VENTILATION. Mechanical Ventilation for COPD. AirTrap Control, Trigger Lockout and Expiratory Pressure Ramp

Size: px
Start display at page:

Download "VENTILATION. Mechanical Ventilation for COPD. AirTrap Control, Trigger Lockout and Expiratory Pressure Ramp"

Transcription

1 VENTILATION Mechanical Ventilation for COPD AirTrap Control, Trigger Lockout and Expiratory Pressure Ramp

2 Foreword This brochure explains the underlying disorders in respiratory mechanics in cases of COPD (Chronic Obstructive Pulmonary Disease) with emphysemic components and the difficulties those disorders present for spontaneous breathing and mechanical ventilation. It also covers therapeutic options developed to optimize ventilation treatment for affected patients. In the first section the reader should acquire a basic understanding of the pathophysiology of the clinical pictures of COPD and pulmonary emphysema and the effects on respiratory mechanics. The second section describes special ventilator functions specifically developed to overcome these constraints under mechanical ventilation. 2 Mechanical Ventilation for COPD

3 Contents Abnormality in Respiratory Mechanics in COPD... 4 Closure of Small Airways... 5 Expiratory Flow Limitation and Dynamic Hyperinflation... 9 I:E Ratio Fluctuations in Expiratory Flow Curve...12 Overview of Disorders Therapeutic Functions for Ventilation in COPD Cases...15 AirTrap Control Trigger Lockout...18 Expiratory Pressure Ramp Overview of Mechanical Ventilation Functions...24 Summary...25 Bibliography...27 Mechanical Ventilation for COPD 3

4 Abnormality in Respiratory Mechanics in COPD Patients with Chronic Obstructive Pulmonary Disease (COPD) often suffer from dyspnea, or severe respiratory distress. Various disorders of respiratory mechanics result in insufficient ventilation, which can be life-threatening. The main characteristic of these disorders is a limitation of expiratory flow, which can give rise to the diverse consequences described on the following pages. expiratory flow inspiratory flow time Figure 1: Breath of a patient with COPD 4 Mechanical Ventilation for COPD

5 Closure of Small Airways Healthy Lung Tissue Lung Tissue with tendency to collapse elastic suspension in small airways + 5 hpa + 3 hpa loss of elastic structure + 2 hpa + 3 hpa reduced airway pressure and closure paw = 1 hpa paw = 2 hpa Edema and secretions elastic recoil + 3 hpa + 6 hpa + 4 hpa Healthy Alveoli Emphysema reduced elastic recoil + 1 hpa Thoracic cavity + 3 hpa Figure 2: Depiction of airway's tendency to close due to pulmonary emphysema and chronic obstructive bronchitis in comparison to healthy lung tissue. In this numerical example, the numbers are only representative of possible pressure ratios at the start of expiration. Mechanical Ventilation for COPD 5

6 The cause of flow limitations lies in the joint appearance of two phenomena Inflammatory changes to airways (chronic obstructive bronchitis) cause constriction of the bronchial muscles, the development of mucosal membrane edema and increased secretion production. These changes result in a narrowing of the airway lumen and an increased resistance to inspiratory and expiratory flow. 2. The development of pulmonary emphysema means the degradation of alveolar walls and decreased elastic recoil of lung tissue. The loss of structure in the lung parenchyma results in a reduction in the elastic recoil required for expiration and in the connective tissue of the small airways. The sometimes severe effects of these two phenomena are shown in a numerical example (Figure 2) and explained in the following paragraphs: Elastic recoil of the alveolar walls is responsible for the outward flow of air during expiration. For deep respiratory positions, additional inwardly directed forces come into effect due to the prestrained thorax. This pressure contributes to elastic recoil, but at the same time it presses against the airways, potentially causing them to collapse. The difference between the airway pressure and intrathoracic pressure is the physical factor which, together with the elastic suspension in the pulmonary structure, determines the caliber of the airway lumen and, in extreme cases, whether the airway remains open or closes. Elastic recoil of the alveolar walls is high in healthy lung tissue. In cases of emphysema, the expulsion force is reduced and the elastic suspension of the airways in the connective lung tissue is decreased. This condition combined with the obstruction-caused pressure loss along the airways results in unfavorable pressure distribution typical of COPD and can cause localized collapses. The narrowing of the airways leads to increased pressure loss during the outward flow. The intrabronchial pressure along the flow toward the upper airways decreases much faster than in a healthy lung. For lungs impaired by chronic obstructive bronchitis and emphysema, these unfavorable conditions cause the regional pressure to sink below the intrathoracic pressure at a certain point along the airway. 6 Mechanical Ventilation for COPD

7 At that point the affected bronchial branch collapses and the expiratory flow ceases for the moment. The decreased elastic suspension in the bronchial walls caused by emphysema exacerbates the tendency of the airway to collapse. After a breakdown in regional flow, an equalization of pressure occurs with the pulmonary area at the alveolar level and the affected airway can once again be opened if the remaining elastic recoil in the emphysematous area is greater than the intrathoracic pressure. The depicted events involving the closing and re-opening of the bronchial branches can recur in a cyclical fashion. These events often accompany after peak flow is exceeded the early phase of expiration and typically disappear later. Mechanical Ventilation for COPD 7

8 Explanation of tendency to collapse, based on numerical examples from figure 2 on page 5: The pressure figures in Figure 2 are examples only and could vary greatly from reality. In healthy lungs the contraction of the alveolar walls generates expulsion pressure of 6 hpa at the start of expiration, but the pressure is only 4 hpa in patients with emphysema. This pressure is generated by the joint effect of thoracic tension with the resulting positive pressure of 3 hpa and the respective elastic recoil in the alveolar or emphysematous wall. In this example recoil leads to a pressure of 1 hpa for emphysema, which is lower than the pressure of 3 hpa in the healthy alveoli. Along the constricted airway in the diseased lung (right), a severe pressure loss (ΔpAW) of 2 hpa occurs with the expiratory flow up to a certain point in the airway. While the intrabronchial pressure in the healthy lung is always greater than the ambient thoracic pressure in the schematically portrayed section of flow, the pressure at this point in the diseased lung has an absolute value of 2 hpa, which is already below thoracic pressure. The elastic suspension of the bronchial walls is lower than in the healthy lungs. Under these pressure conditions, the airway collapses. Healthy Lung Tissue Lung Tissue with tendency to collapse elastic suspension in small airways + 5 hpa + 3 hpa loss of elastic structure + 2 hpa + 3 hpa reduced airway pressure and closure Figure 2, thumbnail illustration paw = 1 hpa paw = 2 hpa Edema and secretions elastic recoil + 3 hpa + 6 hpa + 4 hpa Healthy Alveoli Emphysema reduced elastic recoil + 1 hpa Thoracic cavity + 3 hpa 8 Mechanical Ventilation for COPD

9 Expiratory Flow Limitation and Dynamic Hyperinflation Time Exspiratory flow Vte (EFL) Vte (normal) Collapse of small airways Expiratory Flow Limitation Figure 3: Expiratory Flow Limitation and reduction of expiratory volume physiological expiration curve, expiration curve with flow limitation and decreased expiratory tidal volume V T. At the large airway level the distally occurring collapses in total are recognized as Expiratory Flow Limitation (EFL). A corresponding flow curve is shown in Figure 3 together with a physiological flow curve. Because the area below the flow curve (integral) represents expiratory volume, it is immediately recognizable that the expiratory volume is lower than in the physiological flow curve. In contrast to expiratory flow, the inspiratory flow in COPD is not impaired by the airways' tendency to collapse and thus the inhaled volume is less limited than expiratory volume. Inspiration follows an incomplete expiration. When this imbalance persists, a shift in the respiratory position occurs with decreasing inspiratory reserve and increasing end-expiratory volume and in- Mechanical Ventilation for COPD 9

10 upper inflection point V p C = 50 ml/ mbar TLC lower inflection point V p p V C = 100 ml/ mbar C = 50 ml/ mbar FRC RV intrapulmonary pressure (mbar) Figure 4: Compliance curve of the lungs showing areas of normal compliance and lower elasticity close to the 'inflection points' trinsic positive end-expiratory pressure (PEEPi) rises. This process is called "dynamic hyperinflation" or "air trapping". The intrinsic PEEP thus generated requires increased respiratory effort in that the patient works harder to overcome this threshold loading with every spontaneous breath on top of the workload proportional to the depth of the breath. A further consequence of hyperinflation is a lowered diaphragm, a mechanically unfavorable position, which translates into a significant loss of strength. Thoracic movements take place in the upper range of the compliance curve (see Figure 4). At that point the lungs are restricted, a situation which, coupled with the reduced effectiveness of muscular contraction, further increases the work of breathing. These aspects of the mechanically unfavorable situation in COPD and pulmonary emphysema result in increased respiratory effort with decreased volume displacement. Spontaneous breathing is 10 Mechanical Ventilation for COPD

11 made significantly more difficult and ventilatory reserves are severely limited. This situation particularly during physical exercise can lead to the pulmonary system's inability to respond to instructions from the respiratory center. The patient suffers from dyspnea. Mechanical ventilation is also made more difficult by the functional restriction in the upper range of the compliance curve. In some circumstances, sufficient mechanical ventilation is possible only with high ventilation pressures. I:E Ratio Expiratory Flow Limitation inevitably leads to a breathing pattern adjustment on the part of the patient. The proportion of time for expiration increases, yielding the low I:E ratios typically observed in cases of COPD. bronchial muscles can also contribute to variance in the breathing pattern. The extent of an obstruction which changes during the course of a day, for example, may also require different settings to be made on the ventilator. The selection of correct ventilation settings is made more difficult by this situation. A suitable I:E ratio is dependent upon the extent of the current hyperinflation and can require extreme value settings, particularly for ventilation of exacerbations. A variable tone in the Mechanical Ventilation for COPD 11

12 Fluctuations in Expiratory Flow Curve The reopening of the airways, as described above, may follow a regional expiratory closure. The interaction of numerous flow fractions in the expiratory flow subject to this phenomenon, leads to behavior characteristic of emphysema. The cyclical closing and reopening provoke flow fluctuations at the level of large airways, where all flow fractions overlap. The fluctuations can be observed at a point in time after expiratory peak flow values are exceeded. Figure 5 shows a corresponding typical curve with signal fluctuations. For the ventilator these fluctuations pose a significant challenge. Spontaneous (S mode) or spontaneous timed (ST mode) BiLevel ventilation can be greatly impaired under these conditions. Fluctuation-caused short-term flow increases mislead the trigger algorithm and can be falsely interpreted as inspiratory effort by the ventilator. In this case asynchrony between patient and ventilator threat- Time Expiratory flow Normal expiratory flow Expiratory flow in pulmonary emphysema Fluctuation due to cyclical bronchial collapse and subsequent re-opening Figure 5: Expiratory flow curve with flow limitation and signal disruptions caused by cyclical closing and reopening of bronchial branches. The disruptions are exaggerated for emphasis. 12 Mechanical Ventilation for COPD

13 ens and patient "fighting" with the ventilator may occur. These problems prompt users to make device settings with less sensitive trigger thresholds in order to achieve synchronization between ventilator and patient. A high trigger threshold at the start of inspiration is unfavorable. The patient's work of breathing is increased and the extent to which the ventilator can unload the respiratory pump is minimized. Overview of Disorders The abnormalities of respiratory mechanics typically observed in COPD and pulmonary emphysema are summarized in Figure 6. The aspects listed give rise to notable difficulties under ventilation too. Results of non-invasive ventilation in particular are less positive for COPD patients than for patients with neuromuscular disorders or chest wall deformities. 2 The difficulties with regard to synchronization of patient and ventilator are pronounced in assisted ventilation, especially in cases of COPD. 3 Moreover, it is often difficult for patients to achieve adequate therapy compliance. The ventilation functions presented on the following pages can help to improve mechanical ventilation and increase patients' compliance. Mechanical Ventilation for COPD 13

14 Cyclical closing of small airways Expiratory Flow Limitation Fluctuations in flow curve Dynamic hyperinflation False triggering Increase in PEEPi Lowered diaphragm and reduction of effective diaphragmatic strength Functional Restriction Setting of less sensitive trigger levels Increase in work of breathing under S/ST BiLevel ventilation Increase in work of breathing High ventilation pressures Asynchronism with ventilator Difficult therapy / low patient compliance Effect of disorder on ventilation General effect on respiratory mechanics Figure 6: Airway closure in cases of COPD and pulmonary emphysema during expiration and the effects on respiratory mechanics for spontaneous breathing and mechanical ventilation 14 Mechanical Ventilation for COPD

15 Therapeutic Functions for Ventilation in COPD Cases AirTrap Control Ventilation pressure IPAP Switch to Inspiration Expiratory flow Pressure EPAP exp. flow 0 Time T E from frequency setting Figure 7: Incomplete expiration due to ventilator's premature switchover to inspiration. The disruptions are exaggerated to show the comparison to real conditions. Air Trapping or dynamic hyperinflation is the major complication of expiratory flow limitation with the previously described ramifications for respiratory mechanics. During ventilation the phenomenon of air trapping can be provoked or worsened (possibly only in phases) if the device settings are not precisely attuned to the current needs of the patient. Figure 7 shows a sample expiration flow curve that is prematurely interrupted by the ventilator. The patient flow at the switchover to inspiration is not equal to zero; therefore the expiration is incomplete and the threat of air trapping is present. AirTrap Control offers a way to monitor expiration with respect to potential hyperinflation under timed (T mode) or spontaneous/ timed (ST mode) BiLevel ventilation of COPD. The effect of AirTrap Control can be seen in the sample of the curve Mechanical Ventilation for COPD 15

16 in Figure 8. As part of expiration curve monitoring, a check is made of whether residual flow is present at the end of the pre-set expiratory time. If over the course of respiration air trapping and an increase in intrinsic PEEP are detected, the mandatory (T mode) or the maximum allowable expiration time (ST mode) is adjusted in order to permit fuller expiration and to counteract dynamic hyperinflation. When necessary, additional expiration time is allowed to prevent hyperinflation of the lungs and to sink the functional residual capacity in favor of increased inspiratory capacity. Expiratory flow Pressure Ventilation pressure EPAP Corrected timing of switch to inspiration made by AirTrap Control Time T E from frequency setting + extension Figure 8: Delay in the timing of switch to inspiratory pressure (compared to Figure 7) by means of AirTrap Control based on analyzed flow curve. A complete expiration takes place. 16 Mechanical Ventilation for COPD

17 Under AirTrap Control, therefore, a decrease in end-expiratory lung volume and a reduction of intrinsic PEEP (PEEPi) are favored. Lung compliance increases (as seen in the compliance curve in Figure 4) as the respiratory position lowers to yield a sufficient gap to total lung capacity. Ventilation is thus simplified and at the same ventilation pressure the tidal volume is increased. The present rate can be reduced by opportunistic extension of respiratory cycle times. At increasing tidal volumes, the reduced rate can nevertheless have a positive effect on respiratory minute volume. When alveolar ventilation (i.e., the extent of gas exchange in the alveoli) is regarded in place of externally measured minute ventilation, we see favorable effects from reducing the rate in phases while simultaneously increasing tidal volume as the proportion of anatomical dead space is less significant. Carbon dioxide elimination can also be improved by a temporarily decreased respiratory rate. Particularly in the long term, better ventilation is to be expected through a reduction of the resting respiratory level and an increase in inspiratory reserve. Alveolar Minute Ventilation V alv = (V tidal V Dead space) respiratory rate Limitation of expiratory extension Numerous critera ensure that under ventilation with AirTrap Control, the resulting minimal rate can sink to a limited extent only. Limitation of expiratory prolongation The pre-set time for expiration (T E) is prolonged by a maximum of 50 %. T E is prolonged for a maximum of 0.8 seconds. Maximum TE is 8 seconds at minimum rate. The smallest possible rate with AirTrap Control is f min = 6 /min. Mechanical Ventilation for COPD 17

18 Trigger Lockout Expiratory flow Pressure IPAP EPAP Switch to inspiratory pressure prompted by fluctuations in flow signal Time Brief T E on part of device through false triggering Ventilation pressure Figure 9: Assisted ventilation with false triggering caused by fluctuations in the flow curve with a sensitively set trigger without trigger lockout. The fluctuations are exaggerated in relation to realratios. In practice the expiratory flow is affected by the pressure increase, which is not shown for sake of simplicity. We saw in Section 1 that in some phases expiration is accompanied by fluctuations which can mislead the trigger algorithm in ventilators. Figure 9 shows a typical situation in a pressure curve during ventilation with a sensitive trigger setting without a preset lockout period. The steep rise in the expiration curve along the fluctuations can be interpreted by the ventilator as inspiratory effort. In spontaneous (S mode) or spontaneous/timed (ST mode) modes, the ventilator responds to such rises by prematurely switching to the inspiratory phase in accordance with the pre-set sensitive threshold. It is quite likely that asynchronism will develop between patient and ventilator in such situations and that patient fighting will ensue. The standard practice is to select a trigger level with low sensitivity in order to avoid the problem. However, the low sensitivity increases the work of breath- 18 Mechanical Ventilation for COPD

19 ing for the patient because the ventilator unloads the patient's respiratory pump at a later point during inspiration, making the unloading less effective. The function trigger block offers a solution. When the trigger lockout is activated, the switch to the inspiratory pressure level is temporarily blocked for a pre-set period measured from the start of expiration. When the pre-set period is over, the ventilator is then allowed to react to the trigger signal and switch to the inspiratory phase, during which a patient-initiated inspiration is expected. Because the fluctuations described decrease or disappear entirely when the expiration time is increased, the trigger sensitivity can be raised with an activated trigger block without running the risk of provoking false triggering. The work of breathing can be decreased further than with conventional assisted ventilation through the use of a sensitive trigger setting which is active during the crucial phase in the respiratory cycle only. Figure 10 shows the effect of the function when a properly chosen trigger lockout is Expiratory flow Pressure EPAP Trigger lockout period prevents a premature switch to inspiratory pressure when fluctuations occur in flow curve. Time Trigger lockout period Ventilation pressure Figure 10: Prevent the ventilator from making a premature switch to inspiratory phase (see Figure 9) with the setting of a suitable trigger lockout period. Mechanical Ventilation for COPD 19

20 used. At the start of expiration within the locked period, the ventilator ignores patient-generated signals which can misrepresent the start of an inspiration. First when the trigger lockout period has passed, the switch to inspiration is permitted. The setting of the trigger lockout is made (as shown in Figure 11) in relation to the maximum amount of time available for expiration, which is derived from the pre-set backup respiratory rate and the I:E ratio. Trigger Scaled display of lockout period (here 1.1 sec.) Expiration cycle Online display of position in expiration cycle Figure 11: Setting of trigger lockout period on ventilator. If the trigger for inspiration is blocked during activated trigger lockout time, a "B" is shown in the display. A spontaneously triggered respiratory phase change is indicated by an "S" in the display. 20 Mechanical Ventilation for COPD

21 Advantages of trigger lockout period Reduced risk of false triggering Setting of sensitive trigger level possible; a properly chosen level reduces the work of breathing Improved synchronism between patient and ventilator and thus stabilization of ventilation situation. The Expiratory Pressure Ramp An unrestrained expiration and a quick transition from high inspiratory ventilation pressure to expiratory pressure (PEEP) in a case of pulmonary emphysema can lead to or promote local collapse of airways and flow limitation, as described in Section 1. The airway altered by disease is left to its own devices and subject to the described adverse mechanical conditions. Figure 12 shows a corresponding flow curve in the presence of pulmonary emphysema, together with a ventilation pressure curve with a steep transition from inspiration pressure to expiration pressure. However, it is possible to protect the small airways from collapse with use of a quickly acting pneumatic splint at the start of expiration. For spontaneous breathing, for example, the Deutsche Atemwegsliga (German society of respiratory/pneumology experts) recommends the application of expiratory stenosis to effect an increase in intrabronchial pressure. 4 This pressure increase shifts the balance of forces on the bronchial wall in favor of increased airway width and can, in an ideal situation, keep the airways open in general or at least for a longer period of time. A comparable effect can be achieved through a prolongtion of Mechanical Ventilation for COPD 21

22 IPAP Steep pressure decrease Expiratory flow Pressure EPAP Expir. flow curve in case of pulmonary emphysema without "splinting" Time Ventilation pressure Figure 12: Expiratory flow curve under ventilation with steep pressure decrease and EPAP or PEEP 0 the expiratory pressure ramp (see flow curve in Figure 13). The application of a slowly decreasing expiratory pressure ramp is of course possible without the ventilator's use of an increased extrinsic PEEP or EPAP. A pressure ramp is particularly effective because the counterpressure helps in the phase in which the flow's contribution is great and the local thoracic pressure is particularly high due to hyperinflation. The risk of collapse in this early expiratory phase is especially high. An expiratory ramp similar to the effect of pursed lips breathing is an effective countermeasure. The alternative raising of end-expiratory pressure, on the other hand, can be disadvantageous because either the effective ventilation pressure (pressure difference between IPAP and PEEP) will be reduced or the inspiratory pressure will have to be increased further. 22 Mechanical Ventilation for COPD

23 IPAP Gradual pressure decrease Expiratory flow Pressure EPAP Raising of the expiratory flow curve through phased "splinting" of airways Time Ventilation pressure Figure 13: Effect of a flat pressure transition between inspiratory pressure and expiratory pressure in the flow curve in expiration (dotted line: curve with steep pressure decrease; solid line: curve with flat pressure decrease): The flow remains larger on average and the expiration volume can be increased by the temporary splint. The expiratory collapse can be counteracted by the intrabronchial pressure increase at the start of expiration and a carefully monitored reduction of the expiratory peak flow. The expiratory flow remains larger on average; the volume can be exhaled more easily and respiratory position can be lowered. Mechanical Ventilation for COPD 23

24 Overview of Mechanical Ventilation Functions Enhanced ventilation functionality through: AirTrap Control Expiratory pressure ramp Trigger lockout period Increase of tidal volume Splinting of small airways No premature switch to inspiration phase Decrease of PEEPi and reduction of functional restriction Increased synchrony between patient and ventilator Improved alveolar ventilation Greater unloading of respiratory pump Figure 14: Overview of mechanical ventilation functions and their effect on ventilation of COPD patients 24 Mechanical Ventilation for COPD

25 Summary COPD and pulmonary emphysema are characterized by limitations in respiratory mechanics as seen in the cyclical collapse of airways during expiration. The causes are airway obstructions and loss of structural integrity in the lung parenchyma. These pathophysiological features of respiratory mechanics greatly impair more than just the patient's spontaneous breathing. Achieving sufficient ventilation by means of a mechanical ventilator can also be more difficult in cases of COPD than in other diseases requiring similar treatment. Unloading of the respiratory pump can also be more challenging in the presence of these particular disorders. Nevertheless, mechanical ventilation is an essential element in the treatment of COPD with hyperinflation and an overloaded respiratory pump. Ventilation therapy can be expanded and optimized with the addition of various therapeutic options. With AirTrap Control, for instance, spontaneous/timed (ST mode) or timed (T mode) BiLevel ventilation can be more effectively adapted to dynamic hyperinflation and a concomitant functional stiffening caused by an upward shift in the resting expiratory level. Hyperinflation can be counteracted or deflation made possible when the expiratory flow curve is monitored. With the help of the trigger lockout, spontaneous (S mode) or spontaneous/ timed (ST mode) BiLevel ventilation can be better adjusted to the course of the expiratory flow curve with signal fluctuations. With the trigger temporarily disabled at the start of expiration, high trigger sensitivity is permitted in the phase which is crucial for the switchover to the next inspiration. Ventilation is stabilized and the synchrony between patient and ventilator is improved while the respiratory pump is more effectively unloaded by the ventilator. A temporary pneumatic splint in the particularly critical phase at the start of expiration is realized by means of a suitable expiratory pressure ramp. The effect is physically comparable to the respiratory method of pursed lips breathing used by spontaneously breathing patients. In this way the expiratory flow limitation and dynamic hyperinflation can be counteracted at its "roots". These therapeutic functions add to the "arsenal" available for use in mechanical ventilation. The single or combined application of these functions should be considered for Mechanical Ventilation for COPD 25

26 COPD. At the very latest, these functions should be tried if ventilation and unloading of the respiratory pump remain insufficient after conventional ventilation has been fully exploited. 26 Mechanical Ventilation for COPD

27 Bibliography 1 O'Donnell DE and Laveneziana P: Physiology and consequences of lung hyperinflation in COPD. Eur Respir. Rev 2006; 15: 100, Elliot MW: Non-Invasive Ventilation in Chronic Obstructive Pulmonary Disease. In: Simonds AK, editor. Non-Invasive Respiratory Support, 3rd ed. London: Hodder Arnold; p Nava S, Carlucci A and Ceriana P: Patient-ventilator interaction during noninvasive ventilation: practical assessment and theoretical basis. Breathe 2009; 5: Vogelmeier C, Buhl R, Criée CP et al.: Guidelines for the Diagnosis and Therapy of COPD Issued by Deutsche Atemwegsliga and Deutsche Gesellschaft für Pneumologie und Beatmungsmedizin Pneumologie 2007: e1-e40. Pneumologie 2007: e1-e40. Mechanical Ventilation for COPD 27

28 Copyright protected. Reproduction of any type only with express permission from Löwenstein Medical Technology. We are not responsible for printing or typographical errors. Löwenstein Medical UK 1 E-Centre, Easthampstead Road RG12 1 NF Bracknell United Kingdom T: info@loewensteinmedical.uk Löwenstein Medical Technology Löwenstein Medical Technology Kronsaalsweg 40, Hamburg Kronsaalsweg 40, Hamburg Germany Germany T: T: F: F: info@loewensteinmedical.de

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients Objectives Describe nocturnal ventilation characteristics that may indicate underlying conditions and benefits of bilevel therapy for specific

More information

Ventilator Waveforms: Interpretation

Ventilator Waveforms: Interpretation Ventilator Waveforms: Interpretation Albert L. Rafanan, MD, FPCCP Pulmonary, Critical Care and Sleep Medicine Chong Hua Hospital, Cebu City Types of Waveforms Scalars are waveform representations of pressure,

More information

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor Mechanical Ventilation Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor 1 Definition Is a supportive therapy to facilitate gas exchange. Most ventilatory support requires an artificial airway.

More information

RESPIRATORY PHYSIOLOGY Pre-Lab Guide

RESPIRATORY PHYSIOLOGY Pre-Lab Guide RESPIRATORY PHYSIOLOGY Pre-Lab Guide NOTE: A very useful Study Guide! This Pre-lab guide takes you through the important concepts that where discussed in the lab videos. There will be some conceptual questions

More information

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. Chapter 1: Principles of Mechanical Ventilation TRUE/FALSE 1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. F

More information

Respiratory Physiology

Respiratory Physiology Respiratory Physiology Dr. Aida Korish Associate Prof. Physiology KSU The main goal of respiration is to 1-Provide oxygen to tissues 2- Remove CO2 from the body. Respiratory system consists of: Passages

More information

Respiration Lesson 3. Respiration Lesson 3

Respiration Lesson 3. Respiration Lesson 3 Respiration Lesson 3 and Airway Resistance (key factors affecting air flow) 1) What is the arterial blood pressure in a healthy 18 year old male? 2) What would his venous blood pressure be? 3) What is

More information

Dr. Yasser Fathi M.B.B.S, M.Sc, M.D. Anesthesia Consultant, Head of ICU King Saud Hospital, Unaizah

Dr. Yasser Fathi M.B.B.S, M.Sc, M.D. Anesthesia Consultant, Head of ICU King Saud Hospital, Unaizah BY Dr. Yasser Fathi M.B.B.S, M.Sc, M.D Anesthesia Consultant, Head of ICU King Saud Hospital, Unaizah Objectives For Discussion Respiratory Physiology Pulmonary Graphics BIPAP Graphics Trouble Shootings

More information

The Influence of Altered Pulmonarv

The Influence of Altered Pulmonarv The Influence of Altered Pulmonarv J Mechanics on the Adequacy of Controlled Ventilation Peter Hutchin, M.D., and Richard M. Peters, M.D. W ' hereas during spontaneous respiration the individual determines

More information

Lab 4: Respiratory Physiology and Pathophysiology

Lab 4: Respiratory Physiology and Pathophysiology Lab 4: Respiratory Physiology and Pathophysiology This exercise is completed as an in class activity and including the time for the PhysioEx 9.0 demonstration this activity requires ~ 1 hour to complete

More information

Teacher : Dorota Marczuk Krynicka, MD., PhD. Coll. Anatomicum, Święcicki Street no. 6, Dept. of Physiology

Teacher : Dorota Marczuk Krynicka, MD., PhD. Coll. Anatomicum, Święcicki Street no. 6, Dept. of Physiology Title: Spirometry Teacher : Dorota Marczuk Krynicka, MD., PhD. Coll. Anatomicum, Święcicki Street no. 6, Dept. of Physiology I. Measurements of Ventilation Spirometry A. Pulmonary Volumes 1. The tidal

More information

Recognizing and Correcting Patient-Ventilator Dysynchrony

Recognizing and Correcting Patient-Ventilator Dysynchrony 2019 KRCS Annual State Education Seminar Recognizing and Correcting Patient-Ventilator Dysynchrony Eric Kriner BS,RRT Pulmonary Critical Care Clinical Specialist MedStar Washington Hospital Center Washington,

More information

6- Lung Volumes and Pulmonary Function Tests

6- Lung Volumes and Pulmonary Function Tests 6- Lung Volumes and Pulmonary Function Tests s (PFTs) are noninvasive diagnostic tests that provide measurable feedback about the function of the lungs. By assessing lung volumes, capacities, rates of

More information

Respiratory Physiology In-Lab Guide

Respiratory Physiology In-Lab Guide Respiratory Physiology In-Lab Guide Read Me Study Guide Check Your Knowledge, before the Practical: 1. Understand the relationship between volume and pressure. Understand the three respiratory pressures

More information

Respiratory System Mechanics

Respiratory System Mechanics M56_MARI0000_00_SE_EX07.qxd 8/22/11 3:02 PM Page 389 7 E X E R C I S E Respiratory System Mechanics Advance Preparation/Comments 1. Demonstrate the mechanics of the lungs during respiration if a bell jar

More information

PULMONARY FUNCTION. VOLUMES AND CAPACITIES

PULMONARY FUNCTION. VOLUMES AND CAPACITIES PULMONARY FUNCTION. VOLUMES AND CAPACITIES The volume of air a person inhales (inspires) and exhales (expires) can be measured with a spirometer (spiro = breath, meter = to measure). A bell spirometer

More information

CHAPTER 7.1 STRUCTURES OF THE RESPIRATORY SYSTEM

CHAPTER 7.1 STRUCTURES OF THE RESPIRATORY SYSTEM CHAPTER 7.1 STRUCTURES OF THE RESPIRATORY SYSTEM Pages 244-247 DO NOW What structures, do you think, are active participating in the breathing process? 2 WHAT ARE WE DOING IN TODAY S CLASS Finishing Digestion

More information

Overview. The Respiratory System. Chapter 18. Respiratory Emergencies 9/11/2012

Overview. The Respiratory System. Chapter 18. Respiratory Emergencies 9/11/2012 Chapter 18 Respiratory Emergencies Slide 1 Overview Respiratory System Review Anatomy Physiology Breathing Assessment Adequate Breathing Breathing Difficulty Focused History and Physical Examination Emergency

More information

Monitor the patients disease pathology and response to therapy Estimate respiratory mechanics

Monitor the patients disease pathology and response to therapy Estimate respiratory mechanics Understanding Graphics during Mechanical Ventilation Why Understand Ventilator Graphics? Waveforms are the graphic representation of the data collected by the ventilator and reflect the interaction between

More information

Monitoring Respiratory Drive and Respiratory Muscle Unloading during Mechanical Ventilation

Monitoring Respiratory Drive and Respiratory Muscle Unloading during Mechanical Ventilation Monitoring Respiratory Drive and Respiratory Muscle Unloading during Mechanical Ventilation J. Beck and C. Sinderby z Introduction Since Galen's description 2000 years ago that the lungs could be inflated

More information

ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018

ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018 ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018 Thomas F. Morley, DO, FACOI, FCCP, FAASM Professor of Medicine Chairman Department of Internal Medicine Director of the Division of Pulmonary,

More information

OSA and COPD: What happens when the two OVERLAP?

OSA and COPD: What happens when the two OVERLAP? 2011 ISRC Seminar 1 COPD OSA OSA and COPD: What happens when the two OVERLAP? Overlap Syndrome 1 OSA and COPD: What happens when the two OVERLAP? ResMed 10 JAN Global leaders in sleep and respiratory medicine

More information

Reasons Providers Use Bilevel

Reasons Providers Use Bilevel Reasons Providers Use Bilevel More comfort, improve therapy compliance Noncompliant OSA (NCOSA) 1 Scripts from lab referrals Central/Complex Sleep Apnea 2 For ventilations needs Restrictive Thoracic Disorders/Neuromuscular

More information

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT Modes Continuous Positive Airway Pressure (CPAP): One set pressure which is the same on inspiration and expiration Auto-PAP (APAP) - Provides

More information

Respiratory System. Chapter 9

Respiratory System. Chapter 9 Respiratory System Chapter 9 Air Intake Air in the atmosphere is mostly Nitrogen (78%) Only ~21% oxygen Carbon dioxide is less than 0.04% Air Intake Oxygen is required for Aerobic Cellular Respiration

More information

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH NIV use in ED Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH Outline History & Introduction Overview of NIV application Review of proven uses of NIV History of Ventilation 1940

More information

Mechanical Ventilation Principles and Practices

Mechanical Ventilation Principles and Practices Mechanical Ventilation Principles and Practices Dr LAU Chun Wing Arthur Department of Intensive Care Pamela Youde Nethersole Eastern Hospital 6 October 2009 In this lecture, you will learn Major concepts

More information

Basic approach to PFT interpretation. Dr. Giulio Dominelli BSc, MD, FRCPC Kelowna Respiratory and Allergy Clinic

Basic approach to PFT interpretation. Dr. Giulio Dominelli BSc, MD, FRCPC Kelowna Respiratory and Allergy Clinic Basic approach to PFT interpretation Dr. Giulio Dominelli BSc, MD, FRCPC Kelowna Respiratory and Allergy Clinic Disclosures Received honorarium from Astra Zeneca for education presentations Tasked Asked

More information

Hypoventilation? Obstructive Sleep Apnea? Different Tests, Different Treatment

Hypoventilation? Obstructive Sleep Apnea? Different Tests, Different Treatment Hypoventilation? Obstructive Sleep Apnea? Different Tests, Different Treatment Judith R. Fischer, MSLS, Editor, Ventilator-Assisted Living (fischer.judith@sbcglobal.net) Thanks to Josh Benditt, MD, University

More information

Ventilator curves. Fellowonderwijs 2 feb 2012

Ventilator curves. Fellowonderwijs 2 feb 2012 Ventilator curves Fellowonderwijs 2 feb 2012 Mechanical ventilation Supported Ventilator affects patients respiratory drive Monitor interaction patient - ventilator Controlled Monitor interatcion patient

More information

What is the next best step?

What is the next best step? Noninvasive Ventilation William Janssen, M.D. Assistant Professor of Medicine National Jewish Health University of Colorado Denver Health Sciences Center What is the next best step? 65 year old female

More information

Recent Advances in Respiratory Medicine

Recent Advances in Respiratory Medicine Recent Advances in Respiratory Medicine Dr. R KUMAR Pulmonologist Non Invasive Ventilation (NIV) NIV Noninvasive ventilation (NIV) refers to the administration of ventilatory support without using an invasive

More information

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP)

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP) Paramedic Rounds Pre-Hospital Continuous Positive Airway Pressure (CPAP) Morgan Hillier MD Class of 2011 Dr. Mike Peddle Assistant Medical Director SWORBHP Objectives Outline evidence for pre-hospital

More information

October Paediatric Respiratory Workbook APCP RESPIRATORY COMMITTEE

October Paediatric Respiratory Workbook APCP RESPIRATORY COMMITTEE October 2017 Paediatric Respiratory Workbook APCP RESPIRATORY COMMITTEE This workbook is designed to introduce to you the difference between paediatric and adult anatomy and physiology. It will also give

More information

PULMONARY FUNCTION TESTING. Purposes of Pulmonary Tests. General Categories of Lung Diseases. Types of PF Tests

PULMONARY FUNCTION TESTING. Purposes of Pulmonary Tests. General Categories of Lung Diseases. Types of PF Tests PULMONARY FUNCTION TESTING Wyka Chapter 13 Various AARC Clinical Practice Guidelines Purposes of Pulmonary Tests Is lung disease present? If so, is it reversible? If so, what type of lung disease is present?

More information

Chapter 10 The Respiratory System

Chapter 10 The Respiratory System Chapter 10 The Respiratory System Biology 2201 Why do we breathe? Cells carry out the reactions of cellular respiration in order to produce ATP. ATP is used by the cells for energy. All organisms need

More information

Approach to type 2 Respiratory Failure

Approach to type 2 Respiratory Failure Approach to type 2 Respiratory Failure Changing Nature of NIV Not longer just the traditional COPD patients Increasingly Obesity Neuromuscular Pneumonias 3 fold increase in patients with Ph 7.25 and below

More information

PRODUCT TRAINING TREND II

PRODUCT TRAINING TREND II Product Training TREND II HOFFRICHTER GmbH 1 General Introduction Complete system spectrum for CPAP therapy TREND II TREND II AUTO TREND II BILEVEL TREND II BILEVEL ST20 AquaTREND uni Therapy Humidifier

More information

Mechanical Ventilation 1. Shari McKeown, RRT Respiratory Services - VGH

Mechanical Ventilation 1. Shari McKeown, RRT Respiratory Services - VGH Mechanical Ventilation 1 Shari McKeown, RRT Respiratory Services - VGH Objectives Describe indications for mcvent Describe types of breaths and modes of ventilation Describe compliance and resistance and

More information

Oxygenation. Chapter 45. Re'eda Almashagba 1

Oxygenation. Chapter 45. Re'eda Almashagba 1 Oxygenation Chapter 45 Re'eda Almashagba 1 Respiratory Physiology Structure and function Breathing: inspiration, expiration Lung volumes and capacities Pulmonary circulation Respiratory gas exchange: oxygen,

More information

Basic mechanisms disturbing lung function and gas exchange

Basic mechanisms disturbing lung function and gas exchange Basic mechanisms disturbing lung function and gas exchange Blagoi Marinov, MD, PhD Pathophysiology Department, Medical University of Plovdiv Respiratory system 1 Control of breathing Structure of the lungs

More information

Condensed version.

Condensed version. I m Stu 3 Condensed version smcvicar@uwhealth.org Listen 1. Snoring 2. Gurgling 3. Hoarseness 4. Stridor (inspiratory/expiratory) 5. Wheezing 6. Grunting Listen Crackles Wheezing Stridor Absent Crackles

More information

The role of lung function testing in the assessment of and treatment of: AIRWAYS DISEASE

The role of lung function testing in the assessment of and treatment of: AIRWAYS DISEASE The role of lung function testing in the assessment of and treatment of: AIRWAYS DISEASE RHYS JEFFERIES ARTP education Learning Objectives Examine the clinical features of airways disease to distinguish

More information

Chapter 10. Respiratory System and Gas Exchange. Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Chapter 10. Respiratory System and Gas Exchange. Copyright 2005 Pearson Education, Inc. publishing as Benjamin Cummings Chapter 10 Respiratory System and Gas Exchange Function of the Respiratory System To obtain oxygen (O 2 ) for all cells in the body. To rid the cells of waste gas (CO 2 ). Oxygen (O 2 ) is vital chemical

More information

Competency Title: Continuous Positive Airway Pressure

Competency Title: Continuous Positive Airway Pressure Competency Title: Continuous Positive Airway Pressure Trainee Name: ------------------------------------------------------------- Title: ---------------------------------------------------------------

More information

PART TWO CHAPTER TWO THE EVOLUTIONARY CONCEPTUAL HISTORY OF OSCILLATORY DEMAND CONTINUOUS POSITIVE AIRWAY PRESSURE (OD-CPAP)

PART TWO CHAPTER TWO THE EVOLUTIONARY CONCEPTUAL HISTORY OF OSCILLATORY DEMAND CONTINUOUS POSITIVE AIRWAY PRESSURE (OD-CPAP) Historical REVIEW- PART TWO CHAPTER TWO THE EVOLUTIONARY CONCEPTUAL HISTORY OF OSCILLATORY DEMAND CONTINUOUS POSITIVE AIRWAY PRESSURE (OD-CPAP) Hard Hat Divers received positive mask pressures with air

More information

Respiratory Mechanics

Respiratory Mechanics Respiratory Mechanics Critical Care Medicine Specialty Board Tutorial Dr Arthur Chun-Wing LAU Associate Consultant Intensive Care Unit, Pamela Youde Nethersole Eastern Hospital, Hong Kong 17 th June 2014

More information

Ch 16 A and P Lecture Notes.notebook May 03, 2017

Ch 16 A and P Lecture Notes.notebook May 03, 2017 Table of Contents # Date Title Page # 1. 01/30/17 Ch 8: Muscular System 1 2. 3. 4. 5. 6. 7. 02/14/17 Ch 9: Nervous System 12 03/13/17 Ch 10: Somatic and Special Senses 53 03/27/17 Ch 11: Endocrine System

More information

Mechanical Ventilation in COPD patients

Mechanical Ventilation in COPD patients Mechanical Ventilation in COPD patients Θεόδωρος Βασιλακόπουλος Καθηγητής Πνευμονολογίας-Εντατικής Θεραπείας Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Νοσοκομείο «ο Ευαγγελισμός» Adjunct Professor, McGill

More information

Variation in lung with normal, quiet breathing. Minimal lung volume (residual volume) at maximum deflation. Total lung capacity at maximum inflation

Variation in lung with normal, quiet breathing. Minimal lung volume (residual volume) at maximum deflation. Total lung capacity at maximum inflation r Total lung capacity at maximum inflation Variation in lung with normal, quiet breathing Volume of lungs at end of normal inspiration (average 2,200 ml) Minimal lung volume (residual volume) at maximum

More information

Anatomy & Physiology 2 Canale. Respiratory System: Exchange of Gases

Anatomy & Physiology 2 Canale. Respiratory System: Exchange of Gases Anatomy & Physiology 2 Canale Respiratory System: Exchange of Gases Why is it so hard to hold your breath for Discuss! : ) a long time? Every year carbon monoxide poisoning kills 500 people and sends another

More information

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician Respiratory Disease Dr Amal Damrah consultant Neonatologist and Paediatrician Signs and Symptoms of Respiratory Diseases Cardinal Symptoms Cough Sputum Hemoptysis Dyspnea Wheezes Chest pain Signs and Symptoms

More information

Respiratory System. Introduction. Atmosphere. Some Properties of Gases. Human Respiratory System. Introduction

Respiratory System. Introduction. Atmosphere. Some Properties of Gases. Human Respiratory System. Introduction Introduction Respiratory System Energy that we consume in our food is temporarily stored in the bonds of ATP (adenosine triphosphate) before being used by the cell. Cells use ATP for movement and to drive

More information

APRV Ventilation Mode

APRV Ventilation Mode APRV Ventilation Mode Airway Pressure Release Ventilation A Type of CPAP Continuous Positive Airway Pressure (CPAP) with an intermittent release phase. Patient cycles between two levels of CPAP higher

More information

PFT Interpretation and Reference Values

PFT Interpretation and Reference Values PFT Interpretation and Reference Values September 21, 2018 Eric Wong Objectives Understand the components of PFT Interpretation of PFT Clinical Patterns How to choose Reference Values 3 Components Spirometry

More information

VENTILATOR GRAPHICS ver.2.0. Charles S. Williams RRT, AE-C

VENTILATOR GRAPHICS ver.2.0. Charles S. Williams RRT, AE-C VENTILATOR GRAPHICS ver.2.0 Charles S. Williams RRT, AE-C Purpose Graphics are waveforms that reflect the patientventilator system and their interaction. Purposes of monitoring graphics: Allow users to

More information

Chapter 10. The Respiratory System Exchange of Gases. Copyright 2009 Pearson Education, Inc.

Chapter 10. The Respiratory System Exchange of Gases. Copyright 2009 Pearson Education, Inc. Chapter 10 The Respiratory System Exchange of Gases http://www.encognitive.com/images/respiratory-system.jpg Human Respiratory System UPPER RESPIRATORY TRACT LOWER RESPIRATORY TRACT Nose Passageway for

More information

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the peripheral nerves (neuropathies and anterior horn cell diseases),

More information

Potential Conflicts of Interest

Potential Conflicts of Interest Potential Conflicts of Interest Patient Ventilator Synchrony, PAV and NAVA! Bob Kacmarek PhD, RRT Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 4-27-09 WSRC Received research

More information

Tuesday, December 13, 16. Respiratory System

Tuesday, December 13, 16. Respiratory System Respiratory System Trivia Time... What is the fastest sneeze speed? What is the surface area of the lungs? (hint... think of how large the small intestine was) How many breaths does the average person

More information

3. Which statement is false about anatomical dead space?

3. Which statement is false about anatomical dead space? Respiratory MCQs 1. Which of these statements is correct? a. Regular bronchioles are the most distal part of the respiratory tract to contain glands. b. Larynx do contain significant amounts of smooth

More information

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018 NON-INVASIVE VENTILATION Lijun Ding 23 Jan 2018 Learning objectives What is NIV The difference between CPAP and BiPAP The indication of the use of NIV Complication of NIV application Patient monitoring

More information

BPAP 25A Training A.Giudice,RPSGT Clinical Education Manager

BPAP 25A Training A.Giudice,RPSGT Clinical Education Manager 1 Solutions in Sleep Therapy BPAP 25A Training A.Giudice,RPSGT Clinical Education Manager 2 To access press and hold the On/Off Button and Ramp Button and at the same time connect the power cord into the

More information

Pulmonary Function Testing: Concepts and Clinical Applications. Potential Conflict Of Interest. Objectives. Rationale: Why Test?

Pulmonary Function Testing: Concepts and Clinical Applications. Potential Conflict Of Interest. Objectives. Rationale: Why Test? Pulmonary Function Testing: Concepts and Clinical Applications David M Systrom, MD Potential Conflict Of Interest Nothing to disclose pertinent to this presentation BRIGHAM AND WOMEN S HOSPITAL Harvard

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Yesterday we spoke of the increased airway resistance and its two examples: 1) emphysema, where we have destruction of the alveolar wall and thus reducing the area available for

More information

Biochemistry of Lungs. Lecture # 35 Lecturer: Alexander Koval

Biochemistry of Lungs. Lecture # 35 Lecturer: Alexander Koval Biochemistry of Lungs Lecture # 35 Lecturer: Alexander Koval Introduction Biochemistry of lungs Overview of substances produced (surfactant, mucus, collagen), inactivated (ROS, kinins, serotonin, catecholamines)

More information

The Respiratory System Structures of the Respiratory System Structures of the Respiratory System Structures of the Respiratory System Nose Sinuses

The Respiratory System Structures of the Respiratory System Structures of the Respiratory System Structures of the Respiratory System Nose Sinuses CH 14 D.E. Human Biology The Respiratory System The Respiratory System OUTLINE: Mechanism of Breathing Transport of Gases between the Lungs and the Cells Respiratory Centers in the Brain Function Provides

More information

and Noninvasive Ventilatory Support

and Noninvasive Ventilatory Support Chapter 2 Mechanical Ventilation and Noninvasive Ventilatory Support Megan L. Anderson and John G. Younger PERSPECTIVE Invasive and noninvasive ventilation are essential tools for treatment of critically

More information

The Process of Breathing

The Process of Breathing OpenStax-CNX module: m46549 1 The Process of Breathing OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Basics of NIV. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity

Basics of NIV. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity Basics of NIV Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Objectives: Definitions Advantages and Disadvantages Interfaces Indications Contraindications

More information

THE AUSTRALIAN JOURNAL OF PHYSIOTHERAPY

THE AUSTRALIAN JOURNAL OF PHYSIOTHERAPY THE AUSTRALIAN JOURNAL OF PHYSIOTHERAPY VOLUME XVIV DECEMBER, 1973 NUMBER 4 ASPECTS OF APPLIED PHYSIOLOGY IN CHRONIC BRONCHITIS AND EMPHYSEMA 1 G* B. FIELD, M.D., F.R.A.C.P.? B.SC. (MED.) The terms chronic

More information

Lecture Notes. Chapter 3: Asthma

Lecture Notes. Chapter 3: Asthma Lecture Notes Chapter 3: Asthma Objectives Define asthma and status asthmaticus List the potential causes of asthma attacks Describe the effect of asthma attacks on lung function List the clinical features

More information

Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease 136 PHYSIOLOGY CASES AND PROBLEMS Case 24 Chronic Obstructive Pulmonary Disease Bernice Betweiler is a 73-year-old retired seamstress who has never been married. She worked in the alterations department

More information

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV)

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV) Table 1. NIV: Mechanisms Of Action Decreases work of breathing Increases functional residual capacity Recruits collapsed alveoli Improves respiratory gas exchange Reverses hypoventilation Maintains upper

More information

Lesson 9.1: Learning the Key Terms

Lesson 9.1: Learning the Key Terms 131 Lesson 9.1: Learning the Key Terms Directions: Place the letter of the best definition next to each key term. 1. alveolar capillary membrane 2. alveoli 3. bronchioles 4. cardiopulmonary system 5. conchae

More information

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery GE Healthcare Non Invasive Ventilation (NIV) For the Engström Ventilator Relief, Relax, Recovery COPD is currently the fourth leading cause of death in the world, and further increases in the prevalence

More information

New and Future Trends in EMS. Ron Brown, MD, FACEP Paramedic Lecture Series 2018

New and Future Trends in EMS. Ron Brown, MD, FACEP Paramedic Lecture Series 2018 New and Future Trends in EMS Ron Brown, MD, FACEP Paramedic Lecture Series 2018 New technologies and protocols DSD Mechanical Compression ITD BiPAP Ultrasound Double Sequential Defibrillation Two defibrillators

More information

What do pulmonary function tests tell you?

What do pulmonary function tests tell you? Pulmonary Function Testing Michael Wert, MD Assistant Professor Clinical Department of Internal Medicine Division of Pulmonary, Critical Care, and Sleep Medicine The Ohio State University Wexner Medical

More information

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2 2 Effects of CPAP INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2 ). The effect on CO 2 is only secondary to the primary process of improvement in lung volume and

More information

Cardiorespiratory Physiotherapy Tutoring Services 2017

Cardiorespiratory Physiotherapy Tutoring Services 2017 VENTILATOR HYPERINFLATION ***This document is intended to be used as an information resource only it is not intended to be used as a policy document/practice guideline. Before incorporating the use of

More information

Lumis Tx: the all-in-one hospital ventilation solution

Lumis Tx: the all-in-one hospital ventilation solution Lumis Tx: the all-in-one hospital ventilation solution The Lumis Tx is a multi-purpose non-invasive ventilator that treats the full range of respiratory conditions and is suitable for a variety of hospital

More information

Chapter 13. The Respiratory System.

Chapter 13. The Respiratory System. Chapter 13 The Respiratory System https://www.youtube.com/watch?v=hc1ytxc_84a https://www.youtube.com/watch?v=9fxm85fy4sq http://ed.ted.com/lessons/what-do-the-lungs-do-emma-bryce Primary Function of Breathing

More information

Physiology lab (RS) First : Spirometry. ** Objectives :-

Physiology lab (RS) First : Spirometry. ** Objectives :- Physiology lab (RS) ** Objectives :- 1. Spirometry in general. 2. Spirogram (volumes and capacities). 3. The importance of vital capacity in diagnosis. 4. Flow volume loop. 5. Miss Arwa s part (the practical

More information

Chapter 11 The Respiratory System

Chapter 11 The Respiratory System Biology 12 Name: Respiratory System Per: Date: Chapter 11 The Respiratory System Complete using BC Biology 12, page 342-371 11.1 The Respiratory System pages 346-350 1. Distinguish between A. ventilation:

More information

A Primer on Reading Pulmonary Function Tests. Joshua Benditt, M.D.

A Primer on Reading Pulmonary Function Tests. Joshua Benditt, M.D. A Primer on Reading Pulmonary Function Tests Joshua Benditt, M.D. What Are Pulmonary Function Tests Used For? Pulmonary function testing provides a method for objectively assessing the function of the

More information

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo Instant dowload and all chapters Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo https://testbanklab.com/download/test-bank-pilbeams-mechanical-ventilation-physiologicalclinical-applications-6th-edition-cairo/

More information

Coexistence of confirmed obstruction in spirometry and restriction in body plethysmography, e.g.: COPD + pulmonary fibrosis

Coexistence of confirmed obstruction in spirometry and restriction in body plethysmography, e.g.: COPD + pulmonary fibrosis Volumes: IRV inspiratory reserve volume Vt tidal volume ERV expiratory reserve volume RV residual volume Marcin Grabicki Department of Pulmonology, Allergology and Respiratory Oncology Poznań University

More information

Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล

Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Goal of Mechanical Ventilation Mechanical ventilation is any means in which physical device or machines are

More information

Spirometry: an essential clinical measurement

Spirometry: an essential clinical measurement Shortness of breath THEME Spirometry: an essential clinical measurement BACKGROUND Respiratory disease is common and amenable to early detection and management in the primary care setting. Spirometric

More information

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics RESPIRATORY FAILURE Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics What talk is he giving? DO2= CO * CaO2 CO = HR * SV CaO2 = (Hgb* SaO2 * 1.34) + (PaO2 * 0.003) Sound familiar??

More information

#8 - Respiratory System

#8 - Respiratory System Page1 #8 - Objectives: Study the parts of the respiratory system Observe slides of the lung and trachea Equipment: Remember to bring photographic atlas. Figure 1. Structures of the respiratory system.

More information

LUNGS. Requirements of a Respiratory System

LUNGS. Requirements of a Respiratory System Respiratory System Requirements of a Respiratory System Gas exchange is the physical method that organisms use to obtain oxygen from their surroundings and remove carbon dioxide. Oxygen is needed for aerobic

More information

Phases of Respiration. Chapter 18: The Respiratory System. Structures of the Respiratory System. Structures of the Respiratory System

Phases of Respiration. Chapter 18: The Respiratory System. Structures of the Respiratory System. Structures of the Respiratory System Phases of Respiration Chapter 18: The Respiratory System Respiration Process of obtaining oxygen from environment and delivering it to cells Phases of Respiration 1. Pulmonary ventilation between air and

More information

By Mark Bachand, RRT-NPS, RPFT. I have no actual or potential conflict of interest in relation to this presentation.

By Mark Bachand, RRT-NPS, RPFT. I have no actual or potential conflict of interest in relation to this presentation. By Mark Bachand, RRT-NPS, RPFT I have no actual or potential conflict of interest in relation to this presentation. Objectives Review state protocols regarding CPAP use. Touch on the different modes that

More information

NI 60. Non-invasive ventilation without compromise. Homecare Pneumology Neonatology Anaesthesia. Sleep Diagnostics Service Patient Support

NI 60. Non-invasive ventilation without compromise. Homecare Pneumology Neonatology Anaesthesia. Sleep Diagnostics Service Patient Support NI 60 Non-invasive ventilation without compromise Homecare Pneumology Neonatology Anaesthesia INTENSIVE CARE VENTILATION Sleep Diagnostics Service Patient Support NI 60 Non-invasive ventilation without

More information

Chapter 16. The Respiratory System. Mosby items and derived items 2010, 2006, 2002, 1997, 1992 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 16. The Respiratory System. Mosby items and derived items 2010, 2006, 2002, 1997, 1992 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 16 The Respiratory System Objectives Discuss the generalized functions of the respiratory system List the major organs of the respiratory system and describe the function of each Compare, contrast,

More information

YOGIC BREATHING Anatomy and Physiology of the Respiratory System

YOGIC BREATHING Anatomy and Physiology of the Respiratory System YOGIC BREATHING Anatomy and Physiology of the Respiratory System BREATHING Breath in, breath out. As long as you keep doing this you will never die! Breathing is an involuntary process. However unlike

More information

Understanding Breathing Muscle Weakness

Understanding Breathing Muscle Weakness Understanding Breathing Muscle Weakness A N D R E A L. K L E I N P R E S I D E N T / F O U N D E R B R E A T H E W I T H M D w w w.facebook.com/ b r e a t h e w i t h m d h t t p : / / w w w. b r e a t

More information

B Unit III Notes 6, 7 and 8

B Unit III Notes 6, 7 and 8 The Respiratory System Why do we breathe? B. 2201 Unit III Notes 6, 7 and 8 Respiratory System We know that our cells respire to produce ATP (energy). All organisms need energy to live, so that s why we

More information

THE FORCED EXPIRATORY VOLUME AFTER EXERCISE,

THE FORCED EXPIRATORY VOLUME AFTER EXERCISE, Thorax (1959), 14, 161. THE FORCED EXPIRATORY VOLUME AFTER EXERCISE, FORCED INSPIRATION, AND THE VALSALVA AND MULLER MAN(EUVRES BY L. H. CAPEL AND J. SMART From the London Chest Hospital (RECEIVED FOR

More information