Severe Community-acquired Pneumonia Risk Factors and Follow-up Epidemiology

Size: px
Start display at page:

Download "Severe Community-acquired Pneumonia Risk Factors and Follow-up Epidemiology"

Transcription

1 Severe Community-acquired Pneumonia Risk Factors and Follow-up Epidemiology MAURICIO RUIZ, SANTIAGO EWIG, ANTONI TORRES, FRANCISCO ARANCIBIA, FRANCESC MARCO, JOSEP MENSA, MIGUEL SANCHEZ, and JOSE ANTONIO MARTINEZ Servei de Pneumologia i Al lèrgia Respiratòria, Servei de Microbiologia, Servei de Malalties Infeccioses, Servei de Urgències, Hospital Clínic i Provincial, Universitat de Barcelona, Barcelona, Spain The aim of the study was to determine risk factors for severe community-acquired pneumonia (CAP) as well as to compare microbial patterns of severe CAP to a previous study from our respiratory intensive care unit (ICU) originating from 1984 to Patients admitted to the ICU according to clinical judgment were defined as having severe CAP. For the study of risk factors, a hospital-based case-control design was used, matching each patient with severe CAP to a patient hospitalized with CAP but not requiring ICU admission. Microbial investigation included noninvasive and invasive techniques. Overall, 89 patients with severe CAP were successfully matched to a control patient. The presence of an alcohol ingestion of 80 g/d (odds ratio [OR] 3.9, 95% confidence interval [CI] 1.4 to 10.6, p 0.008) was found to be an independent risk factor for severe CAP and prior ambulatory antimicrobial treatment (OR 0.37, 95% CI 0.17 to 0.79, p 0.009) to be protective. Streptococcus pneumoniae (24%) continued to be the most frequent pathogen; however, 48% of strains were drug-resistant. Atypical bacterial pathogens were significantly more common (17% versus 6%, p 0.006) and Legionella spp. less common (2% versus 14%, p 0.004) than in our previous study, whereas gramnegative enteric bacilli (GNEB) and Pseudomonas aeruginosa continued to represent important pathogens (6% and 5%, respectively). Our findings provide additional evidence for the importance of the initiation of early empiric antimicrobial treatment for a favorable outcome of CAP. Variations of microbial patterns are only in part due to different epidemiological settings. Therefore, initial empiric antimicrobial treatment will also have to take into account local trends of changing microbial patterns. Ruiz M, Ewig S, Torres A, Arancibia F, Marco F, Mensa J, Sanchez M, Martinez JA. Severe community-acquired pneumonia: risk factors and follow-up epidemiology. AM J RESPIR CRIT CARE MED 1999;160: (Received in original form January 26, 1999 and in revised form April 28, 1999) Supported by Commisionat per a Universitats i Recerca de la Generalitat de Catalunya 1997 SGR 00086, and IDIBAPS Hospital Clínic Barcelona. Dr. Arancibia was a 1997 research fellow from the Insituto Nacional del Tórax, Santiago de Chile, Chile. Dr. Ewig was a research fellow from the Medizinische Universitätsklinik and Poliklinik Bonn, Bonn, Germany. Dr. Ruiz was a 1997 European Respiratory Society research fellow from the Hospital Clínico de la Universidad de Chile, Santiago de Chile, Chile. Correspondence and requests for reprints should be addressed to Dr. Antoni Torres, Hospital Clínic i Provincial, Servei de Pneumologia i Al lèrgia Respiratòria, Villarroel 170, Barcelona, Spain. atorres@medicina.ub.es Am J Respir Crit Care Med Vol 160. pp , 1999 Internet address: Severe community-acquired pneumonia (CAP) is now generally recognized as an entity of its own requiring a specific management approach (1 10). However, whereas risk factors for CAP have been studied, no study has specifically addressed risk factors for severe CAP. Because severe CAP is associated with a mortality of around 30%, the identification of corresponding risk factors may help to define better strategies of prevention and early recognition of severe CAP. With regard to the causes of severe CAP, Streptococcus pneumoniae was consistently found to represent the most frequent pathogen. On the other hand, considerable differences were evident with regard to the frequencies of the remaining pathogens. This is especially true for Legionella spp., Staphylococcus aureus, atypical bacterial pathogens, gram-negative enteric bacilli (GNEB), and Pseudomonas aeruginosa. Whereas part of these differences are likely to reflect different epidemiological settings, potential changes of microbial patterns over time in the same epidemiological setting have only rarely been determined (10). However, since the publication of our first study (3), the frequent use of macrolides in the initial antimicrobial treatment of CAP as well as the emergence of drug-resistant S. pneumoniae and the identification of Chlamydia pneumoniae may have significantly affected current microbial patterns of severe CAP. We therefore carried out a study of risk factors and followup epidemiology of severe CAP in our respiratory intensive care unit (ICU). Risk factors were determined by a hospital-based case-control design. Current microbial patterns were compared with our previous study originating from 1984 to 1987 (3). METHODS Patient Population During the period from October 1996 until September 1998, we prospectively studied all patients hospitalized with CAP at our 1,000-bed

2 924 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL teaching hospital after they had been investigated by our general medical emergency department. The diagnosis of CAP was made in the presence of a new infiltrate on chest radiograph together with symptoms suggestive of a lower respiratory tract infection and no alternative diagnosis emerging during follow-up. Overall, 91 patients were admitted to the ICU. These patients were defined as having severe CAP. To detect risk factors of severe CAP, each study patient was matched with a patient hospitalized (but not admitted at the ICU) because of CAP within 3 d. The decision about ICU admission was made according to clinical judgment by the physician in charge. Patients in whom eventual ICU admission was denied because of advanced age and/or end-stage disease were not considered as potential control patients. Matching according to age and comorbidity was not performed because these factors were considered potential independent risk factors. If more than one patient met the matching criterion of hospitalization within 3 d, the patient being admitted most closely to the case with severe CAP was selected. Only two patients (2%) with severe CAP could not be appropriately matched. Patients with severe immunosuppression as defined by the presence of solid organ or bone marrow transplantation, human immunodeficiency virus (HIV) infection, neutropenia less than /L, treatment with steroids more than 20 mg prednisolone-equivalent per day for more than at least 2 wk, and in any dose as part of an immunosuppressive combination regimen with azathioprine, cyclosporin, and/or cyclophosphamide were excluded. Microbiologic Evaluation The microbiologic evaluation included sputum, blood cultures, serological sampling (at admission and within the third and sixth week thereafter), and pleural puncture in case of large pleural effusions. Transthoracic needle punction, tracheobronchial aspirates (TBAs), and bronchoscopic sampling techniques (protected specimen brush [PSB] and bronchoalveolar lavage [BAL]) were applied according to clinical judgment. Sputum was stained for Gram and Giemsa and only cultured if more than 25 granulocytes and less than 10 epithelial cells were present. PSB and BAL fluid (BALF) samples were cultured for aerobic and anaerobic bacterial pathogens, mycobacteria, and fungi. In addition, they were evaluated by direct fluorescence antibody (DFA) test for Legionella spp. Undiluted and serially diluted respiratory secretions were plated on blood-sheep agar, CDC agar, chocolate agar as well as Sabouraud s agar. All cultures (including blood and pleural effusion cultures) were incubated at 37 C in aerobic and anaerobic culture and in CO 2 -enriched atmosphere. Identification of microorganisms was performed according to standard methods (11). Negative bacterial cultures were discarded after 5 d, and negative fungal cultures after 4 wk. The cause of pneumonia was classified as presumptive if a valid sputum sample yielded one or more predominant bacterial strains. It was considered definite if one of the following criteria were met: (1) blood cultures yielding a bacterial or fungal pathogen (in the absence of an apparent extrapulmonary focus); (2) pleural fluid and transthoracic needle aspiration cultures yielding a bacterial pathogen; (3) seroconversion, i.e., a fourfold rise in IgG titers for C. pneumoniae (IgG 1:512), Chlamydia psittaci (IgG 64), Legionella pneumophila 1:128, Coxiella burnetii 1:80, and respiratory viruses, i.e., influenza virus A and B, parainfluenza virus 1 3, respiratory syncytical virus (RSV), adenovirus; (4) single elevated IgM titer for C. pneumoniae 1:32, C. burnetii 1:80, and Mycoplasma pneumoniae (any titer); (5) a single titer 1:128 or a positive urinary antigen for L. pneumophila; (6) bacterial growth in cultures of TBAs 10 5 cfu/ml, in PSB 10 3 cfu/ml, and in BAL fluid (BALF) 10 4 cfu/ml. Growth of fungi in respiratory samples was only considered diagnostic in the presence of a concomitant positive blood culture with the same microorganism. Independently of microbiological results, a diagnosis of probable aspiration was made in case of witnessed aspiration or in the presence of risk factors for aspiration (severely altered consciousness, abnormal gag reflex, or abnormal swallowing mechanism). Analysis of Risk Factors for Severe CAP In study patients and in control patients, the following parameters were protocolled and tested as possible risk factors for severe CAP: age ( 65/ 65 yr), male sex, residency in nursing home, smoking status (smokers defined as current cigarette smokers of 10 cigarettes/d during at least the last year), alcoholism (alcohol consumption 80 g/d during the last year), history of alcoholism (alcohol consumption of 80 g/d during at least one but not in the last year), presence and number of comorbid illnesses (cardiac, pulmonary, and chronic obstructive pulmonary disease [COPD] in particular, hepatic and liver cirrhosis in particular, renal, neurological, and dementia in particular, diabetes mellitus and insulin-dependent diabetes mellitus in particular; presence of 2/ 2 comorbid illnesses), treatment with oral corticosteroids 20 mg/d, previous hospitalizations within the last year (yes/no), presence of prior ambulatory antimicrobial treatment (as defined by any oral antimicrobial treatment administered during the evolution of symptoms attributable to the current pneumonia episode), origin of disease identified as S. pneumoniae, penicillin- or cephalosporin-resistant S. pneumoniae, Haemophilus influenzae, S. aureus, Legionella spp., GNEB and P. aeruginosa, atypical bacterial pathogens (M. pneumoniae, C. pneumoniae, C. burnetii), atypical viral pathogens (influenza virus, parainfluenza virus, RSV, Adenovirus), bacteremia, nondiagnostic initial microbiologic evaluation, and aspiration. Statistics Results are expressed as means SD. Continuous variables were compared using the Student s t test, categorial variables using the chisquare test or Fisher exact test, where appropriate. Analysis of risk factors was performed by uni- and multivariate analysis. Multivariate analysis was performed by logistic regression with stepwise forward selection. All reported p values are two-tailed. The level of significance was set at 5%. RESULTS Patient Descriptives Mean age was yr (range 16 to 86) in patients with severe CAP, and yr (range 23 to 98) in control subjects TABLE 1 CLINICAL SYMPTOMS, RADIOGRAPHIC PATTERNS, AND COMORBID ILLNESSES Patients Controls p Value Clinical symptoms Fever ( 38.3 C) Chills Cough Expectoration Chest pain Dyspnea Mental confusion Hypotension (systolic blood pressure 90 mm Hg) Radiographic patterns Alveolar Interstitial Mixed Bilateral infiltrates Multilobar infiltrates ( 2 lobes) Pleural effusion Comorbid illnesses At least one comorbid illness present Cardiac Pulmonary Renal Hepatic Diabetes mellitus Neurological

3 Ruiz, Ewig, Torres, et al.: Risk Factors for Severe CAP 925 TABLE 2 ANTIMICROBIAL TREATMENT IN PATIENTS WITH SEVERE CAP AND CONTROL PATIENTS Severe CAP n Controls n p Value Monotherapy 7 Monotherapy Aminopen -laci Aminopen -laci Macrolide Macrolide 3.gen.CS Linezolid Dual combination therapy 65 Dual combination therapy Macrolide 3.gen.CS Macrolide 3.gen.CS 3.gen.CS AG or clindamycin Macrolide aminopen -laci Macrolide quinolone 4.gen.CS AG Triple combination therapy 13 Triple combination therapy Macrolide 3.gen.CS Three of the following: one of the following: Macrolide/3.gen.CS/ Cloxacillin/rifampicin/ 4.gen.CS/clindamycin/AG cotrimoxazole/ag Quadruple combination therapy Macrolide 3.gen.CS two of the following: Vancomycin/imipenem/ rifampicin/cotrimoxazole/ag Definition of abbreviations: Aminopen -laci aminopenicillin plus -lactamase-inhibitor; 3./4.gen.CS third-/fourth-generation cephalosporin; AG aminogylcoside. (p 0.03). Sixty-seven patients (75%) were male, and 22 (25%) female, as compared with 58 (65%) and 31 (35%), respectively (p 0.19). Four and five patients, respectively, were admitted from nursing homes (p 1.0). Clinical symptoms and radiographic patterns as well as comorbid illnesses of patients and control subjects are summarized in Table 1. As expected, clinical symptoms known to be associated with adverse outcome (absence of chills, absence of chest pain, mental confusion, hypotension, and bilateral or multilobar infiltrates) were significantly more frequent in patients with severe CAP. Moreover, dyspnea was significantly more frequent in patients and cough and expectoration in control subjects. Both patients and control subjects had similar proportions of patients with comorbid illnesses (83% versus 80%), and in both populations pulmonary comorbid illnesses were the most frequent (54%). According to the 10 severity criteria proposed by the American Thoracic Society (ATS) guidelines (12), eight criteria were present in two patients admitted to the ICU, seven in two patients, six in nine patients, five in 14 patients, four in 17 patients, three in 18 patients, two in 15 patients, one in 11 patients, and none in only one patient. The corresponding numbers in control patients were six criteria in one patient, four in one patient, three in eight patients, two in 23 patients, one in 21 patients, and none in 35 patients (p ). The mean number of severity criteria was versus (p ). Sixty-eight of 89 (76%) cases met the criteria of severe CAP, and 87 of 89 (98%) control subjects of nonsevere CAP according to a rule recently proposed by our group (13). Antimicrobial Treatment Forty-three patients received prior oral ambulatory antimicrobial treatment as defined previously. This included: benzylpenicillin (n 1), aminopenicillin (n 21), oral cephalosporin (n 6), macrolides (n 6), cotrimoxazole (n 2), quinolone (n 1), and rifampicin (n 1). In five patients, the prior antimicrobial regimen could not be reliably assessed. Initial empiric antimicrobial treatment after admission to the hospital in patients and control subjects comprised monotherapy (n 26), dual combination (n 129), triple combination (n 19), and quadruple combination (n 4) therapy. Monotherapy was significantly less often in patients with severe CAP (19 versus 7), whereas triple and quadruple combination therapy was more frequent in these patients (13 and 4 versus 6 and none) (Table 2). Outcome Patients with severe CAP were hospitalized significantly longer than control subjects (15 10 versus 9 6 d, p ). Respiratory failure (ratio of arterial oxygen pressure to fraction of inspired oxygen [Pa O2 /FI O2 ] 250) was present in 55 (62%) patients with severe CAP compared with 29 (33%) control patients, and 51 (57%) required mechanical ventilation at any time compared with none in control patients. Septic shock occurred in 32 (36%) patients with severe CAP compared with none in control patients. Twenty-six patients (29%) with severe CAP died, whereas all control patients survived (p for all comparisons). Microbial Etiology The microbial origin of disease could be determined in 47 of 89 (53%) patients with severe CAP and 43 of 89 (48%) control patients (p 0.55). Overall, 65 pathogens were isolated in patients with severe CAP; 31 patients had one pathogen, 14 patients had two, and two patients had three pathogens. Correspondingly, 58 pathogens were isolated in control patients, with 29 patients disclosing one pathogen, 13 patients two, and one patient three pathogens. Mixed infections in patients with severe CAP are listed in Table 3. Four double infections and two triple infections included combined typical and atypical bacterial pathogens (7%). Two additional double infections included P. aeruginosa (2%). Moreover, one double infection with typical pathogens included intermediately resistant strains and two further infections highly resistant strains of S. pneumoniae (3%). The corresponding numbers for control patients were four double infections and one triple infection including combined typical and atypical bacterial pathogens (6%) and one pseudomonal

4 926 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL infection (1%) as well as one intermediately resistant and one highly resistant strain of S. pneumoniae involved in double infections with typical pathogens (2%). S. pneumoniae was the most frequent pathogen in both groups (n 21 versus n 17). Resistance to penicillin was 43% in patients with severe CAP and 59% in control patients. With regard to cephalosporins and macrolides, the corresponding proportions were 14% and 41%, as well as 24% and 33%, respectively (p not significant [NS] for all comparisons). Resistance rates to any drug were 48% and 65%, respectively. In severe pneumonia, the second and third most common pathogens were C. pneumoniae and C. burnetii (n 6 each), and atypical bacterial pathogens summed up to n 15. GNEB and P. aeruginosa accounted for n 9 pathogens (n 5 and n 4 pathogens, respectively), and represented the third most common group of pathogens. Conversely, H. influenzae (n 9) and influenza virus (n 5) were the second and third most common pathogens in control patients. The GNEB and group of atypical bacterial pathogens (n 9 pathogens), and P. aeruginosa (n 5 pathogens; corresponding to n 3 and n 2 pathogens, respectively), were equally frequent. However, no pathogens or grouped pathogens were significantly more frequent in cases than in control patients (Table 4). In nonsurvivors with cause of disease established, 11 of 15 patients (73%) died with typical bacterial pathogens (mainly S. pneumoniae [n 4], S. aureus [n 1], Escherichia coli [n 3] and P. aeruginosa [n 2]), and in patients with septic shock and cause of disease established, the corresponding proportion was 18 of 20 (90%) (mainly S. pneumoniae [n 11], S. aureus [n 1], E. coli [n 1], and P. aeruginosa [n 3]). A microbial diagnosis in patients with severe CAP and control patients was based on the following media: sputum n 9 versus 26 (p 0.001), blood culture n 13 versus 11 (p 0.66), serology n 22 versus 21 (p 0.86), TBAs n 20 versus 0 (p ), transthoracic puncture n 3 versus 0 (p 0.25), and others (pleural fluid culture, PSB, and BALF n 1 versus 0 each, and Legionella antigen n 0 versus 1). TABLE 3 MIXED INFECTIONS IN PATIENTS WITH SEVERE CAP Pathogens Number Sum Double infections T/T 3 S. pneumoniae H. influenzae 3 T/A 4 S. pneumoniae C. burnetii 1 H. influenzae M. pneumoniae 1 S. aureus Legionella spp. 1 Moraxella catarrhalis C. pneumoniae 1 T/V 3 S. pneumoniae Influenza virus A 2 S. pneumoniae Parainfluenza virus 1 1 T/T-P 1 S. pneumoniae P. aeruginosa 1 T-P/A 2 P. aeruginosa C. pneumoniae 1 P. aeruginosa C. burnetii 1 A/A 1 C. pneumoniae C. burnetii 1 Triple infections T/T/A 1 S. pneumoniae H. influenzae C. pneumoniae 1 T/A/A 1 Streptococcus viridans C. pneumoniae C. burnetii 1 Definition of abbreviations: T typical pathogens; A atypical bacterial pathogens (including Legionella spp.); V viral pathogens; T-P typical pathogen P. aeruginosa. TABLE 4 ETIOLOGY OF SEVERE AND NONSEVERE HOSPITALIZED CAP Pathogen Patients Controls p Value S. pneumoniae Penicillin resistance Intermediate 7 4 High 2 6 Cephalosporin resistance Intermediate 3 5 High 0 2 Macrolide resistance Any drug resistance H. influenzae M. catarrhalis S. aureus Legionella spp GNEB E. coli Klebsiella pneumoniae Serratia spp Proteus spp P. aeruginosa Atypical bacterial pathogens M. pneumoniae C. pneumoniae C. burnetii Atypical viral pathogens Influenza virus Parainfluenza virus RSV Adenovirus Others* Aspiration Unknown * Streptococcus viridans (1/1), Enterococcus spp. (1/10), Veillonella spp. (0/1), Candida spp. (1/0). Comparison of Causes of Severe CAP to Our Previous Study When comparing the causes of severe CAP to our previous study conducted between 1984 and 1987 (3), three significant changes were evident: a lower incidence of Legionella spp.; a higher incidence of C. burnetii; and a significant role for TABLE 5 COMPARISON OF MICROBIAL ETIOLOGIES OF PATIENTS WITH SEVERE CAP IN THE PRESENT STUDY AND IN OUR PREVIOUS STUDY CONDUCTED BETWEEN (3) Pathogen Present Study Previous Study n % n % p Value S. pneumoniae Drug-resistant S. pneumoniae H. influenzae M. catarrhalis S. aureus Legionella spp GNEB P. aeruginosa Atypical bacterial pathogens M. pneumoniae C. pneumoniae* C. burnetii Atypical viral pathogens* Others Negative * Not tested for in our previous study.

5 Ruiz, Ewig, Torres, et al.: Risk Factors for Severe CAP 927 Factor TABLE 6 UNIVARIATE ANALYSIS OF RISK FACTORS FOR SEVERE CAP C. pneumoniae and atypical viral pathogens, both of which were not tested for in our previous study. Moreover, the incidence of H. influenzae was close to significantly higher (p 0.06). S. pneumoniae, and, to a lesser extent, GNEB and P. aeruginosa continued to represent frequent pathogens (Table 5). Risk Factors of Severe CAP In univariate analysis, an alcohol ingestion of 80 g/d was associated with severe CAP. The presence of prior ambulatory antimicrobial treatment was protective against severe CAP. The prior ambulatory antimicrobial regimen was appropriate in only one of four (25%) patients with definite cause established and severe CAP compared with four of 10 (40%) control patients (p NS). Renal disease as well as prior treatment with corticosteroids were additional risk factors close to significance (p 0.1). Neurological disease was more frequent in control patients. All other variables tested were not associated with severe CAP at a p level of 0.1 (Table 6). In multivariate analysis including alcohol ingestion of 80 g/d and presence of prior ambulatory antimicrobial treatment, both factors remained independently associated with severe CAP (Table 7). The additional inclusion of renal disease, neurological disease, liver cirrhosis as well as prior treatment with corticosteroids did not change the results. This was also true when the model was adjusted for age. DISCUSSION Present in Patients/ Controls OR 95% CI p Value Age 65 yr 52/ Male sex 67/ Residency in nursing home 4/ Smokers 25/ Alcoholism 20/ History of alcoholism 4/ Cardiac illness 22/ Pulmonary illness 48/ COPD (in particular) 39/ Hepatic illness 11/ Liver cirrhosis (in particular) 6/ Renal disease 9/ Neurological illness 7/ Dementia (in particular) 2/ Diabetes mellitus 14/ Insulin-dependent diabetes mellitus (in particular) 5/ Presence of 2 comorbidities 34/ Prior treatment with corticosteroids 10/ Previous hospitalizations 8/ Prior ambulatory antimicrobial treatment 15/ Bacteremia 13/ TABLE 7 MULTIVARIATE ANALYSIS OF RISK FACTORS FOR SEVERE CAP Factor OR 95% CI p Value Alcoholism Prior ambulatory antimicrobial treatment This study provides two important insights: first, the presence of an alcohol ingestion of 80 g/d was found to be an independent risk factor for severe CAP and prior ambulatory antimicrobial treatment to be protective; second, the causes of severe pneumonia revealed important differences when compared with our study originating from 1984 to 1987 (3). The most striking changes included a lower frequency of legionellosis and the importance of atypical bacterial as well as viral pathogens that were not tested for in our previous report. On the other hand, S. pneumoniae, and, to a lesser extent, GNEB and P. aeruginosa continued to be leading pathogens. In this study on risk factors of severe CAP, we decided to rely on a hospital-based design. A methodological shortcoming of this design consists of potential biases originating from referral habits. This must be taken into account when interpreting our findings; for example, the fact that control patients were found to have an increased age and more frequently neurological comorbid illness compared with severe pneumonia patients is most probably due to the fact that younger patients with severe pneumonia were more readily referred to a tertiary care hospital. Moreover, the decision to hospitalize a patient implies at least moderate severity of pneumonia in the majority of cases, precluding the identification of highly prevalent potential risk factors such as COPD, chronic heart failure, or diabetes mellitus. On the other hand, the hospital physician may more confidently rely on risk factors identified in hospital-based designs because the patients studied are more likely to be similar to those he will have to treat. In studies of severe CAP published so far, COPD, alcoholism, chronic heart disease, and diabetes mellitus were the most common comorbid illnesses (3, 4, 6, 9, 14). In addition, lung disease, bronchial asthma, and heart disease were found to be risk factors of pneumonia in the elderly (15). Therefore, these conditions were expected to be potential factors predisposing to severe CAP. Nevertheless, pulmonary comorbidity, chronic heart disease, liver disease, and diabetes mellitus were not found to be associated with severe CAP, even when specified for COPD, liver cirrhosis, and insulin-dependent diabetes mellitus. This may be a result of the hospital-based approach discussed previously as well as the relatively limited number of patients studied. The presence of renal disease as a risk factor was close to significance. Somewhat surprisingly, only few studies of severe CAP have reported patients with chronic renal failure as a comorbid condition (4, 14). We found alcoholism (as defined by a daily alcohol intake of 80 g/d) to represent an important independent risk factor also for severe CAP. This finding is in line with a previous study from our hospital where high alcohol intake ( 100 g/d in men and 80 g/d in women) was found to be the only independent risk factor of CAP and also to be significantly associated with death (16). In another study, alcoholism was also described as a risk factor of CAP in the elderly (15). Alcoholism has long been suggested to bear a potential role in the pathogenesis of CAP by reducing alertness and favoring aspiration and, possibly, also by an impairment of several local and systemic host immune mechanisms, especially of neutrophil and lymphocyte functions (17, 18). In the present study, a history of high alcohol intake was not associated with an increased risk of severe CAP. Accordingly, in our previous study, neither the total lifetime dose of alcohol nor a history of alcoholism were identified as risk factors, suggesting that acute effects of alcohol consumption are most important for the development of pneumonia. There was a trend for treatment with corticosteroids 20 mg/d to be associated with severe CAP. This finding suggests that even a low dose of corticosteroids has immunosuppressive effects favoring severe pulmonary infection independent of the underlying disease. By the same token, it at least does

6 928 AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL not support the hypothesis that preexisting treatment with low doses of corticosteroids may modify favorably the inflammatory response. S. pneumoniae, GNEB, P. aeruginosa as well as bacteremia failed to be significantly associated with severe CAP, all of which were found to bear adverse prognostic potential in several previous studies (3, 6, 8, 14, 19). This failure may be due to age distribution, the use of hospitalized patients as controls, and the limited number of patients studied. Nevertheless, there was a trend toward a higher incidence of GNEB and P. aeruginosa in severe CAP. Accordingly, typical pathogens (mainly S. pneumoniae, S. aureus, E. coli, and P. aeruginosa) were predominant in nonsurvivors as well as in patients presenting with septic shock. Prior ambulatory antimicrobial treatment was protective against severe CAP also in multivariate analysis. Because of the limited number of pretreated patients with definite cause of disease, we were not able to establish a significant relation of inappropriate ambulatory treatment and severe CAP. Nevertheless, consistent with our finding, two studies examining prognostic factors of severe CAP have demonstrated the adverse prognostic potential of inappropriate or a delay in appropriate initial antimicrobial treatment (3, 7). Rapid empirical antimicrobial treatment seems to be of paramount importance for the course of CAP. Most probably, the potentially harmful inflammatory response to the underlying pathogens is most effectively limited by an early reduction of the bacterial load, whereas later on the inflammatory cascades may equally run relatively independently of the initial pathogens and, therefore, of antimicrobial treatment (20, 21). Because current antibiotics do effectively reduce the bacterial load within the first 24 h in the presence of a susceptible pathogen, the most important concern is to introduce them as early as possible. The comparison of current microbial patterns of patients with severe CAP with previous findings from our group (3) must be interpreted with caution because several diagnostic techniques were not applied in the latter series. These include validated sputum cultures, and serology for C. pneumoniae and viruses. Accordingly, the significantly higher incidence of atypical bacterial pathogens is in part explained by the emergence of C. pneumoniae which was not considered during our previous study period. Although this pathogen is usually found in mild to moderate CAP, it has been also found to cause severe CAP (22). The frequency of M. pneumoniae was similar (3% versus 6%). There was, however, also an unexpected high incidence of C. burnetii, a pathogen not detected in our previous study. The reasons for this are unclear. A comparison of the incidence of viral pathogens is also not possible because these pathogens were not investigated in our previous study. Overall, our findings confirm an important role for atypical bacterial and viral pathogens in severe CAP. Perhaps the most important change is the significantly lower incidence of severe legionellosis. Recent studies originating from Spain have provided some evidence for a generally decreasing incidence of legionellosis (9, 19, 23). In addition, a British follow-up epidemiological study conducted at the same ICU reported only half of cases of severe legionellosis compared with the previous study (16% versus 30%, p 0.08) (1, 10). A possible explanation for this decreasing incidence of severe legionellosis may be a more widespread early use of macrolides. As expected, S. pneumoniae continued to be the leading pathogen in severe CAP. However, the emergence of drugresistant strains has been dramatic, leading to a high incidence in severe CAP as well as in control patients in our present study. The initiation of an appropriate antimicrobial treatment taking into account these changing susceptibility patterns is pivotal, because we recently could show that the outcome is not affected by drug resistance in the presence of an appropriate antimicrobial treatment (24). GNEB and P. aeruginosa continued to be frequent pathogens in the present study (6% and 5%, respectively). This finding is particularly important because there are considerable variations in the reported frequencies of these pathogens in different settings, ranging from 0 34% for GNEB (1, 6 8, 10) and 0 5% for P. aeruginosa (1, 6 9, 14). An interesting finding was that nearly 10% of patients with severe CAP had mixed etiologies requiring a combination antimicrobial treatment covering additionally atypical bacterial pathogens (including Legionella spp.) or P. aeruginosa, and a further 3% of patients had mixed infections with typical pathogens including drug-resistant strains of S. pneumoniae. Both a broad-spectrum initial antimicrobial treatment and a comprehensive microbial investigation seem mandatory to cope with the problem of mixed infections in severe CAP. This follow-up epidemiologic study provides evidence that obvious differences in microbial patterns comparing recent studies are only in part caused by differences in local settings. A considerable part of these discrepancies may additionally originate from the period under study, even in the same local setting. Because the recommended empirical approach in the ATS guidelines is based on microbial patterns derived from several epidemiologic surveys (12), it remains particularly important for the clinician to additionally consider current peculiarities of the local setting as well as global and regional trends of changing microbial and susceptibilty patterns. References 1. Woodhead, M. A., J. T. McFarlane, F.G. Rodgers, A. Laverick, R. Pilkington, and A. D. Macrae Aetiology and outcome of severe community-acquired pneumonia. J. Infect. 10: Pachon, J., M. D. Prado, F. Capote, J. A. Cuello, J. Garnacho, and A. Verano Severe community acquired pneumonia. Am. Rev. Respir. Dis. 142: Torres, A., J. Serra-Batlles, A. Ferrer, P. Jimenez, R. Celis, E. Cobo, and R. Rodríguez-Roisin Severe community acquired pneumonia: epidemiology and prognosis factors. Am. Rev. Respir. Dis. 114: British Thoracic Society Research Committee and The Public Health Laboratory Service The aetiology, management and outcome of severe community-acquired pneumonia on the intensive care unit. Respir. Med. 86: Rello, J., E. Quintana, V. Ausina, A. Net, and G. Prats A threeyear study of severe community-acquired pneumonia with emphasis on outcome. Chest 103: Moine, P., J. B. Vercken, S. Chevret, C. Castang, P. Gajdos, and the French Study Group for Community-acquired Pneumonia in the Intensive Care Unit Severe community-acquired pneumonia: etiology, epidemiology, and prognosis factors. Chest 105: Leroy, O., C. Santre, C. Beuscart, H. Georges, B. Guery, J. M. Jacquier, and G. Beaucaire A five-year study of severe communityacquired pneumonia with emphasis on prognosis in patients admitted to an intensive care unit. Intensive Care Med. 21: Feldman, C., S. Ross, A. G. Mahomed, J. Omar, and C. Smith The aetiology of severe community-acquired pneumonia and its impact on initial, empiric, antimicrobial chemotherapy. Respir. Med. 89: Rello, J., R. Rodriguez, P. Jubert, B. Alvarez, and the Study Group for Severe Community-acquired Pneumonia Severe communityacquired pneumonia in the elderly: epidemiology and prognosis. Clin. Infect. Dis. 23: Hirani, N. A., and J. T. Macfarlane Impact of management guidelines on the outcome of severe community acquired pneumonia. Thorax 52: Balows, A., and W. J. Harsier, Jr Manual of Clinical Microbiology, 5th ed. American Society of Microbiology, Washington, DC American Thoracic Society Guidelines for the initial management

7 Ruiz, Ewig, Torres, et al.: Risk Factors for Severe CAP 929 of adults with community-acquired pneumonia: diagnosis, assessment of severity, and initial antimicrobial therapy. Am. Rev. Respir. Dis. 148: Ewig, S., M. Ruiz, J. Mensa, M. A. Marcos, J. A. Martinez, M. S. Niederman, and A. Torres Severe community-acquired pneumonia assessment of severity criteria. Am. J. Respir. Crit. Care Med. 158: Almirall, J., E. Mesalles, J. Klamburg, O. Parra, and A. Agudo Prognostic factors of pneumonia requiring admission to the intensive care unit. Chest 107: Koivula, I., M. Sten, and P. H. Makela Risk factors for pneumonia in the elderly. Am. J. Med. 96: Fernandez-Sola, J., A. Junque, R. Estruch, R. Monforte, A. Torres, and A. Urbano-Marquez High alcohol intake as a risk and prognostic factor for community-acquired pneumonia. Arch. Intern. Med. 155: Krumpe, P. E., J. M. Cummiskey, and G. A. Lillington Alcohol and the respiratory tract. Med. Clin. North Am. 68: Nair, M. P., Z. A. Kronfol, and S. A. Swartz Effects of alcohol and nicotine on cytotoxic functions of human lymphocytes. Clin. Immunol. Immunopathol. 54: Ruiz, M., S. Ewig, M. A. Marcos, J. A. Martinez, F. Arancibia, J. Mensa, and A. Torres Etiology of community-acquired pneumonia: impact of age, comorbidity, and severity. Am. J. Respir. Crit. Care Med. (In press) 20. Nelson, S., C. M. Manson, J. Kolls, and W. R. Summer Pathophysiology of pneumonia. Clin. Chest Med. 16: Torres, A., M. El-Ebiary, and C. Monton The inflammatory response in pneumonia. In J.-L. Vincent, editor. Yearbook of Intensive Care Medicine. Springer Verlag, New York Cosentini R, F. Blasi, R. Raccanelli, S. Rossi, C. Arosio, P. Tarsia, A. Randazzo, and L. Allegra Severe community-acquired pneumonia: a possible role for Chlamydia pneumoniae. Respiration 63: Oleachea, P. M., J. M. Quintana, M. S. Gallardo, J. Insausti, E. Maravi, and B. Alvarez A predictive model for the treatment approach to community-acquired pneumonia in patients needing ICU admission. Intensive Care Med. 22: Ewig, S., M. Ruiz, A. Torres, F. Marco, J. A. Martinez, M. Sanchez, and J. Mensa Pneumonia acquired in the community due to drug resistant Streptococcus pneumoniae. Am. J. Respir. Crit. Care Med. (In press)

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Torres A, Sibila O, Ferrer M, et al. Effect of corticosteroids on treatment failure among hospitalized patients with severe community-acquired pneumonia and high inflammatory

More information

ORIGINAL INVESTIGATION. Community-Acquired Pneumonia Due to Gram-Negative Bacteria and Pseudomonas aeruginosa

ORIGINAL INVESTIGATION. Community-Acquired Pneumonia Due to Gram-Negative Bacteria and Pseudomonas aeruginosa Community-Acquired Pneumonia Due to Gram-Negative Bacteria and Pseudomonas aeruginosa Incidence, Risk, and Prognosis ORIGINAL INVESTIGATION Francisco Arancibia, MD; Torsten T. Bauer, MD; Santiago Ewig,

More information

Community Acquired Pneumonia. Abdullah Alharbi, MD, FCCP

Community Acquired Pneumonia. Abdullah Alharbi, MD, FCCP Community Acquired Pneumonia Abdullah Alharbi, MD, FCCP A 68 y/ male presented to the ED with SOB and productive coughing for 2 days. Reports poor oral intake since onset due to nausea and intermittent

More information

Severe community-acquired pneumonia: assessment of microbial aetiology as mortality factor

Severe community-acquired pneumonia: assessment of microbial aetiology as mortality factor Eur Respir J 2004; 24: 779 785 DOI: 10.1183/09031936.04.00119503 Printed in UK all rights reserved Copyright #ERS Journals Ltd 2004 European Respiratory Journal ISSN 0903-1936 Severe community-acquired

More information

Microbial aetiology of community-acquired pneumonia and its relation to severity

Microbial aetiology of community-acquired pneumonia and its relation to severity < Additional data are published online only. To view these files please visit the journal online (http://thorax.bmj.com). 1 Servei de Pneumologia, Institut del Tòrax, Hospital Clinic, IDIBAPS, Universitat

More information

A Comparative Study of Community-Acquired Pneumonia Patients Admitted to the Ward and the ICU*

A Comparative Study of Community-Acquired Pneumonia Patients Admitted to the Ward and the ICU* CHEST Original Research A Comparative Study of Community-Acquired Pneumonia Patients Admitted to the Ward and the ICU* Marcos I. Restrepo, MD, MSc, FCCP; Eric M. Mortensen, MD, MSc; Jose A. Velez, MD;

More information

Hospital-acquired Pneumonia

Hospital-acquired Pneumonia Hospital-acquired Pneumonia Hospital-acquired pneumonia (HAP) Pneumonia that occurs at least 2 days after hospital admission. The second most common and the leading cause of death due to hospital-acquired

More information

(CAP) CAP CAP. (RVs) (PV) (RV + ) CAP. RVs ( CAP [2 / 26 (8%) P = 0.035] CAP [1 / 44 (2%) P = 0.001] P = 0.024] 26 (31%)]

(CAP) CAP CAP. (RVs) (PV) (RV + ) CAP. RVs ( CAP [2 / 26 (8%) P = 0.035] CAP [1 / 44 (2%) P = 0.001] P = 0.024] 26 (31%)] Andrés de Roux, MD; Maria A. Marcos, MD; Elisa Garcia, MD; Jose Mensa, MD; Santiago Ewig, MD, PhD; Hartmut Lode, MD, PhD; and Antoni Torres, MD, PhD, FCCP (CAP) CAP 1996 2001, 1 000 338 CAP (RVs) (PV)

More information

KAISER PERMANENTE OHIO COMMUNITY ACQUIRED PNEUMONIA

KAISER PERMANENTE OHIO COMMUNITY ACQUIRED PNEUMONIA KAISER PERMANENTE OHIO COMMUNITY ACQUIRED PNEUMONIA Methodology: Expert opinion Issue Date: 8-97 Champion: Pulmonary Medicine Most Recent Update: 6-08, 7-10, 7-12 Key Stakeholders: Pulmonary Medicine,

More information

Mædica - a Journal of Clinical Medicine

Mædica - a Journal of Clinical Medicine Mædica - a Journal of Clinical Medicine ORIGINAL PAPERS Mortality Risk and Etiologic Spectrum of Community-acquired Pneumonia in Hospitalized Adult Patients Cornelia TUDOSE, Assistant Professor of Pneumology;

More information

PNEUMONIA. I. Background 6 th most common cause of death in U.S. Most common cause of infection related mortality

PNEUMONIA. I. Background 6 th most common cause of death in U.S. Most common cause of infection related mortality Page 1 of 8 September 4, 2001 Donald P. Levine, M.D. University Health Center Suite 5C Office: 577-0348 dlevine@intmed.wayne.edu Assigned reading: pages 153-160; 553-563 PNEUMONIA the most widespread and

More information

Charles Krasner, M.D. University of NV, Reno School of Medicine Sierra NV Veterans Affairs Medical Center

Charles Krasner, M.D. University of NV, Reno School of Medicine Sierra NV Veterans Affairs Medical Center Charles Krasner, M.D. University of NV, Reno School of Medicine Sierra NV Veterans Affairs Medical Center Kathy Peters is a 63 y.o. patient that presents to your urgent care office today with a history

More information

PULMONARY EMERGENCIES

PULMONARY EMERGENCIES EMERGENCIES I. Pneumonia A. Bacterial Pneumonia (most common cause of a focal infiltrate) 1. Epidemiology a. Accounts for up to 10% of hospital admissions in the U.S. b. Most pneumonias are the result

More information

Chapter 22. Pulmonary Infections

Chapter 22. Pulmonary Infections Chapter 22 Pulmonary Infections Objectives State the incidence of pneumonia in the United States and its economic impact. Discuss the current classification scheme for pneumonia and be able to define hospital-acquired

More information

Key words: bacteremia; community-acquired pneumonia; comorbid condition; diabetes mellitus; empyema; etiology; outcome; pleural effusion

Key words: bacteremia; community-acquired pneumonia; comorbid condition; diabetes mellitus; empyema; etiology; outcome; pleural effusion Etiology and Outcome of Community- Acquired Pneumonia in Patients With Diabetes Mellitus* Miquel Falguera, MD; Ricard Pifarre, MD; Antonio Martin, MD; Anas Sheikh, MD; and Anna Moreno, MD Study objectives:

More information

Pneumonia. Dr. Rami M Adil Al-Hayali Assistant professor in medicine

Pneumonia. Dr. Rami M Adil Al-Hayali Assistant professor in medicine Pneumonia Dr. Rami M Adil Al-Hayali Assistant professor in medicine Definition Pneumonia is an acute respiratory illness caused by an infection of the lung parenchyma, associated with recently developed

More information

PNEUMONIA IN CHILDREN. IAP UG Teaching slides

PNEUMONIA IN CHILDREN. IAP UG Teaching slides PNEUMONIA IN CHILDREN 1 INTRODUCTION 156 million new episodes / yr. worldwide 151 million episodes developing world 95% in developing countries 19% of all deaths in children

More information

The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review

The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review Eur J Clin Microbiol Infect Dis (2014) 33:1065 1079 DOI 10.1007/s10096-014-2067-1 REVIEW The aetiology and antibiotic management of community-acquired pneumonia in adults in Europe: a literature review

More information

Severity and outcomes of hospitalised community-acquired pneumonia in COPD patients

Severity and outcomes of hospitalised community-acquired pneumonia in COPD patients Eur Respir J 2012; 39: 855 861 DOI: 10.1183/09031936.00067111 CopyrightßERS 2012 Severity and outcomes of hospitalised community-acquired pneumonia in COPD patients A. Liapikou*, E. Polverino #,S.Ewig

More information

Etiology and outcome of severe community acquired pneumonia in immunocompetent adults

Etiology and outcome of severe community acquired pneumonia in immunocompetent adults Khawaja et al. BMC Infectious Diseases 2013, 13:94 RESEARCH ARTICLE Open Access Etiology and outcome of severe community acquired pneumonia in immunocompetent adults Ali Khawaja 1*, Ali Bin Sarwar Zubairi

More information

Lower mortality among patients with community-acquired pneumonia treated with a macrolide plus a beta-lactam agent versus a beta-lactam agent alone

Lower mortality among patients with community-acquired pneumonia treated with a macrolide plus a beta-lactam agent versus a beta-lactam agent alone Eur J Clin Microbiol Infect Dis (2005) 24: 190 195 DOI 10.1007/s10096-005-1295-9 ARTICLE E. García Vázquez J. Mensa J. A. Martínez M. A. Marcos J. Puig M. Ortega A. Torres Lower mortality among patients

More information

Key words: chronic heart failure; community-acquired pneumonia; respiratory viral infection; risk factor

Key words: chronic heart failure; community-acquired pneumonia; respiratory viral infection; risk factor Viral Community-Acquired Pneumonia in Nonimmunocompromised Adults* Andrés de Roux, MD; Maria A. Marcos, MD; Elisa Garcia, MD; Jose Mensa, MD; Santiago Ewig, MD, PhD; Hartmut Lode, MD, PhD; and Antoni Torres,

More information

Key words: antimicrobial treatment; diagnosis; Gram stain; outcome; pneumonia; sputum

Key words: antimicrobial treatment; diagnosis; Gram stain; outcome; pneumonia; sputum Applying Sputum as a Diagnostic Tool in Pneumonia* Limited Yield, Minimal Impact on Treatment Decisions Santiago Ewig, MD; Matthias Schlochtermeier, MD; Norbert Göke, MD; Michael S. Niederman, MD, FCCP

More information

Treatment of febrile neutropenia in patients with neoplasia

Treatment of febrile neutropenia in patients with neoplasia Treatment of febrile neutropenia in patients with neoplasia George Samonis MD, PhD Medical Oncologist Infectious Diseases Specialist Professor of Medicine The University of Crete, Heraklion,, Crete, Greece

More information

Clinical failure, community-acquired pneumonia, management, outcome, prognosis, risk-factors

Clinical failure, community-acquired pneumonia, management, outcome, prognosis, risk-factors ORIGINAL ARTICLE 10.1111/j.1469-0691.2006.01535.x Prognostic factors for early clinical failure in patients with severe community-acquired pneumonia M. Hoogewerf 1, J. J. Oosterheert 1, E. Hak 2, I. M.

More information

Rapid urinary antigen test for diagnosis of pneumococcal community-acquired pneumonia in adults

Rapid urinary antigen test for diagnosis of pneumococcal community-acquired pneumonia in adults Eur Respir J 2003; 21: 209 214 DOI: 10.1183/09031936.03.00058802 Printed in UK all rights reserved Copyright #ERS Journals Ltd 2003 European Respiratory Journal ISSN 0903-1936 Rapid urinary antigen test

More information

Repeated Pneumonia Severity Index Measurement After Admission Increases its Predictive Value for Mortality in Severe Community-acquired Pneumonia

Repeated Pneumonia Severity Index Measurement After Admission Increases its Predictive Value for Mortality in Severe Community-acquired Pneumonia ORIGINAL ARTICLE Repeated Pneumonia Severity Index Measurement After Admission Increases its Predictive Value for Mortality in Severe Community-acquired Pneumonia Chiung-Zuei Chen, 1 Po-Sheng Fan, 2 Chien-Chung

More information

Pneumonia. Definition of pneumonia Infection of the lung parenchyma Usually bacterial

Pneumonia. Definition of pneumonia Infection of the lung parenchyma Usually bacterial Pneumonia Definition of pneumonia Infection of the lung parenchyma Usually bacterial Epidemiology of pneumonia Commonest infectious cause of death in the UK and USA Incidence - 5-11 per 1000 per year Worse

More information

To Study The Cinico-Radiological Features And Associated Co-Morbid Conditions

To Study The Cinico-Radiological Features And Associated Co-Morbid Conditions IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 17, Issue 7 Ver. 16 (July. 2018), PP 58-62 www.iosrjournals.org To study the clinico-radiological features

More information

Unit II Problem 2 Pathology: Pneumonia

Unit II Problem 2 Pathology: Pneumonia Unit II Problem 2 Pathology: Pneumonia - Definition: pneumonia is the infection of lung parenchyma which occurs especially when normal defenses are impaired such as: Cough reflex. Damage of cilia in respiratory

More information

WORKSHOP. The Multiple Facets of CAP. Community acquired pneumonia (CAP) continues. Jennifer s Situation

WORKSHOP. The Multiple Facets of CAP. Community acquired pneumonia (CAP) continues. Jennifer s Situation Practical Pointers pointers For for Your your Practice practice The Multiple Facets of CAP Dr. George Fox, MD, MSc, FRCPC, FCCP Community acquired pneumonia (CAP) continues to be a significant health burden

More information

Severity and Outcomes of hospitalized community-acquired pneumonia in COPD Patients

Severity and Outcomes of hospitalized community-acquired pneumonia in COPD Patients ERJ Express. Published on September 15, 2011 as doi: 10.1183/09031936.00067111 Severity and Outcomes of hospitalized community-acquired pneumonia in COPD Patients Adamantia Liapikou 1, MD; Eva Polverino

More information

Pneumonia Severity Scores:

Pneumonia Severity Scores: Pneumonia Severity Scores: Are they Accurate Predictors of Mortality? JILL McEWEN, MD FRCPC Clinical Professor Department of Emergency Medicine University of British Columbia Vancouver, BC Canada President,

More information

Brice Taylor Assistant Professor Division of Pulmonary and Critical Care Medicine

Brice Taylor Assistant Professor Division of Pulmonary and Critical Care Medicine Brice Taylor Assistant Professor Division of Pulmonary and Critical Care Medicine Discuss advances in predicting prognosis Understand dwhat we know (and don t know) about the Microbiology Recognize important

More information

POLICY FOR TREATMENT OF LOWER RESPIRATORY TRACT INFECTIONS

POLICY FOR TREATMENT OF LOWER RESPIRATORY TRACT INFECTIONS POLICY F TREATMENT OF LOWER RESPIRATY TRACT INFECTIONS Written by: Dr M Milupi, Consultant Microbiologist Date: June 2018 Approved by: The Drugs & Therapeutics Committee Date: July 2018 Implementation

More information

Critical Care Nursing Theory. Pneumonia. - Pneumonia is an acute infection of the pulmonary parenchyma

Critical Care Nursing Theory. Pneumonia. - Pneumonia is an acute infection of the pulmonary parenchyma - is an acute infection of the pulmonary parenchyma - is a common infection encountered by critical care nurses when it complicates the course of a serious illness or leads to acute respiratory distress.

More information

MAJOR ARTICLE. (See the editorial commentary by Mandell on pages 386 8)

MAJOR ARTICLE. (See the editorial commentary by Mandell on pages 386 8) MAJOR ARTICLE Severe Community-Acquired Pneumonia: Validation of the Infectious Diseases Society of America/ American Thoracic Society Guidelines to Predict an Intensive Care Unit Admission Adamantia Liapikou,

More information

Epidemiology and Etiology of Community-Acquired Pneumonia 761 Lionel A. Mandell

Epidemiology and Etiology of Community-Acquired Pneumonia 761 Lionel A. Mandell LOWER RESPIRATORY TRACT INFECTIONS Preface Thomas M. File, Jr xiii Community-Acquired Pneumonia: Pathophysiology and Host Factors with Focus on Possible New Approaches to Management of Lower Respiratory

More information

Pneumonia and influenza combined are the fifth leading

Pneumonia and influenza combined are the fifth leading Community-Acquired Pneumonia in Older Veterans: Does the Pneumonia Prognosis Index Help? Lona Mody, MD,* Rongjun Sun, PhD, and Suzanne Bradley, MD* OBJECTIVES: Mortality rates from pneumonia increase steadily

More information

ISF criteria (International sepsis forum consensus conference of infection in the ICU) Secondary peritonitis

ISF criteria (International sepsis forum consensus conference of infection in the ICU) Secondary peritonitis Appendix with supplementary material. This appendix was part of the submitted manuscript and has been peer reviewed. It is posted as supplied by the authors. Supplementary Tables Table S1. Definitions

More information

Hospital Acquired Pneumonias

Hospital Acquired Pneumonias Hospital Acquired Pneumonias Hospital Acquired Pneumonia ( HAP ) Hospital acquired pneumonia ( HAP ) is defined as an infection of the lung parenchyma developing during hospitalization and not present

More information

an inflammation of the bronchial tubes

an inflammation of the bronchial tubes BRONCHITIS DEFINITION Bronchitis is an inflammation of the bronchial tubes (or bronchi), which are the air passages that extend from the trachea into the small airways and alveoli. Triggers may be infectious

More information

Antibiotic treatment and the diagnosis of Streptococcus pneumoniae in lower respiratory tract infections in adults

Antibiotic treatment and the diagnosis of Streptococcus pneumoniae in lower respiratory tract infections in adults International Journal of Infectious Diseases (2005) 9, 274 279 http://intl.elsevierhealth.com/journals/ijid Antibiotic treatment and the diagnosis of Streptococcus pneumoniae in lower respiratory tract

More information

Nosocomial Pneumonia. <5 Days: Non-Multidrug-Resistant Bacteria

Nosocomial Pneumonia. <5 Days: Non-Multidrug-Resistant Bacteria Nosocomial Pneumonia Meredith Deutscher, MD Troy Schaffernocker, MD Ohio State University Burden of Hospital-Acquired Pneumonia Second most common nosocomial infection in the U.S. 5-10 episodes per 1000

More information

Study objective: To investigate the clinical presentation of community-acquired Chlamydia

Study objective: To investigate the clinical presentation of community-acquired Chlamydia Clinical Presentation of Community- Acquired Chlamydia pneumoniae Pneumonia in Adults* Naoyuki Miyashita, MD, PhD; Hiroshi Fukano, MD; Niro Okimoto, MD, PhD, FCCP; Hiroki Hara, MD, PhD, FCCP; Koichiro

More information

COPD exacerbation. Dr. med. Frank Rassouli

COPD exacerbation. Dr. med. Frank Rassouli Definition according to GOLD report: - «An acute event - characterized by a worsening of the patients respiratory symptoms - that is beyond normal day-to-day variations - and leads to a change in medication»

More information

The McMaster at night Pediatric Curriculum

The McMaster at night Pediatric Curriculum The McMaster at night Pediatric Curriculum Community Acquired Pneumonia Based on CPS Practice Point Pneumonia in healthy Canadian children and youth and the British Thoracic Society Guidelines on CAP Objectives

More information

ETIOLOGIES AND TREATMENT OUTCOMES IN PATIENTS HOSPITALIZED WITH COMMUNITY-ACQUIRED PNEUMONIA (CAP) AT SRINAGARIND HOSPITAL, KHON KAEN, THAILAND

ETIOLOGIES AND TREATMENT OUTCOMES IN PATIENTS HOSPITALIZED WITH COMMUNITY-ACQUIRED PNEUMONIA (CAP) AT SRINAGARIND HOSPITAL, KHON KAEN, THAILAND SOUTHEAST ASIAN J TROP MED PUBLIC HEALTH ETIOLOGIES AND TREATMENT OUTCOMES IN PATIENTS HOSPITALIZED WITH COMMUNITY-ACQUIRED PNEUMONIA (CAP) AT SRINAGARIND HOSPITAL, KHON KAEN, THAILAND Wipa Reechaipichitkul

More information

CHEST VOLUME 117 / NUMBER 4 / APRIL, 2000 Supplement

CHEST VOLUME 117 / NUMBER 4 / APRIL, 2000 Supplement CHEST VOLUME 117 / NUMBER 4 / APRIL, 2000 Supplement Evidence-Based Assessment of Diagnostic Tests for Ventilator- Associated Pneumonia* Executive Summary Ronald F. Grossman, MD, FCCP; and Alan Fein, MD,

More information

SANTIAGO EWIG, ANTONI TORRES, MUSTAFA EL-EBIARY, NEUS FÀBREGAS, CARMEN HERNÁNDEZ, JULIÀ GONZÁLEZ, JOSE MARIA NICOLÁS, and LUIS SOTO

SANTIAGO EWIG, ANTONI TORRES, MUSTAFA EL-EBIARY, NEUS FÀBREGAS, CARMEN HERNÁNDEZ, JULIÀ GONZÁLEZ, JOSE MARIA NICOLÁS, and LUIS SOTO Bacterial Colonization Patterns in Mechanically Ventilated Patients with Traumatic and Medical Head Injury Incidence, Risk Factors, and Association with Ventilator-associated Pneumonia SANTIAGO EWIG, ANTONI

More information

Management of patients with community-acquired pneumonia in a primary care hospital: a critical evaluation

Management of patients with community-acquired pneumonia in a primary care hospital: a critical evaluation RESPIRATORY MEDICINE (2000) 94, 556±563 doi:10.1053/rmed.1999.0775, available online at http://www.idealibrary.com on Management of patients with community-acquired pneumonia in a primary care hospital:

More information

11/19/2012. The spectrum of pulmonary diseases in HIV-infected persons is broad.

11/19/2012. The spectrum of pulmonary diseases in HIV-infected persons is broad. The spectrum of pulmonary diseases in HIV-infected persons is broad. HIV-associated Opportunistic infections Neoplasms Miscellaneous conditions Non HIV-associated Antiretroviral therapy (ART)-associated

More information

Influenza pneumonia: a comparison between seasonal influenza virus and the H1N1 pandemic

Influenza pneumonia: a comparison between seasonal influenza virus and the H1N1 pandemic Eur Respir J 2011; 38: 106 111 DOI: 10.1183/09031936.00125910 CopyrightßERS 2011 Influenza pneumonia: a comparison between seasonal influenza virus and the H1N1 pandemic R. Riquelme*, A. Torres #,", M.L.

More information

Community-acquired pneumonia in the elderly: Spanish multicentre study

Community-acquired pneumonia in the elderly: Spanish multicentre study Eur Respir J 2003; 21: 294 302 DOI: 10.1183/09031936.03.00064102 Printed in UK all rights reserved Copyright #ERS Journals Ltd 2003 European Respiratory Journal ISSN 0903-1936 Community-acquired pneumonia

More information

HEALTHCARE-ASSOCIATED PNEUMONIA: DIAGNOSIS, TREATMENT & PREVENTION

HEALTHCARE-ASSOCIATED PNEUMONIA: DIAGNOSIS, TREATMENT & PREVENTION HEALTHCARE-ASSOCIATED PNEUMONIA: DIAGNOSIS, TREATMENT & PREVENTION David Jay Weber, M.D., M.P.H. Professor of Medicine, Pediatrics, & Epidemiology Associate Chief Medical Officer, UNC Health Care Medical

More information

Acute lower respiratory infections

Acute lower respiratory infections 18 Acute lower respiratory infections Introduction i Key points Community-acquired pneumonia is the most frequent cause of death from infection in Europe. The majority of patients with pneumonia are treated

More information

S evere community acquired pneumonia (CAP) is an

S evere community acquired pneumonia (CAP) is an 421 RESPIRATORY INFECTION Validation of predictive rules and indices of severity for community acquired pneumonia S Ewig, A de Roux, T Bauer, E García, J Mensa, M Niederman, A Torres... See end of article

More information

S evere community acquired pneumonia (CAP) is an

S evere community acquired pneumonia (CAP) is an 421 RESPIRATORY INFECTION Validation of predictive rules and indices of severity for community acquired pneumonia S Ewig, A de Roux, T Bauer, E García, J Mensa, M Niederman, A Torres... See end of article

More information

Guidelines for the Diagnosis and Treatment of Community-Acquired Pneumonia. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR)

Guidelines for the Diagnosis and Treatment of Community-Acquired Pneumonia. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) RECOMMENDATIONS OF THE SPANISH SOCIETY OF PULMONOLOGY AND THORACIC SURGERY (SEPAR) Guidelines for the Diagnosis and Treatment of Community-Acquired Pneumonia. Spanish Society of Pulmonology and Thoracic

More information

Clinical and Bacteriological Profile of Hospitalised Community Acquired Pneumonia (CAP)

Clinical and Bacteriological Profile of Hospitalised Community Acquired Pneumonia (CAP) Clinical and Bacteriological Profile of Hospitalised Community Acquired (CAP) Dr. Jayant B. Chauhan 1, Dr. Ghanshyam B. Borisagar 2, Dr. (Mrs.) K. V. Shah 3 Abstract Community acquired pneumonia[cap] occurring

More information

Community-Acquired Pneumonia OBSOLETE 2

Community-Acquired Pneumonia OBSOLETE 2 Community-Acquired Pneumonia OBSOLETE 2 Clinical practice guidelines serve as an educational reference, and do not supersede the clinical judgment of the treating physician with respect to appropriate

More information

Management of Acute Exacerbations

Management of Acute Exacerbations 15 Management of Acute Exacerbations Cenk Kirakli Izmir Dr. Suat Seren Chest Diseases and Surgery Training Hospital Turkey 1. Introduction American Thoracic Society (ATS) and European Respiratory Society

More information

Severity assessment in community-acquired pneumonia. S. Ewig, H. SchaÈfer, A. Torres.

Severity assessment in community-acquired pneumonia. S. Ewig, H. SchaÈfer, A. Torres. Eur Respir J 2000; 16: 1193±1201 Printed in UK ± all rights reserved Copyright #ERS Journals Ltd 2000 European Respiratory Journal ISSN 0903-1936 SERIES "RECENT DEVELOPMENTS IN PULMONARY INFECTIONS" Edited

More information

COPD guidelines in relation to infections: a critical analysis

COPD guidelines in relation to infections: a critical analysis All course materials, including the original lecture, are available as webcasts/podcasts at www.ers-educationorg pages/default. aspx?id=1339&idbrowse=47399 COPD guidelines in relation to infections: a

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for

More information

Community-acquired pneumonia in adults

Community-acquired pneumonia in adults Prim Care Clin Office Pract 30 (2003) 155 171 Community-acquired pneumonia in adults Julio A. Ramirez, MD a,b, * a Department of Medicine, University of Louisville School of Medicine, 512 S. Hancock Street,

More information

Clinical Practice Guidelines for Nursing- and Healthcareassociated Pneumonia (NHCAP) [Complete translation] $

Clinical Practice Guidelines for Nursing- and Healthcareassociated Pneumonia (NHCAP) [Complete translation] $ respiratory investigation 51 (2013) 103 126 Contents lists available at SciVerse ScienceDirect Respiratory Investigation journal homepage: www.elsevier.com/locate/resinv Guideline Clinical Practice Guidelines

More information

Community Acquired & Nosocomial Pneumonias

Community Acquired & Nosocomial Pneumonias Community Acquired & Nosocomial Pneumonias IDSA/ATS 2007 & 2016 Guidelines José Luis González, MD Clinical Assistant Professor of Medicine Outline Intro - Definitions & Diagnosing CAP treatment VAP & HAP

More information

Pneumonia Community-Acquired Healthcare-Associated

Pneumonia Community-Acquired Healthcare-Associated Pneumonia Community-Acquired Healthcare-Associated Edwin Yu Clin Infect Dis 2007;44(S2):27-72 Am J Respir Crit Care Med 2005; 171:388-416 IDSA / ATS Guidelines Microbiology Principles and Practice of Infectious

More information

12/12/2011. Atypical Pneumonia. Objectives. Causative Agents of Acute Pneumonia Bacteria. Causative Agents of Acute Pneumonia Other Agents

12/12/2011. Atypical Pneumonia. Objectives. Causative Agents of Acute Pneumonia Bacteria. Causative Agents of Acute Pneumonia Other Agents Objectives Atypical Pneumonia K. Sue Kehl, Ph.D., D(ABMM) Associate Professor, Pathology Medical College of Wisconsin Associate Director of Clinical Pathology & Technical Director of Microbiology, Children's

More information

Community-acquired lung respiratory infections in HIV-infected patients: microbial aetiology and outcome

Community-acquired lung respiratory infections in HIV-infected patients: microbial aetiology and outcome ORIGINAL ARTICLE RESPIRATORY INFECTIONS Community-acquired lung respiratory infections in HIV-infected patients: microbial aetiology and outcome Catia Cilloniz 1,2, Antoni Torres 1,2, Eva Polverino 1,2,

More information

Community acquired pneumonia

Community acquired pneumonia Community acquired pneumonia definition Symptoms of an acute LRTI New focal signs on chest examination At least one systemic feature New radiographic shadow Defination{Crofton} IT IS A SYNDROME CAUSED

More information

Lecture Notes. Chapter 16: Bacterial Pneumonia

Lecture Notes. Chapter 16: Bacterial Pneumonia Lecture Notes Chapter 16: Bacterial Pneumonia Objectives Explain the epidemiology Identify the common causes Explain the pathological changes in the lung Identify clinical features Explain the treatment

More information

MAJOR ARTICLE. Beatriz Rosón, 1 Jordi Carratalà, 1 Jordi Dorca, 2 Aurora Casanova, 3 Frederic Manresa, 2 and Francesc Gudiol 1

MAJOR ARTICLE. Beatriz Rosón, 1 Jordi Carratalà, 1 Jordi Dorca, 2 Aurora Casanova, 3 Frederic Manresa, 2 and Francesc Gudiol 1 MAJOR ARTICLE Etiology, Reasons for Hospitalization, Risk Classes, and Outcomes of Community-Acquired Pneumonia in Patients Hospitalized on the Basis of Conventional Admission Criteria Beatriz Rosón, 1

More information

B. Barreiro*, J. Dorca*, L. Esteban*, E. Prats*, J.M. Escribá**, R. Verdaguer +, F. Gudiol ++, F. Manresa*

B. Barreiro*, J. Dorca*, L. Esteban*, E. Prats*, J.M. Escribá**, R. Verdaguer +, F. Gudiol ++, F. Manresa* Eur Respir J, 1995, 8, 1543 1547 DOI: 10.1183/09031936.95.08091543 Printed in UK - all rights reserved Copyright ERS Journals Ltd 1995 European Respiratory Journal ISSN 0903-1936 Risk factors for the development

More information

Acute Respiratory Infection. Dr Anthony Gibson

Acute Respiratory Infection. Dr Anthony Gibson Acute Respiratory Infection Dr Anthony Gibson Range of Conditions Upper tract Common Cold coryza Sore Throat- Pharyngitis Sinusitis Epiglottitis Range of Conditions Lower Acute Bronchitis Acute Exacerbation

More information

Chapter 10 Respiratory System J00-J99. Presented by: Jesicca Andrews

Chapter 10 Respiratory System J00-J99. Presented by: Jesicca Andrews Chapter 10 Respiratory System J00-J99 Presented by: Jesicca Andrews 1 Respiratory System 2 Respiratory Infections A respiratory infection cannot be assumed from a laboratory report alone; physician concurrence

More information

66YM Chronic obstructive pulmonary disease annual review. H Chronic obstructive pulmonary disease

66YM Chronic obstructive pulmonary disease annual review. H Chronic obstructive pulmonary disease Supplementary materials Table S1. Read codes to define COPD Read code Medical code Clinical event Read term 66YM.00 11287 382901 Chronic obstructive pulmonary disease annual review H3...00 1001 338812

More information

Making the Right Call With. Pneumonia. Community-acquired pneumonia (CAP) is a. Community-Acquired. What exactly is CAP?

Making the Right Call With. Pneumonia. Community-acquired pneumonia (CAP) is a. Community-Acquired. What exactly is CAP? Making the Right Call With Community-Acquired Pneumonia In this article: By Thomas J. Marrie, MD The case of Allyson Allyson, 32, presented to the emergency department with a 48-hour history of anorexia,

More information

Impact of rapid urine antigen tests to determine the etiology of community-acquired pneumonia in adults

Impact of rapid urine antigen tests to determine the etiology of community-acquired pneumonia in adults Respiratory Medicine (2006) 100, 884 891 Impact of rapid urine antigen tests to determine the etiology of community-acquired pneumonia in adults Felipe Andreo a,, José Domínguez b, Juan Ruiz a, Silvia

More information

Clinical characteristics of health care-associated pneumonia in a Korean teaching hospital

Clinical characteristics of health care-associated pneumonia in a Korean teaching hospital Respiratory Medicine (2010) 104, 1729e1735 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/rmed Clinical characteristics of health care-associated pneumonia in a Korean teaching

More information

Healthcare-associated infections acquired in intensive care units

Healthcare-associated infections acquired in intensive care units SURVEILLANCE REPORT Annual Epidemiological Report for 2015 Healthcare-associated infections acquired in intensive care units Key facts In 2015, 11 788 (8.3%) of patients staying in an intensive care unit

More information

MICROBIOLOGICAL TESTING IN PICU

MICROBIOLOGICAL TESTING IN PICU MICROBIOLOGICAL TESTING IN PICU This is a guideline for the taking of microbiological samples in PICU to diagnose or exclude infection. The diagnosis of infection requires: Ruling out non-infectious causes

More information

Thorax Online First, published on August 23, 2006 as /thx

Thorax Online First, published on August 23, 2006 as /thx Thorax Online First, published on August 23, 2006 as 10.1136/thx.2005.056374 Bronchoscopic validation of the significance of sputum purulence in severe exacerbations of chronic obstructive pulmonary disease

More information

Polmoniti: Steroidi sì, no, quando. Alfredo Chetta Clinica Pneumologica Università degli Studi di Parma

Polmoniti: Steroidi sì, no, quando. Alfredo Chetta Clinica Pneumologica Università degli Studi di Parma Polmoniti: Steroidi sì, no, quando Alfredo Chetta Clinica Pneumologica Università degli Studi di Parma Number of patients Epidemiology and outcome of severe pneumococcal pneumonia admitted to intensive

More information

HEALTHCARE-ASSOCIATED PNEUMONIA: EPIDEMIOLOGY, MICROBIOLOGY & PATHOPHYSIOLOGY

HEALTHCARE-ASSOCIATED PNEUMONIA: EPIDEMIOLOGY, MICROBIOLOGY & PATHOPHYSIOLOGY HEALTHCARE-ASSOCIATED PNEUMONIA: EPIDEMIOLOGY, MICROBIOLOGY & PATHOPHYSIOLOGY David Jay Weber, M.D., M.P.H. Professor of Medicine, Pediatrics, & Epidemiology Associate Chief Medical Officer, UNC Health

More information

Methicillin-Resistant Staphylococcus aureus (MRSA) S urveillance Report 2008 Background Methods

Methicillin-Resistant Staphylococcus aureus (MRSA) S urveillance Report 2008 Background Methods Methicillin-Resistant Staphylococcus aureus (MRSA) Surveillance Report 2008 Oregon Active Bacterial Core Surveillance (ABCs) Office of Disease Prevention & Epidemiology Oregon Department of Human Services

More information

Session Guidelines. This is a 15 minute webinar session for CNC physicians and staff

Session Guidelines. This is a 15 minute webinar session for CNC physicians and staff Respiratory Disease Session Guidelines This is a 15 minute webinar session for CNC physicians and staff CNC holds webinars monthly to address topics related to risk adjustment documentation and coding

More information

Upper...and Lower Respiratory Tract Infections

Upper...and Lower Respiratory Tract Infections Upper...and Lower Respiratory Tract Infections Robin Jump, MD, PhD Cleveland Geriatric Research Education and Clinical Center (GRECC) Louis Stokes Cleveland VA Medical Center Case Western Reserve University

More information

Babak Valizadeh, DCLS

Babak Valizadeh, DCLS Laboratory Diagnosis of Bacterial Infections of the Respiratory Tract Babak Valizadeh, DCLS 1391. 02. 05 2012. 04. 25 Babak_Valizadeh@hotmail.com Biological Safety Cabinet Process specimens in biological

More information

Study of Bacteriological and Clinical Profile of Community Acquired Pneumonia in Type 2 Diabetes Patients in Tertiary Care Hospital, Warangal

Study of Bacteriological and Clinical Profile of Community Acquired Pneumonia in Type 2 Diabetes Patients in Tertiary Care Hospital, Warangal Original Article Print ISSN: 2321-6379 Online ISSN: 2321-595X DOI: 10.17354/ijss/2018/92 Study of Bacteriological and Clinical Profile of Community Acquired Pneumonia in Type 2 Diabetes Patients in Poralla

More information

Invasive Pulmonary Aspergillosis in

Invasive Pulmonary Aspergillosis in Infection & Sepsis Symposium Porto, April 1-3, 2009 Invasive Pulmonary Aspergillosis in Non-Immunocompromised Patients Stijn BLOT, PhD General Internal Medicine & Infectious Diseases Ghent University Hospital,

More information

Evaluation of the Oxoid Xpect Legionella test kit for Detection of Legionella

Evaluation of the Oxoid Xpect Legionella test kit for Detection of Legionella JCM Accepts, published online ahead of print on 6 May 2009 J. Clin. Microbiol. doi:10.1128/jcm.00397-09 Copyright 2009, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

Impact of pre-hospital antibiotic use on community-acquired pneumonia

Impact of pre-hospital antibiotic use on community-acquired pneumonia ORIGINAL ARTICLE INFECTIOUS DISEASE Impact of antibiotic use on community-acquired pneumonia A. F. Simonetti 1, D. Viasus 1,2, C. Garcia-Vidal 1,2, S. Grillo 1, L. Molero 1, J. Dorca 3,4 and J. Carratala

More information

Antimicrobial Stewardship in Community Acquired Pneumonia

Antimicrobial Stewardship in Community Acquired Pneumonia Antimicrobial Stewardship in Community Acquired Pneumonia Medicine Review Course 2018 Dr Lee Tau Hong Consultant Department of Infectious Diseases National Centre for Infectious Diseases Scope 1. Diagnosis

More information

Skin reactivity to autologous bacteria isolated from respiratory tract of patients with obstructive pulmonary disease

Skin reactivity to autologous bacteria isolated from respiratory tract of patients with obstructive pulmonary disease Skin reactivity to autologous bacteria 149 Original Article Skin reactivity to autologous bacteria isolated from respiratory tract of patients with obstructive pulmonary disease J. Halasa 1, M. Halasa

More information

MDR AGENTS: RISK FACTORS AND THERAPEUTIC STRATEGIES

MDR AGENTS: RISK FACTORS AND THERAPEUTIC STRATEGIES MDR AGENTS: RISK FACTORS AND THERAPEUTIC STRATEGIES 1 Marin H. Kollef, MD Professor of Medicine Virginia E. and Sam J. Golman Chair in Respiratory Intensive Care Medicine Washington University School of

More information

Severe β-lactam allergy. Alternative (use for mild-moderate β-lactam allergy) therapy

Severe β-lactam allergy. Alternative (use for mild-moderate β-lactam allergy) therapy Recommended Empirical Antibiotic Regimens for MICU Patients Notes: The antibiotic regimens shown are general guidelines and should not replace clinical judgment. Always assess for antibiotic allergies.

More information

Serological evidence of Legionella species infection in acute exacerbation of COPD

Serological evidence of Legionella species infection in acute exacerbation of COPD Eur Respir J 2002; 19: 392 397 DOI: 10.1183/09031936.02.00256702 Printed in UK all rights reserved Copyright #ERS Journals Ltd 2002 European Respiratory Journal ISSN 0903-1936 Serological evidence of Legionella

More information

Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis

Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis RESEARCH Open Access Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis Catia Cillóniz 1, Santiago Ewig 2, Miquel Ferrer 1, Eva Polverino 1, Albert Gabarrús

More information