wild-type and deltaf508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 16: , 2005.

6 L Kunzelmann K, Kathofer S, Greger R. Na and Cl conductances in airway epithelial cells: increased Na conductance in cystic fibrosis. Pflügers Arch 431: 1 9, Kunzelmann K, Schreiber R, Nitschke R, Mall M. Control of epithelial Na conductance by the cystic fibrosis transmembrane conductance regulator. Pflügers Arch 440: , Lazrak A, Jurkuvenaite A, Chen L, Keeling KM, Collawn JF, Bedwell DM, Matalon S. Enhancement of alveolar epithelial sodium channel activity with decreased cystic fibrosis transmembrane conductance regulator expression in mouse lung. Am J Physiol Lung Cell Mol Physiol 301: L557 L567, Mall M, Bleich M, Greger R, Schreiber R, Kunzelmann K. The amiloride-inhibitable Na conductance is reduced by the cystic fibrosis transmembrane conductance regulator in normal but not in cystic fibrosis airways. J Clin Invest 102: 15 21, Mall M, Bleich M, Kuehr J, Brandis M, Greger R, Kunzelmann K. CFTR-mediated inhibition of epithelial Na conductance in human colon is defective in cystic fibrosis. Am J Physiol Gastrointest Liver Physiol 277: G709 G716, Mall M, Grubb BR, Harkema JR, O Neal WK, Boucher RC. Increased airway epithelial Na absorption produces cystic fibrosis-like lung disease in mice. Nat Med 10: , Mall MA. Role of the amiloride-sensitive epithelial Na channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease. Exp Physiol 94: , Mall MA, Button B, Johannesson B, Zhou Z, Livraghi A, Caldwell RA, Schubert SC, Schultz C, O Neal WK, Pradervand S, Hummler E, Rossier BC, Grubb BR, Boucher RC. Airway surface liquid volume regulation determines different airway phenotypes in liddle compared with betaenac-overexpressing mice. J Biol Chem 285: , Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95: , Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T, Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ, Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS, Samuel M, Zhang Y, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB Jr, Zabner J, Welsh MJ, Stoltz DA. The F508 mutation causes CFTR misprocessing and cystic fibrosislike disease in pigs. Sci Transl Med 3: 74ra24, Pons G, Marchand MC, d Athis P, Sauvage E, Foucard C, Chaumet- Riffaud P, Sautegeau A, Navarro J, Lenoir G. French multicenter randomized double-blind placebo-controlled trial on nebulized amiloride in cystic fibrosis patients. The Amiloride-AFLM Collaborative Study Group. Pediatr Pulmonol 30: 25 31, Quinton PM. Chloride impermeability in cystic fibrosis. Nature 301: , Quinton PM. Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372: , Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS, Tsui LC. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: , Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85: , Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH. An animal model for cystic fibrosis made by gene targeting. Science 257: , Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, Hanfland RA, Wohlford-Lenane C, Dohrn CL, Bartlett JA, Nelson GA 4th, Chang EH, Taft PJ, Ludwig PS, Estin M, Hornick EE, Launspach JL, Samuel M, Rokhlina T, Karp PH, Ostedgaard LS, Uc A, Starner TD, Horswill AR, Brogden KA, Prather RS, Richter SS, Shilyansky J, McCray PB Jr, Zabner J, Welsh MJ. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med 2: 29ra31, Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC. CFTR as a camp-dependent regulator of sodium channels. Science 269: , Woodworth BA, Antunes MB, Bhargave G, Palmer JN, Cohen NA. Murine tracheal and nasal septal epithelium for air-liquid interface cultures: a comparative study. Am J Rhinol 21: , Yan W, Samaha FF, Ramkumar M, Kleyman TR, Rubenstein RC. Cystic fibrosis transmembrane conductance regulator differentially regulates human and mouse epithelial sodium channels in Xenopus oocytes. J Biol Chem 279: , Zabner J, Smith JJ, Karp PH, Widdicombe JH, Welsh MJ. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro. Mol Cell 2: , Zeiher BG, Eichwald E, Zabner J, Smith JJ, Puga AP, McCray PB Jr, Capecchi MR, Welsh MJ, Thomas KR. A mouse model for the delta F508 allele of cystic fibrosis. J Clin Invest 96: , 1995.

The Amiloride-inhibitable Na

The Amiloride-inhibitable Na The Amiloride-inhibitable Na Conductance Is Reduced by the Cystic Fibrosis Transmembrane Conductance Regulator in Normal But Not in Cystic Fibrosis Airways M. Mall, M. Bleich, R. Greger, R. Schreiber,

More information

CURRICULUM VITAE. Department of Pediatric Surgery

CURRICULUM VITAE. Department of Pediatric Surgery CURRICULUM VITAE NAME: PRESENT TITLE: ADDRESS: Robert (Bob) Hanfland, MD Assistant Professor of Pediatric Cardiovascular Surgery Department of Pediatric Surgery The University of Texas Medical School at

More information

Respiratory Pharmacology: Treatment of Cystic Fibrosis

Respiratory Pharmacology: Treatment of Cystic Fibrosis Respiratory Pharmacology: Treatment of Cystic Fibrosis Dr. Tillie-Louise Hackett Department of Anesthesiology, Pharmacology and Therapeutics University of British Columbia Associate Head, Centre of Heart

More information

Preventive but Not Late Amiloride Therapy Reduces Morbidity and Mortality of Lung Disease in benac-overexpressing Mice

Preventive but Not Late Amiloride Therapy Reduces Morbidity and Mortality of Lung Disease in benac-overexpressing Mice Preventive but Not Late Amiloride Therapy Reduces Morbidity and Mortality of Lung Disease in benac-overexpressing Mice Zhe Zhou 1 *, Diana Treis 1 *, Susanne C. Schubert 1, Maria Harm 1, Jolanthe Schatterny

More information

1. Introduction. Obstructive lung disease remains the leading cause of morbidity and mortality in cystic fibrosis

1. Introduction. Obstructive lung disease remains the leading cause of morbidity and mortality in cystic fibrosis 1. Introduction Obstructive lung disease remains the leading cause of morbidity and mortality in cystic fibrosis (CF) [1]. With time it has become increasingly clear that CF lung disease is present very

More information

Airway disease phenotypes in animal models of cystic fibrosis

Airway disease phenotypes in animal models of cystic fibrosis McCarron et al. Respiratory Research (2018) 19:54 https://doi.org/10.1186/s12931-018-0750-y REVIEW Airway disease phenotypes in animal models of cystic fibrosis Alexandra McCarron 1,2,3*, Martin Donnelley

More information

Loss of Cftr function exacerbates the phenotype of Na hyperabsorption in murine airways

Loss of Cftr function exacerbates the phenotype of Na hyperabsorption in murine airways Am J Physiol Lung Cell Mol Physiol 304: L469 L480, 2013. First published February 1, 2013; doi:10.1152/ajplung.00150.2012. Loss of Cftr function exacerbates the phenotype of Na hyperabsorption in murine

More information

The βenac-overexpressing mouse as a model of cystic fibrosis lung disease

The βenac-overexpressing mouse as a model of cystic fibrosis lung disease Journal of Cystic Fibrosis Volume 10 Suppl 2 (2011) S172 S182 www.elsevier.com/locate/jcf The βenac-overexpressing mouse as a model of cystic fibrosis lung disease Zhe Zhou a, Julia Duerr a, Bjarki Johannesson

More information

Journal of Physiology (1999), 516.3, pp Topical Review. Molecular insights into the physiology of the thin film of airway surface liquid

Journal of Physiology (1999), 516.3, pp Topical Review. Molecular insights into the physiology of the thin film of airway surface liquid Keywords: 9127 Journal of Physiology (1999), 516.3, pp. 631 638 631 Topical Review Molecular insights into the physiology of the thin film of airway surface liquid R. C. Boucher Cystic FibrosisÏPulmonary

More information

CFTR: cystic fibrosis and beyond

CFTR: cystic fibrosis and beyond ERJ Express. Published on June 12, 2014 as doi: 10.1183/09031936.00228013 BACK TO BASICS IN PRESS CORRECTED PROOF CFTR: cystic fibrosis and beyond Marcus A. Mall 1,2 and Dominik Hartl 3 Affiliations: 1

More information

Loss of Anion Transport without Increased Sodium Absorption Characterizes Newborn Porcine Cystic Fibrosis Airway Epithelia

Loss of Anion Transport without Increased Sodium Absorption Characterizes Newborn Porcine Cystic Fibrosis Airway Epithelia Loss of Anion Transport without Increased Sodium Absorption Characterizes Newborn Porcine Cystic Fibrosis Airway Epithelia Jeng-Haur Chen, 1,3 David A. Stoltz, 1 Philip H. Karp, 1,3 Sarah E. Ernst, 1 Alejandro

More information

What is the inheritance pattern (e.g., autosomal, sex-linked, dominant, recessive, etc.)?

What is the inheritance pattern (e.g., autosomal, sex-linked, dominant, recessive, etc.)? Module I: Introduction to the disease Give a brief introduction to the disease, considering the following: the symptoms that define the syndrome, the range of phenotypes exhibited by individuals with the

More information

Selective Activation of Cystic Fibrosis Transmembrane Conductance Regulator Cl - and HCO 3 - Conductances

Selective Activation of Cystic Fibrosis Transmembrane Conductance Regulator Cl - and HCO 3 - Conductances JOP. J. Pancreas (Online) 2001; 2(4 Suppl):212218. Selective Activation of Cystic Fibrosis Transmembrane Conductance Regulator Cl and HCO 3 Conductances MallaReddy M Reddy 1, Paul M Quinton 1,2 1 Department

More information

PULMONARY SURFACTANT, ALPHA 1 ANTITRYPSIN INHIBITOR DEFICIENCY, AND CYSTIC FIBROSIS DR. NABIL BASHIR BIOCHEMISTRY/RESPIRATORY SYSTEM

PULMONARY SURFACTANT, ALPHA 1 ANTITRYPSIN INHIBITOR DEFICIENCY, AND CYSTIC FIBROSIS DR. NABIL BASHIR BIOCHEMISTRY/RESPIRATORY SYSTEM PULMONARY SURFACTANT, ALPHA 1 ANTITRYPSIN INHIBITOR DEFICIENCY, AND CYSTIC FIBROSIS DR. NABIL BASHIR BIOCHEMISTRY/RESPIRATORY SYSTEM Pulmonary surfactant Pulmonary surfactant is (phospholipoprotein) complex

More information

Cl - channel regulated by camp-dependent phosphorylation

Cl - channel regulated by camp-dependent phosphorylation Defective Fluid Transport by Cystic Fibrosis Airway pithelia Rapid Publication Jeffrey J. Smith, Philip H. Karp,* and Michael J. Welsh* Department ofpediatrics and *Howard Hughes Medical Institute, Departments

More information

What is Cystic Fibrosis? CYSTIC FIBROSIS. Genetics of CF

What is Cystic Fibrosis? CYSTIC FIBROSIS. Genetics of CF What is Cystic Fibrosis? CYSTIC FIBROSIS Lynne M. Quittell, M.D. Director, CF Center Columbia University Chronic, progressive and life limiting autosomal recessive genetic disease characterized by chronic

More information

中国科技论文在线. * CFTR cl - [5]

中国科技论文在线. * CFTR cl -   [5] CFTR 1 * 410078 *E-mailxiaoqun1988@xysm.net CFTR PCR western blot CFTR CFTR cl - CFTR Real-time PCR 4h CFTR mrna CFTR Western blot 4h CFTR CFTR cl - 5 µm forskolin CFTR cl - forskolin 4h BECs CFTR cl -

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Donaldson SH, Bennett WD, Zeman KL, et al. Mucus clearance

More information

Bicarbonate Secretion in the Murine Gallbladder - Lessons for the Treatment of Cystic Fibrosis

Bicarbonate Secretion in the Murine Gallbladder - Lessons for the Treatment of Cystic Fibrosis Bicarbonate Secretion in the Murine Gallbladder Lessons for the Treatment of Cystic Fibrosis Alan W Cuthbert Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hill's Road. Cambridge,

More information

T he cystic fibrosis transmembrane conductance regulator

T he cystic fibrosis transmembrane conductance regulator 971 RESPIRATORY PHYSIOLOGY Nasal airway ion transport is linked to the cystic fibrosis phenotype in adult patients I Fajac, D Hubert, D Guillemot, I Honoré, T Bienvenu, F Volter, J Dall Ava-Santucci, D

More information

Ion transport across CF and normal murine olfactory and ciliated epithelium

Ion transport across CF and normal murine olfactory and ciliated epithelium Am J Physiol Cell Physiol 296: C1301 C1309, 2009. First published March 25, 2009; doi:10.1152/ajpcell.00578.2008. Ion transport across CF and normal murine olfactory and ciliated epithelium B. R. Grubb,

More information

The role of Lipoxin A4 in Cystic Fibrosis Lung Disease

The role of Lipoxin A4 in Cystic Fibrosis Lung Disease Volume No: 6, Issue: 7, March 2013, e201303018, http://dx.doi.org/10.5936/csbj.201303018 CSBJ The role of Lipoxin A4 in Cystic Fibrosis Lung Disease Valérie Urbach a,b,*, Gerard Higgins a, Paul Buchanan

More information

CFTR Regulates Early Pathogenesis of Chronic Obstructive Lung Disease in benac-overexpressing Mice

CFTR Regulates Early Pathogenesis of Chronic Obstructive Lung Disease in benac-overexpressing Mice CFTR Regulates Early Pathogenesis of Chronic Obstructive Lung Disease in benac-overexpressing Mice Bjarki Johannesson 1,3,4, Stephanie Hirtz 1, Jolanthe Schatterny 1, Carsten Schultz 1,3,4, Marcus A. Mall

More information

Cystic Fibrosis the future

Cystic Fibrosis the future Cystic Fibrosis the future Pathophysiologic cascade Abnormal Gene Abnormal CFTR Therapy Gene replacement Protein replacement Gene read through therapy Abnormal sodium chloride & water movement through

More information

Evaluation of Patients with Diffuse Bronchiectasis

Evaluation of Patients with Diffuse Bronchiectasis Evaluation of Patients with Diffuse Bronchiectasis Dr. Patricia Eshaghian, MD Assistant Clinical Professor of Medicine Director, UCLA Adult Cystic Fibrosis Affiliate Program UCLA Division of Pulmonary

More information

High blood pressure is common in black people living in

High blood pressure is common in black people living in Transepithelial Sodium Absorption Is Increased in People of African Origin Emma H. Baker, Nicola J. Ireson, Christine Carney, Nirmala D. Markandu, Graham A. MacGregor Abstract Salt-sensitive hypertension

More information

P.G. Middleton, D.M. Geddes, E.W.F.W Alton

P.G. Middleton, D.M. Geddes, E.W.F.W Alton Eur Respir J, 1994, 7, 2 26 DO: 1.1183/931936.94.7112 Printed in UK - all rights reserved Copyright ERS Journals Ltd 1994 European Respiratory Journal SSN 93-1936 RAPD COMMUNCAON Protocols for in vivo

More information

7/12/2012. Respiratory system. Respiratory Response to Toxic Injury (Lung) Ninth Industrial Toxicology and Pathology Short Course.

7/12/2012. Respiratory system. Respiratory Response to Toxic Injury (Lung) Ninth Industrial Toxicology and Pathology Short Course. Ninth Industrial Toxicology and Pathology Short Course 23 27 July, 2012 Contemporary Concepts in Target Organ Toxicologic Pathology Respiratory system Respiratory Response to Toxic Injury (Lung) Eric Wheeldon

More information

Cystic Fibrosis. Na+ 2Cl - K+ Na+ Na+

Cystic Fibrosis. Na+ 2Cl - K+ Na+ Na+ 1 Cystic Fibrosis I. Overview of cystic fibrosis Among Caucasians, about one out of twenty people carry the gene for cystic fibrosis (CF), and one of 2,000 to 4,000 people is afflicted with the recessive

More information

CF: Understanding the Biology Curing the Disease

CF: Understanding the Biology Curing the Disease CF: Understanding the Biology Curing the Disease Scott H. Donaldson, MD Associate Professor of Medicine Director, Adult CF Care Center University of North Carolina at Chapel Hill Defining the path Drilling

More information

Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and bicarbonate secretion

Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and bicarbonate secretion Am J Physiol Lung Cell Mol Physiol 34: L184 L19, 213. First published November 3, 212; doi:1.12/ajplung.143.212. Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and

More information

The cystic fibrosis transmembrane conductance regulator

The cystic fibrosis transmembrane conductance regulator CFTR and Bicarbonate Secretion to Epithelial Cells Martin J Hug, 1 Tsutomu Tamada, 2 and Robert J Bridges 2 1 Institute of Physiology, University of Münster, D-48149 Münster, Germany; and 2 Department

More information

Cystic fibrosis: hitting the target

Cystic fibrosis: hitting the target Cystic fibrosis: hitting the target Heartland Collaborative Annual Meeting Friday, October 5, 2012 Thomas Ferkol MD 1938 1953 Cystic fibrosis: a historical timeline Cystic fibrosis (CF) of the pancreas

More information

"Management and Treatment of Patients with Cystic fibrosis (CF)

Management and Treatment of Patients with Cystic fibrosis (CF) "Management and Treatment of Patients with Cystic fibrosis (CF) Dr. Malena Cohen-Cymberknoh Pediatric Pulmonology and CF Center Hadassah Hebrew-University Medical Center Jerusalem, Israel Afula, March

More information

We describe a novel student course in membrane physiology in which

We describe a novel student course in membrane physiology in which MEASUREMENT OF HUMAN NASAL POTENTIAL DIFFERENCE TO TEACH THE THEORY OF TRANSEPITHELIAL FLUID TRANSPORT Ulrich Kersting, 1 Albrecht Schwab, 2 and Alexandra Hebestreit 3 1 Institute of Clinical Biochemistry

More information

New Models of the Tracheal Airway Define the Glandular Contribution to Airway Surface Fluid and Electrolyte Composition

New Models of the Tracheal Airway Define the Glandular Contribution to Airway Surface Fluid and Electrolyte Composition New Models of the Tracheal Airway Define the Glandular Contribution to Airway Surface Fluid and Electrolyte Composition Xiaorong Wang, Yulong Zhang, Anson Amberson, and John F. Engelhardt Departments of

More information

Diseases of the gastrointestinal system. H Awad Lecture 2: small intestine/ part 2 and appendix

Diseases of the gastrointestinal system. H Awad Lecture 2: small intestine/ part 2 and appendix Diseases of the gastrointestinal system H Awad Lecture 2: small intestine/ part 2 and appendix Malabsorption most important causes of malabsorption: Celiac disease tropical sprue Lactase deficiency Whipple

More information

Studies on the pathophysiological basis of cystic fibrosis airway disease in newborn pigs

Studies on the pathophysiological basis of cystic fibrosis airway disease in newborn pigs University of Iowa Iowa Research Online Theses and Dissertations Spring 2015 Studies on the pathophysiological basis of cystic fibrosis airway disease in newborn pigs Mark Jeffrey Hoegger University of

More information

Pathophysiologic evaluation of the transgenic CFTR gut-corrected porcine model of cystic fibrosis

Pathophysiologic evaluation of the transgenic CFTR gut-corrected porcine model of cystic fibrosis Am J Physiol Lung Cell Mol Physiol 311: L779 L77, 1. First published August 19, 1; doi:.115/ajplung..1. Pathophysiologic evaluation of the transgenic CFTR gut-corrected porcine model of cystic fibrosis

More information

Relative Ion Permeability of Normal and Cystic Fibrosis Nasal Epithelium

Relative Ion Permeability of Normal and Cystic Fibrosis Nasal Epithelium Relative Ion Permeability of Normal and Cystic Fibrosis Nasal Epithelium MICHAEL KNOWLES, JOHN GATZY, and RICHARD BOUCHER, Departments of Medicine and Pharmacology, School of Medicine, University of North

More information

150 mm HCO How Does the Pancreas Do It? Clues from Computer Modelling of the Duct Cell

150 mm HCO How Does the Pancreas Do It? Clues from Computer Modelling of the Duct Cell JOP. J. Pancreas (Online) 2001; 2(4 Suppl):198202. 150 mm How Does the Pancreas Do It? Clues from Computer Modelling of the Duct Cell Yoshiro Sohma 1, Michael A Gray 2, Yusuke Imai 1, Barry E Argent 2

More information

Mouse models of cystic fibrosis: Phenotypic analysis and research applications

Mouse models of cystic fibrosis: Phenotypic analysis and research applications Journal of Cystic Fibrosis Volume 10 Suppl 2 (2011) S152 S171 www.elsevier.com/locate/jcf Mouse models of cystic fibrosis: Phenotypic analysis and research applications Martina Wilke a,1, Ruvalic M. Buijs-Offerman

More information

There is a substantial need for new biomarkers. Absorptive clearance of DTPA as an aerosol-based biomarker in the cystic fibrosis airway

There is a substantial need for new biomarkers. Absorptive clearance of DTPA as an aerosol-based biomarker in the cystic fibrosis airway Eur Respir J 2010; 35: 781 786 DOI: 10.1183/09031936.00059009 CopyrightßERS Journals Ltd 2010 Absorptive clearance of DTPA as an aerosol-based biomarker in the cystic fibrosis airway T.E. Corcoran*, K.M.

More information

Characterization of Ion and Fluid Transport in Human Bronchioles

Characterization of Ion and Fluid Transport in Human Bronchioles Characterization of Ion and Fluid Transport in Human Bronchioles Sabine Blouquit, Hugues Morel, Jocelyne Hinnrasky, Emmanuel Naline, Edith Puchelle, and Thierry Chinet Laboratoire de Biologie et Pharmacologie

More information

Enabling CF Therapeutic Development

Enabling CF Therapeutic Development Enabling CF Therapeutic Development PRESTON W. CAMPBELL, III, M.D. Executive Vice President for Medical Affairs No Disclosures Cystic Fibrosis In 1955 In 1955 most children with CF did not live long enough

More information

ONLINE SUPPLEMENT Title: CFTR dysfunction induces vascular endothelial growth factor synthesis in airway epithelium

ONLINE SUPPLEMENT Title: CFTR dysfunction induces vascular endothelial growth factor synthesis in airway epithelium ONLINE SUPPLEMENT Title: CFTR dysfunction induces vascular endothelial growth factor synthesis in airway epithelium Martin C, Coolen N, Wu YZ, Thévenot G, Touqui L, PrulièreEscabasse V, Papon JF, Coste

More information

CYSTIC FIBROSIS Risk Factors Epidemiology Pathogenesis Defective protein synthesis (10%) Abnormal protein folding, processing & trafficking

CYSTIC FIBROSIS Risk Factors Epidemiology Pathogenesis Defective protein synthesis (10%) Abnormal protein folding, processing & trafficking CYSTIC FIBROSIS Risk Factors Caucasian Family history of CF Infection Exposure to allergens and tobacco Epidemiology Carrier frequency of 1 in 25 for Caucasians The most common lethal genetic disease affecting

More information

Disruptive effects of anion secretion inhibitors on airway mucus morphology in isolated perfused pig lung

Disruptive effects of anion secretion inhibitors on airway mucus morphology in isolated perfused pig lung J Physiol (2003), 549.3, pp. 845 853 DOI: 10.1113/jphysiol.2002.035923 The Physiological Society 2003 www.jphysiol.org Disruptive effects of anion secretion inhibitors on airway mucus morphology in isolated

More information

Respiratory System. Organization of the Respiratory System

Respiratory System. Organization of the Respiratory System Respiratory System In addition to the provision of oxygen and elimination of carbon dioxide, the respiratory system serves other functions, as listed in (Table 15 1). Respiration has two quite different

More information

Soluble Mediators, Not Cilia, Determine Airway Surface Liquid Volume in Normal and Cystic Fibrosis Superficial Airway Epithelia

Soluble Mediators, Not Cilia, Determine Airway Surface Liquid Volume in Normal and Cystic Fibrosis Superficial Airway Epithelia ARTICLE Soluble Mediators, Not Cilia, Determine Airway Surface Liquid Volume in Normal and Cystic Fibrosis Superficial Airway Epithelia Robert Tarran, Laura Trout, Scott H. Donaldson, and Richard C. Boucher

More information

Cystic Fibrosis Foundation Patient Registry 2013

Cystic Fibrosis Foundation Patient Registry 2013 5/9/2015 Targeting CFTR to Treat Cystic Fibrosis: Small Molecule Therapy Mary Ellen Kleinhenz, MD Director, UCSF Adult Cystic Fibrosis Program Professor of Medicine UCSF Division of Pulmonary, Critical

More information

Correspondence: Dr Sushil K. Kabra, Professor, Department of Pediatrics, AIIMS, New Delhi , India.

Correspondence: Dr Sushil K. Kabra, Professor, Department of Pediatrics, AIIMS, New Delhi , India. JOURNAL OF TROPICAL PEDIATRICS, VOL. 58, NO. 5, 2012 Comparison of Effects of 3 and 7% Hypertonic Saline Nebulization on Lung Function in Children with Cystic Fibrosis: A Double-Blind Randomized, Controlled

More information

CYSTIC FIBROSIS OBJECTIVES NO CONFLICT OF INTEREST TO DISCLOSE

CYSTIC FIBROSIS OBJECTIVES NO CONFLICT OF INTEREST TO DISCLOSE CYSTIC FIBROSIS Madhu Pendurthi MD MPH Staff Physician, Mercy Hospital Springfield, MO NO CONFLICT OF INTEREST TO DISCLOSE OBJECTIVES Epidemiology of Cystic Fibrosis (CF) Genetic basis and pathophysiology

More information

Porcine models of cystic fibrosis reveal male reproductive tract phenotype at birth

Porcine models of cystic fibrosis reveal male reproductive tract phenotype at birth This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Porcine

More information

Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland

Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland J Physiol 588.4 (2010) pp 713 724 713 Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland Marcelo A. Catalán 1, Tetsuji Nakamoto 1, Mireya Gonzalez-Begne 2, Jean M. Camden

More information

What location in the gastrointestinal (GI) tract has tight, or impermeable, junctions between the epithelial cells?

What location in the gastrointestinal (GI) tract has tight, or impermeable, junctions between the epithelial cells? CASE 32 A 17-year-old boy presents to his primary care physician with complaints of diarrhea for the last 2 days. The patient states that he just returned to the United States after visiting relatives

More information

Na absorption in the colon plays an important role

Na absorption in the colon plays an important role Japanese Journal of Physiology, 51, 435 444, 2001 The Effect of camp on Electrogenic Na Absorption in the Rat Distal Colon Yo TSUCHIYA and Yuichi SUZUKI Laboratory of Physiology, School of Food and Nutritional

More information

Hypertension affects 15% to 20% of adults in the

Hypertension affects 15% to 20% of adults in the Epithelial Sodium Channel Activity Is Not Increased in Hypertension in Whites Emma H. Baker, A. James Portal, Teresa A. McElvaney, Alison M. Blackwood, Michelle A. Miller, Nirmala D. Markandu, Graham A.

More information

HOW DISEASE ALTERING THERAPY IS CHANGING THE GOALS OF TREATMENT IN CF

HOW DISEASE ALTERING THERAPY IS CHANGING THE GOALS OF TREATMENT IN CF HOW DISEASE ALTERING THERAPY IS CHANGING THE GOALS OF TREATMENT IN CF Peter D. Sly MBBS, MD, FRACP, DSc OUTLINE Goals of CF treatment Drivers of early disease neutrophilic inflammation oxidative stress

More information

1. The barriers of the innate immune system to infection

1. The barriers of the innate immune system to infection Section 3.qxd 16/06/05 2:11 PM Page 12 12 SECTION THREE: Fleshed out 1. The barriers of the innate immune system to infection Questions What are the three characteristics of the innate immune system? What

More information

Hypertonic saline alters ion transport across the human airway epithelium

Hypertonic saline alters ion transport across the human airway epithelium Eur Respir J 21; 17: 19 199 Printed in UK all rights reserved Copyright #ERS Journals Ltd 21 European Respiratory Journal ISSN 93-1936 Hypertonic saline alters ion transport across the human airway epithelium

More information

Airway surface liquid antiviral activity in cystic fibrosis

Airway surface liquid antiviral activity in cystic fibrosis University of Iowa Iowa Research Online Theses and Dissertations Summer 2015 Airway surface liquid antiviral activity in cystic fibrosis Abigail Rae Berkebile University of Iowa Copyright 2015 Abigail

More information

MucilAir: a Novel Human 3D Airway Epithelium Model for Long Term Toxicity Testing

MucilAir: a Novel Human 3D Airway Epithelium Model for Long Term Toxicity Testing MucilAir: a Novel Human 3D Airway Epithelium Model for Long Term Toxicity Testing Samuel Constant, Ph.D., COO samuel.constant@epithelix.com Sàrl 14, Chemin des Aulx CH-1228 Plan les Ouates Genève - Switzerland

More information

Case Study What is the Relationship Between the Cell Membrane and Cystic Fibrosis?

Case Study What is the Relationship Between the Cell Membrane and Cystic Fibrosis? Names: Date: Case Study What is the Relationship Between the Cell Membrane and Cystic Fibrosis? Dr. Weyland examined a six month old infant that had been admitted to University Hospital earlier in the

More information

Abnormal Apical Cell Membrane in Cystic Fibrosis Respiratory Epithelium An In Vitro Electrophysiologic Analysis

Abnormal Apical Cell Membrane in Cystic Fibrosis Respiratory Epithelium An In Vitro Electrophysiologic Analysis Abnormal Apical Cell Membrane in Cystic Fibrosis Respiratory Epithelium An In Vitro Electrophysiologic Analysis C. U. Cotton, M. J. Stutts, M. R. Knowles, J. T. Gatzy, and R. C. Boucher Division ofpulmonary

More information

Targeted therapies to improve CFTR function in cystic fibrosis

Targeted therapies to improve CFTR function in cystic fibrosis Brodlie et al. Genome Medicine (2015) 7:101 DOI 10.1186/s13073-015-0223-6 REVIEW Targeted therapies to improve CFTR function in cystic fibrosis Malcolm Brodlie 1*, Iram J. Haq 2, Katie Roberts 2 and J.

More information

AQP0 Low Lens eyeball Cataract

AQP0 Low Lens eyeball Cataract Topics Kampo Medicine Water-Metabolism Regulatory Action of Chinese Herbal Medicine Yoichiro Isohama Field of Drug Activities, Bioscience Research Div. Graduate School of Kumamoto University 1. Introduction

More information

A Case of Cystic Fibrosis

A Case of Cystic Fibrosis Name(s) Date A Case of Cystic Fibrosis Dr. Weyland examined a six month old infant that had been admitted to University Hospital earlier in the day. The baby's parents had brought young Zoey to the emergency

More information

Sodium channel blockers and uridine triphosphate: effects on nasal potential difference in cystic fibrosis mice

Sodium channel blockers and uridine triphosphate: effects on nasal potential difference in cystic fibrosis mice Eur Respir J 2; 15: 146±15 Printed in UK ± all rights reserved Copyright #ERS Journals Ltd 2 European Respiratory Journal ISSN 93-1936 Sodium channel blockers and uridine triphosphate: effects on nasal

More information

THE ROLE OF CFTR MUTATIONS IN CAUSING CYSTIC FIBROSIS (CF)

THE ROLE OF CFTR MUTATIONS IN CAUSING CYSTIC FIBROSIS (CF) THE ROLE OF CFTR MUTATIONS IN CAUSING CYSTIC FIBROSIS (CF) Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210. Vertex and the Vertex triangle logo are registered trademarks for Vertex

More information

Mucus clearance as a primary innate defense mechanism for mammalian airways

Mucus clearance as a primary innate defense mechanism for mammalian airways PERSPECTIVE SERIES Innate defenses in the lung Jeffrey A. Whitsett, Series Editor Mucus clearance as a primary innate defense mechanism for mammalian airways Michael R. Knowles and Richard C. Boucher Cystic

More information

Transformational Treatments. PRESTON W. CAMPBELL, III, M.D. Executive Vice President for Medical Affairs

Transformational Treatments. PRESTON W. CAMPBELL, III, M.D. Executive Vice President for Medical Affairs Transformational Treatments PRESTON W. CAMPBELL, III, M.D. Executive Vice President for Medical Affairs Symptom-based CF Therapies 45 Median Predicted Survival Age of US Patients with Cystic Fibrosis 41

More information

Loss of CFTR Chloride Channels Alters Salt Absorption by Cystic Fibrosis Airway Epithelia In Vitro

Loss of CFTR Chloride Channels Alters Salt Absorption by Cystic Fibrosis Airway Epithelia In Vitro Molecular Cell, Vol. 2, 397 403, September, 1998, Copyright 1998 by Cell Press Loss of CFTR Chloride Channels Alters Salt Absorption by Cystic Fibrosis Airway Epithelia In Vitro Joseph Zabner, 1,7 Jeffrey

More information

Diseases of exocrine pancreas

Diseases of exocrine pancreas Diseases of exocrine pancreas The exocrine pancreas constitutes 80% to 85% of the organ and is composed of acinar cells that secrete enzymes needed for digestion. the accessory duct of Santorini, the main

More information

Goals Basic defect Pathophysiology Clinical i l signs and symptoms Therapy

Goals Basic defect Pathophysiology Clinical i l signs and symptoms Therapy CYSTIC FIBROSIS Lynne M. Quittell, M.D. Director, CF Center Columbia University Goals Basic defect Pathophysiology Clinical i l signs and symptoms Therapy What is Cystic Fibrosis? Chronic, progressive

More information

Evaluation of Second Generation Amiloride Analogs as Therapy for Cystic Fibrosis Lung Disease

Evaluation of Second Generation Amiloride Analogs as Therapy for Cystic Fibrosis Lung Disease 0022-3565/04/3113-929 938$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 311, No. 3 Copyright 2004 by The American Society for Pharmacology and Experimental Therapeutics 71886/1177582

More information

CYSTIC FIBROSIS FOUNDATION INFO-POD Information You Need to Make Benefits Decisions

CYSTIC FIBROSIS FOUNDATION INFO-POD Information You Need to Make Benefits Decisions CYSTIC FIBROSIS FOUNDATION INFO-POD Information You Need to Make Benefits Decisions Issue 1: Hypertonic Saline Summary: Preserving lung function is a crucial element in the care of the individual with

More information

AN IN VITRO STUDY OF AEROSOLIZED SURFACTANT CARRIER DEPOSITION AND DISPERSION ON AIRWAY SURFACE MODELS. Amy L. Marcinkowski

AN IN VITRO STUDY OF AEROSOLIZED SURFACTANT CARRIER DEPOSITION AND DISPERSION ON AIRWAY SURFACE MODELS. Amy L. Marcinkowski AN IN VITRO STUDY OF AEROSOLIZED SURFACTANT CARRIER DEPOSITION AND DISPERSION ON AIRWAY SURFACE MODELS by Amy L. Marcinkowski BS, Boston University, 2004 Submitted to the Graduate Faculty of School of

More information

How does COPD really work?

How does COPD really work? How does COPD really work? by Alex Goodell View online Where does COPD fit in the mix of respiratory diseases? I ve made a map of the major pathologies outlined in Robbins and First Aid (obviously these

More information

Cystic fibrosis and estrogens: a perfect storm

Cystic fibrosis and estrogens: a perfect storm Cystic fibrosis and estrogens: a perfect storm Pamela L. Zeitlin J Clin Invest. 2008;118(12):3841-3844. https://doi.org/10.1172/jci37778. Commentary Irreversible destruction and widening of the airways

More information

Tay Sachs, Cystic Fibrosis, Sickle Cell Anemia and PKU. Tay Sachs Disease (also called Hexosaminidase deficiency)

Tay Sachs, Cystic Fibrosis, Sickle Cell Anemia and PKU. Tay Sachs Disease (also called Hexosaminidase deficiency) Tay Sachs, Cystic Fibrosis, Sickle Cell Anemia and PKU Tay Sachs Disease (also called Hexosaminidase deficiency) Introduction 1. Tay Sachs is a rare condition named after 2 physicians, Tay and Sachs, who

More information

Biguang Tuo 1, Guorong Wen 1 and Ursula Seidler 2. Introduction

Biguang Tuo 1, Guorong Wen 1 and Ursula Seidler 2. Introduction British Journal of Pharmacology (2009), 158, 1313 1321 2009 The Authors Journal compilation 2009 The British Pharmacological Society All rights reserved 00071188/09 www.brjpharmacol.org RESEARCH PAPER

More information

Pediatrics Grand Rounds 18 Sept University of Texas Health Science Center. + Disclosure. + Learning Objectives.

Pediatrics Grand Rounds 18 Sept University of Texas Health Science Center. + Disclosure. + Learning Objectives. Disclosure Dr Donna Willey Courand receives research support from Cystic Fibrosis Therapeutics The Cystic Fibrosis Foundation Children with Special Health Care Needs Cystic Fibrosis 05: Improving Survival

More information

Studies on Airway Surface Liquid in Connection with Cystic Fibrosis

Studies on Airway Surface Liquid in Connection with Cystic Fibrosis Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 393 Studies on Airway Surface Liquid in Connection with Cystic Fibrosis INNA KOZLOVA ACTA UNIVERSITATIS UPSALIENSIS

More information

HISTOLOGY OF THE RESPIRATORY SYSTEM I. Introduction A. The respiratory system provides for gas exchange between the environment and the blood. B.

HISTOLOGY OF THE RESPIRATORY SYSTEM I. Introduction A. The respiratory system provides for gas exchange between the environment and the blood. B. HISTOLOGY OF THE RESPIRATORY SYSTEM I. Introduction A. The respiratory system provides for gas exchange between the environment and the blood. B. The human respiratory system may be subdivided into two

More information

NIH Public Access Author Manuscript Kidney Int. Author manuscript; available in PMC 2013 November 01.

NIH Public Access Author Manuscript Kidney Int. Author manuscript; available in PMC 2013 November 01. NIH Public Access Author Manuscript Published in final edited form as: Kidney Int. 2013 May ; 83(5): 779 782. doi:10.1038/ki.2012.468. Need to quickly excrete K +? Turn off NCC Alicia A. McDonough 1 and

More information

Cystic Fibrosis. Presented by: Chris Belanger & Dylan Medd

Cystic Fibrosis. Presented by: Chris Belanger & Dylan Medd Cystic Fibrosis Presented by: Chris Belanger & Dylan Medd Outline What is Cystic Fibrosis? Signs, Symptoms & Diagnosis Who does it effect? General effects on daily life Managing Cystic Fibrosis Exercise

More information

Cystic Fibrosis. Parkland College. Monica Rahman Parkland College. Recommended Citation

Cystic Fibrosis. Parkland College. Monica Rahman Parkland College. Recommended Citation Parkland College A with Honors Projects Honors Program 2013 Cystic Fibrosis Monica Rahman Parkland College Recommended Citation Rahman, Monica, "Cystic Fibrosis" (2013). A with Honors Projects. 98. http://spark.parkland.edu/ah/98

More information

A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism

A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11710 11715, October 1997 Physiology A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism EDITH HUMMLER*, PIERRE BARKER, COLLEEN TALBOT, QING

More information

Time Point to Perform Lung Function Tests Evaluating the Effects of an Airway Clearance Therapy Session in Cystic Fibrosis

Time Point to Perform Lung Function Tests Evaluating the Effects of an Airway Clearance Therapy Session in Cystic Fibrosis Time oint to erform Lung Function Tests Evaluating the Effects of an Airway Clearance Therapy Session in Cystic Fibrosis Maria Cecilia Rodriguez Hortal MSc and Lena Hjelte MD hd BACKGROUND: Lung function

More information

ORIGINAL ARTICLE. Potential Role of Abnormal Ion Transport in the Pathogenesis of Chronic Sinusitis

ORIGINAL ARTICLE. Potential Role of Abnormal Ion Transport in the Pathogenesis of Chronic Sinusitis ORIGINAL ARTICLE Potential Role of Abnormal Ion Transport in the Pathogenesis of Chronic Sinusitis Kenji Dejima, MD; Scott H. Randell, PhD; M. Jackson Stutts, PhD; Brent A. Senior, MD; Richard C. Boucher,

More information

Mucus Clearance and Lung Function in Cystic Fibrosis with Hypertonic Saline

Mucus Clearance and Lung Function in Cystic Fibrosis with Hypertonic Saline The new england journal of medicine original article Mucus Clearance and Lung Function in Cystic Fibrosis with Hypertonic Saline Scott H. Donaldson, M.D., William D. Bennett, Ph.D., Kirby L. Zeman, Ph.D.,

More information

Cystic Fibrosis Impact on Cellular Function

Cystic Fibrosis Impact on Cellular Function John Carroll University Carroll Collected Senior Honors Projects Theses, Essays, and Senior Honors Projects Spring 2014 Cystic Fibrosis Impact on Cellular Function Preeti Rao John Carroll University, prao14@jcu.edu

More information

Pharmacogenomics in Rare Diseases: Development Strategy for Ivacaftor as a Therapy for Cystic Fibrosis

Pharmacogenomics in Rare Diseases: Development Strategy for Ivacaftor as a Therapy for Cystic Fibrosis Pharmacogenomics in Rare Diseases: Development Strategy for Ivacaftor as a Therapy for Cystic Fibrosis Federico Goodsaid Vice President Strategic Regulatory Intelligence Vertex Pharmaceuticals Is there

More information

Increasing Concentration of Inhaled Saline with or without Amiloride Effect on Mucociliary Clearance in Normal Subjects

Increasing Concentration of Inhaled Saline with or without Amiloride Effect on Mucociliary Clearance in Normal Subjects Increasing Concentration of Inhaled Saline with or without Amiloride Effect on Mucociliary Clearance in Normal Subjects Namita Sood, William D. Bennett, Kirby Zeman, James Brown, Carla Foy, Richard C.

More information

Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia

Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia Chloride channels in the apical membrane of normal and cystic fibrosis airway and intestinal epithelia MATTHEW P. ANDERSON, DAVID N. SHEPPARD, HERBERT A. BERGER, AND MICHAEL J. WELSH Howard Hughes Medical

More information

Ion Composition of Airway Surface Liquid of Patients with Cystic Fibrosis as Compared with Normal and Disease-control Subjects

Ion Composition of Airway Surface Liquid of Patients with Cystic Fibrosis as Compared with Normal and Disease-control Subjects Ion Composition of Airway Surface Liquid of Patients with Cystic Fibrosis as Compared with Normal and Disease-control Subjects Michael R. Knowles,* Joseph M. Robinson,* Robert E. Wood, Charles A. Pue,*

More information

Human Genetic Diseases. AP Biology

Human Genetic Diseases. AP Biology Human Genetic Diseases 1 2 2006-2007 3 4 5 6 Pedigree analysis Pedigree analysis reveals Mendelian patterns in human inheritance data mapped on a family tree = male = female = male w/ trait = female w/

More information

Pediatrics Grand Rounds 13 November University of Texas Health Science Center at San Antonio. Learning Objectives

Pediatrics Grand Rounds 13 November University of Texas Health Science Center at San Antonio. Learning Objectives Nationwide Newborn Screening for Cystic Fibrosis: Finally Creating an Opportunity for All Patients to Have Better Outcomes Philip M Farrell, MD, PhD* University of Wisconsin-Madison *No disclosures other

More information