Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education

Size: px
Start display at page:

Download "Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education"

Transcription

1 Essential Questions How can genetic patterns be analyzed to determine dominant or recessive inheritance patterns? What are examples of dominant and recessive disorders? How can human pedigrees be constructed from genetic information? Basic Patterns of Human Inheritance

2 Vocabulary Review genes New carrier pedigree Basic Patterns of Human Inheritance

3 Recessive Genetic Disorders A recessive trait is expressed when the individual is homozygous recessive for the trait. Those with at least one dominant allele will not express the recessive disorder. An individuals who is heterozygous for a recessive disorder is called a carrier. Basic Patterns of Human Inheritance

4 Recessive Genetic Disorders Cystic fibrosis A disorder that affects the mucous-producing glands, digestive enzymes, and sweat glands. Chloride ions are not properly transported out of cells of a person with cystic fibrosis. Cystic fibrosis causes mucus excretion that clogs ducts in the pancreas, interrupts digestion, and blocks respiratory pathways in the lungs. Basic Patterns of Human Inheritance

5 Recessive Genetic Disorders Albinism Albinism is caused by altered genes, resulting in the absence of the skin pigment melanin in hair and eyes. Individuals with albinism have very pale skin, white hair, and pink irises. Basic Patterns of Human Inheritance

6 Recessive Genetic Disorders Tay-Sachs disease Caused by the absence of the enzymes responsible for breaking down fatty acids called gangliosides Gangliosides accumulate in the brain, inflating brain nerve cells and causing mental deterioration. Basic Patterns of Human Inheritance

7 Dominant Genetic Disorders Huntington s disease Affects the nervous system, causing gradual loss of brain function Occurs in 1 out of every 10,000 people in the US Achondroplasia Causes small body size and limbs that are comparatively short Caused by an abnormal gene that affects bone growth Basic Patterns of Human Inheritance

8 Pedigrees A pedigree is a diagram that traces the inheritance of a particular trait through several generations. Basic Patterns of Human Inheritance

9 Analyzing Pedigrees Pedigrees can be used to examine both recessive and dominant genetic disorders. Recessive disorder Information about an individual s genotype can be inferred from the phenotype of his/her parents and offspring. Dominant disorder Basic Patterns of Human Inheritance

10 Analyzing Pedigrees Inferring Genotypes Knowing physical traits can determine what genes an individual is most likely to have. Predicting Disorders Record keeping helps scientists use pedigree analysis to study inheritance patterns, determine phenotypes, and ascertain genotypes. Basic Patterns of Human Inheritance

11 Review Essential Questions How can genetic patterns be analyzed to determine dominant or recessive inheritance patterns? What are examples of dominant and recessive disorders? How can human pedigrees be constructed from genetic information? Vocabulary carrier pedigree Basic Patterns of Human Inheritance

12 Essential Questions What are the differences between various complex inheritance patterns? How can sex-linked inheritance patterns be analyzed? How can the environment influence the phenotype of an organism? Complex Patterns of Inheritance

13 Vocabulary Review gamete New incomplete dominance codominance multiple alleles epistasis sex chromosome autosome sex-linked trait polygenic trait Complex Patterns of Inheritance

14 Incomplete Dominance In some organisms, heterozygous individuals will display the dominant phenotype. With incomplete dominance, the heterozygous phenotype is an intermediate phenotype between the two homozygous phenotypes. Complex Patterns of Inheritance

15 Codominance In codominance, both the dominant and recessive alleles are expressed in heterozygous individuals. Complex Patterns of Inheritance

16 Codominance Sickle-cell disease Changes in hemoglobin cause red blood cells to become sickle shaped. People who are heterozygous for the trait have both normal and sickleshaped cells. Sickle-cell disease and malaria Those who are heterozygous for the sickle cell trait also have a higher resistance to malaria. The death rate due to malaria is lower where sickle-cell trait is higher, meaning more people live to pass it on to their offspring. Complex Patterns of Inheritance

17 Multiple Alleles Blood groups in humans Some forms of inheritance are determined by more than two alleles, referred to as multiple alleles. The ABO blood group has three forms of alleles, sometimes called AB markers. Complex Patterns of Inheritance

18 Multiple Alleles Coat color of rabbits Multiple alleles can demonstrate a hierarchy of dominance. In rabbits, four alleles code for coat color: C, c ch, c h, and c. The hierarchy of dominance is C > c ch > c h >c. The presence of multiple alleles increases the possible number of genotypes and phenotypes. Complex Patterns of Inheritance

19 Epistasis Epistasis is an interaction where of one allele hiding the effects of another allele. Seen in the coat color of Labrador retrievers Dominant allele E determines whether the coat will have dark pigment. Allele B determines how dark the coat will be. When a dog has recessive ee alleles, the coat will be yellow, because the e allele masks the effects of the B allele. Complex Patterns of Inheritance

20 Sex Determination One pair of chromosomes, sex chromosomes, determine an individual s gender. XX: female XY: male The other 22 pairs of chromosomes are called autosomes. Complex Patterns of Inheritance

21 Dosage Compensation The X chromosome carries a variety of genes that are necessary for the development of both females and males. The Y chromosome mainly has genes that relate to the development of male characteristics. In female, one X chromosome is inactivated in each cell. Called dosage compensation or x-inactivation Which X stops working in each cell is random. Complex Patterns of Inheritance

22 Dosage Compensation Barr bodies The inactivated X chromosome can be observed in cells. Darkly stained, inactivated X chromosomes are called Barr bodies. Complex Patterns of Inheritance

23 Sex-Linked Traits Traits controlled by genes located on the X chromosome are sex-linked traits. Because males have only one copy of the X chromosome, they are more affected by recessive X-linked traits. Complex Patterns of Inheritance

24 Sex-Linked Traits Red-green color blindness Recessive, X-linked trait Mothers are carriers. Complex Patterns of Inheritance

25 Sex-Linked Traits Hemophilia Recessive, X-linked trait that causes delayed clotting of blood Complex Patterns of Inheritance

26 Polygenic Traits Polygenic traits arise from the interaction of multiple pairs of genes. Include such traits as skin color, height, and eye color Complex Patterns of Inheritance

27 Environmental Influences Sunlight and water Without enough sunlight, most plants will not produce flowers. Insufficient water causes plants to drop their leaves. Temperature Most organisms experience phenotypic changes with extreme heat. Complex Patterns of Inheritance

28 Twin Studies Help scientists separate genetic contributions from environmental contributions Traits that appear frequently in identical twins are at least partially controlled by heredity. Traits expressed differently in identical twins are strongly influenced by environment. Complex Patterns of Inheritance

29 Review Essential Questions What are the differences between various complex inheritance patterns? How can sex-linked inheritance patterns be analyzed? How can the environment influence the phenotype of an organism? Vocabulary incomplete dominance codominance multiple alleles epistasis sex chromosome autosome sex-linked trait polygenic trait Complex Patterns of Inheritance

30 Essential Questions How are karyotypes used to study genetic disorders? What is the role of telomeres? How is nondisjunction related to Down syndrome and other abnormal chromosome numbers? What are the benefits and risks of diagnostic fetal testing? Chromosomes and Human Heredity

31 Vocabulary Review mitosis New karyotype telomere nondisjunction Chromosomes and Human Heredity

32 Karyotype Studies Scientists study not only genes but entire chromosomes. Images of chromosomes stained during metaphase allow scientists to study sister chromatids and homologous chromosomes. Karyotype micrograph in which the pairs of homologous chromosomes are arranged in decreasing size. Chromosomes and Human Heredity

33 Telomeres Telomeres are protective caps on the end of chromosomes. Telomeres consist of DNA and proteins. They serve as a protective function for the structure of the chromosome. Chromosomes and Human Heredity

34 Nondisjunction Cell division where sister chromatids fail to separate properly is called nondisjunction. Chromosomes and Human Heredity

35 Nondisjunction Down syndrome Result of an extra chromosome 21 Characteristics include distinctive facial features, short stature, heart defects, and mental disability. Chromosomes and Human Heredity

36 Fetal testing Fetal tests can provide information on potential genetic disorders and chromosomal status of developing babies. Chromosomes and Human Heredity

37 Review Essential Questions How are karyotypes used to study genetic disorders? What is the role of telomeres? How is nondisjunction related to Down syndrome and other abnormal chromosome numbers? What are the benefits and risks of diagnostic fetal testing? Vocabulary karyotype telomere nondisjunction Chromosomes and Human Heredity

Recessive Genetic Disorders! A recessive trait is expressed when the individual is homozygous recessive for the trait.

Recessive Genetic Disorders! A recessive trait is expressed when the individual is homozygous recessive for the trait. Section 1 Basic Patterns of Human Inheritance Recessive Genetic Disorders! A recessive trait is expressed when the individual is homozygous recessive for the trait. Section 1 Section 1 Table 11.2 Recessive

More information

Human Genetic Disorders

Human Genetic Disorders Human Genetic Disorders HOMOLOGOUS CHROMOSOMES Human somatic cells have 23 pairs of homologous chromosomes 23 are inherited from the mother and 23 from the father HOMOLOGOUS CHROMOSOMES Autosomes o Are

More information

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance What You ll Learn You will compare the inheritance of recessive and dominant traits in humans. You will analyze the inheritance patterns of traits with incomplete dominance and codominance. You will determine

More information

Two copies of each autosomal gene affect phenotype.

Two copies of each autosomal gene affect phenotype. UNIT 3 GENETICS LESSON #34: Chromosomes and Phenotype Objective: Explain how the chromosomes on which genes are located can affect the expression of traits. Take a moment to look at the variety of treats

More information

Genetics, Mendel and Units of Heredity

Genetics, Mendel and Units of Heredity Genetics, Mendel and Units of Heredity ¾ Austrian monk and naturalist. ¾ Conducted research in Brno, Czech Republic from 1856-1863 ¾ Curious about how traits were passed from parents to offspring. Gregor

More information

NOTES: : HUMAN HEREDITY

NOTES: : HUMAN HEREDITY NOTES: 14.1-14.2: HUMAN HEREDITY Human Genes: The human genome is the complete set of genetic information -it determines characteristics such as eye color and how proteins function within cells Recessive

More information

UNIT IV. Chapter 14 The Human Genome

UNIT IV. Chapter 14 The Human Genome UNIT IV Chapter 14 The Human Genome UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics I. Chromosomes and Phenotype (7.1) A. Two copies of each autosomal gene affect phenotype 1. Most human traits

More information

Lab Activity 36. Principles of Heredity. Portland Community College BI 233

Lab Activity 36. Principles of Heredity. Portland Community College BI 233 Lab Activity 36 Principles of Heredity Portland Community College BI 233 Terminology of Chromosomes Homologous chromosomes: A pair, of which you get one from mom, and one from dad. Example: the pair of

More information

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Human Genetics Notes:

Human Genetics Notes: Human Genetics Notes: Human Chromosomes Cell biologists analyze chromosomes by looking at. Cells are during mitosis. Scientists then cut out the chromosomes from the and group them together in pairs. A

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?. Name Class Date Review Guide Genetics The fundamental principles of genetics were first discovered by. What type of plant did he breed?. True-breeding parental plants are called the generation. Their hybrid

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance Units of Heredity: Chromosomes and Inheritance Ch. 12 12.1 in Humans X-chromosomes also have non genderspecific genes Called X-linked genes Vision Blood-clotting X-linked conditions Conditions caused by

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

Date Pages Page # 3. Record the color of your beads. Are they homozygous or heterozygous?

Date Pages Page # 3. Record the color of your beads. Are they homozygous or heterozygous? 1 Patterns of Inheritance Process and Procedures Date Pages 645-650 Page # 3. Record the color of your beads. Are they homozygous or heterozygous? 6. Record the colors of the two beads. Are they homozygous

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Basic Patterns of Human Inheritance. Reading Preview. Recessive Genetic Disorders. Essential Questions

Basic Patterns of Human Inheritance. Reading Preview. Recessive Genetic Disorders. Essential Questions 4.2.a Basic Patterns of Human Inheritance The inheritance of a trait over several generations can be shown in a pedigree. Real-World Reading Link Knowing a purebred dog s ancestry can help the owner know

More information

Codominance. P: H R H R (Red) x H W H W (White) H W H R H W H R H W. F1: All Roan (H R H W x H R H W ) Name: Date: Class:

Codominance. P: H R H R (Red) x H W H W (White) H W H R H W H R H W. F1: All Roan (H R H W x H R H W ) Name: Date: Class: Name: Date: Class: (Exceptions to Mendelian Genetics Continued) Codominance Firstly, it is important to understand that the meaning of the prefix "co is "together" (i.e. cooperate = work together, coexist

More information

40 Bell Work Week 8 5/12 41 Genetic Notes 5/12 42 Bill Nye Video & Questions 5/12

40 Bell Work Week 8 5/12 41 Genetic Notes 5/12 42 Bill Nye Video & Questions 5/12 40 Bell Work Week 8 5/12 41 Genetic Notes 5/12 42 Bill Nye Video & Questions 5/12 1. I am available after school on Wed. and Thurs. this week. 2. Quiz Friday over genetic material 3. Last day to turn in

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance Genetics Since Mendel GLE 0707.4.4 Predict the probable appearance of offspring based on the genetic characteristics of the parents. What You ll Learn! Explain how traits are inherited by incomplete dominance!

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Heredity and Genetics (8%)

Heredity and Genetics (8%) I. Basic Vocabulary a. G Phase Heredity and Genetics (8%) M G2 i. Chromosomes: Threadlike linear strands of DNA and associated proteins in the nucleus of eukaryotic cells that carry the genes and functions

More information

Patterns in Inheritance. Chapter 10

Patterns in Inheritance. Chapter 10 Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

Lesson Overview Human Chromosomes

Lesson Overview Human Chromosomes Lesson Overview 14.1 Human Chromosomes Human Genome To find what makes us uniquely human, we have to explore the human genome, which is the full set of genetic information carried in our DNA. This DNA

More information

8.1 Human Chromosomes and Genes

8.1 Human Chromosomes and Genes 8.1. Human Chromosomes and Genes www.ck12.org 8.1 Human Chromosomes and Genes Lesson Objective Define the human genome. Describe human chromosomes and genes. Explain linkage and linkage maps. Vocabulary

More information

Human Genetics (Learning Objectives)

Human Genetics (Learning Objectives) Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic,

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Patterns of Heredity Genetics

Patterns of Heredity Genetics Patterns of Heredity Genetics DO NOW Hand in outlines (my desk) Pick up tests from back table and review them. We will be going over the zipgrade and the short answer together. Save your questions for

More information

Ch 7 Extending Mendelian Genetics

Ch 7 Extending Mendelian Genetics Ch 7 Extending Mendelian Genetics Studying Human Genetics A pedigree is a chart for tracing genes in a family. Used to determine the chances of offspring having a certain genetic disorder. Karyotype=picture

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS SHORT ANSWER QUESTIONS-Please type your awesome answers on a separate sheet of paper. 1. What is an X-linked inheritance pattern? Use a specific example to explain the role of the father and mother in

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;)

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;) MEIOSIS: Genetic Variation / Mistakes in Meiosis (Sections 11-3,11-4;) RECALL: Mitosis and Meiosis differ in several key ways: MITOSIS: MEIOSIS: 1 round of cell division 2 rounds of cell division Produces

More information

NOTES: Exceptions to Mendelian Genetics!

NOTES: Exceptions to Mendelian Genetics! NOTES: 11.3 Exceptions to Mendelian Genetics! Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles OR multiple genes.

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

BIO113 Exam 2 Ch 4, 10, 13

BIO113 Exam 2 Ch 4, 10, 13 BIO113 Exam 2 Ch 4, 10, 13 See course outline for specific reading assignments Study notes and focus on terms and concepts The images in the textbook are useful CELLS (pg. 37) The basic unit of life living

More information

Genetic Disorders. PART ONE: Detecting Genetic Disorders. Amniocentesis Chorionic villus sampling Karyotype Triple Screen Blood Test

Genetic Disorders. PART ONE: Detecting Genetic Disorders. Amniocentesis Chorionic villus sampling Karyotype Triple Screen Blood Test Genetic Disorders PART ONE: Detecting Genetic Disorders Amniocentesis Chorionic villus sampling Karyotype Triple Screen Blood Test Amniocentesis A technique for determining genetic abnormalities in a fetus

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

14 1 Human Heredity. Week 8 vocab Chapter 14

14 1 Human Heredity. Week 8 vocab Chapter 14 Week 8 vocab Chapter 14 Vocab 1. Karyotype 5. sex-linked gene 2. sex chromosome 6. nondisjunction 3. pedigree 7. DNA fingerprinting 4. Polygenic 1 of 43 Biology Biology 2 of 43 14-1 Human Heredity 3 of

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

Honors Biology Review Sheet to Chapter 9 Test

Honors Biology Review Sheet to Chapter 9 Test Honors Biology Review Sheet to Chapter 9 Test Name Per 1. Label the following flower: sepal, petal, anther, filament, style, ovary, stigma Draw in ovules and label. Color the female structure red and the

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin Genetics Supplement (These supplementary modules, a Genetics Student Handout, and Teacher Preparation Notes with suggestions for implementation are available at http://serendip.brynmawr.edu/sci_edu/waldron/#genetics.

More information

The first scientists to study the laws of heredity had some difficult initial problems to solve

The first scientists to study the laws of heredity had some difficult initial problems to solve Chapter 11 The first scientists to study the laws of heredity had some difficult initial problems to solve Two parents have to contribute equally to make one child Sometimes offspring show similar traits

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Human Heredity: The genetic transmission of characteristics from parent to offspring.

Human Heredity: The genetic transmission of characteristics from parent to offspring. Human Heredity: The genetic transmission of characteristics from parent to offspring. Karyotype : picture of the actual chromosomes arranged in pairs, paired and arranged from largest to smallest. Human

More information

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes.

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes. Genetics Supplement (These supplementary modules, a Genetics Student Handout, and Teacher Preparation Notes with background information are available at http://serendip.brynmawr.edu/sci_edu/waldron/#genetics.

More information

Lesson Overview. Human Chromosomes. Lesson Overview. Human Chromosomes

Lesson Overview. Human Chromosomes. Lesson Overview. Human Chromosomes Lesson Overview Karyotypes A genome is the full set of genetic information that an organism carries in its DNA. A study of any genome starts with chromosomes, the bundles of DNA and protein found in the

More information

Mendelian Genetics. Vocabulary. M o l e c u l a r a n d M e n d e l i a n G e n e t i c s

Mendelian Genetics. Vocabulary. M o l e c u l a r a n d M e n d e l i a n G e n e t i c s Mendelian Genetics Vocabulary Genotype: o Capital letter = allele o Lowercase letter = allele o Ex AA, Aa, aa Phenotype: o Ex green, yellow Homozygous: o Homozygous dominant: o Homozygous recessive: Heterozygous:

More information

Biology: Life on Earth

Biology: Life on Earth Teresa Audesirk Gerald Audesirk Bruce E. Byers Biology: Life on Earth Eighth Edition Lecture for Chapter 12 Patterns of Inheritance Copyright 2008 Pearson Prentice Hall, Inc. Chapter 12 Outline 12.1 What

More information

I. Classical Genetics. 1. What makes these parakeets so varied in color?

I. Classical Genetics. 1. What makes these parakeets so varied in color? 1. Classical Genetics a. Mendel i. Mendel s Laws ii. Advanced Genetic Principles b. Modern Genetics i. Scientists ii. Nucleic Acids DNA/RNA Function iii.replication iv.protein Synthesis v. Mutations (gene

More information

Genes are found on Chromosomes! Genes are found on Chromosomes! I. Types of Mutations

Genes are found on Chromosomes! Genes are found on Chromosomes! I. Types of Mutations Genes are found on Chromosomes! genes and chromosomes are made up of DNA, which is the genetic material for all life on earth genes are found on a specific region on a chromosome; called a locus (loci)

More information

Genetics Practice Test. A. phenylketonuria B. Tay-Sachs C. hemophilia D. color blindness

Genetics Practice Test. A. phenylketonuria B. Tay-Sachs C. hemophilia D. color blindness Name: ate: 1. Which statement best describes a cloned population?. It is usually produced by sexual reproduction.. The individual organisms usually have varying N sequences.. There are usually no variations

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

The passing of traits from parents to offspring. The scientific study of the inheritance

The passing of traits from parents to offspring. The scientific study of the inheritance Inheritance The passing of traits from parents to offspring Genetics The scientific study of the inheritance Gregor Mendel -Father of modern genetics -Used peas to successfully identify the laws of heredity

More information

Gene Expression and Mutation

Gene Expression and Mutation Gene Expression and Mutation GENE EXPRESSION: There are hormonal and environmental factors that may cause the expression of some genetic information. Some examples are: 1. The two- colour pattern of some

More information

Biology 12. Mendelian Genetics

Biology 12. Mendelian Genetics Mendelian Genetics Genetics: the science (study) of heredity that involves the structure and function of genes and the way genes are passed from one generation to the next. Heredity: the passing on of

More information

Science Olympiad Heredity

Science Olympiad Heredity Science Olympiad Heredity Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A Punnett square shows you all the ways in which can combine. a.

More information

Pedigrees: Genetic Family History

Pedigrees: Genetic Family History Pedigrees: Genetic Family History - Women are represented with a. - Men are represented with a. - Affected individuals are (individuals who express the trait). C B A D If this is you who are The other

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

What are sex cells? How does meiosis help explain Mendel s results?

What are sex cells? How does meiosis help explain Mendel s results? CHAPTER 5 3 Meiosis SECTION Heredity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are sex cells? How does meiosis help explain Mendel s results? National

More information

Unit 5: Genetics Guided Notes

Unit 5: Genetics Guided Notes 1 Unit 5: Genetics Guided Notes Basic Mendelian Genetics Before Gregor Mendel 1) When Mendel started his work, most people believed in the blending theory of inheritance. (Inheritance, Heredity, and Genetics

More information

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics ACP BIOLOGY Textbook Reading: Meiosis & Fertilization (Ch. 11.4, 14.1-2) and Classical Genetics (Ch. 11.1-3) Handouts:! NOTES Meiosis & Fertilization!

More information

Unit 3 Chapter 16 Genetics & Heredity. Biology 3201

Unit 3 Chapter 16 Genetics & Heredity. Biology 3201 Unit 3 Chapter 16 Genetics & Heredity Biology 3201 Intro to Genetics For centuries, people have known that certain physical characteristics are passed from one generation to the next. Using this knowledge,

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

COMPLETE DOMINANCE. Autosomal Dominant Inheritance Autosomal Recessive Inheritance

COMPLETE DOMINANCE. Autosomal Dominant Inheritance Autosomal Recessive Inheritance COMPLETE DOMINANCE In complete dominance, the effect of one allele completely masks the effect of the other. The allele that masks the other is called dominant, and the allele that is masked is called

More information

How do genes influence our characteristics?

How do genes influence our characteristics? Genetics Supplement 1 This activity will focus on the question: How do genes contribute to the similarities and differences between parents and their children? This question can be divided into two parts:

More information

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011 We all know that children tend to resemble their parents in appearance.

More information

Review for Meiosis and Genetics Unit Test: Theory

Review for Meiosis and Genetics Unit Test: Theory Review for Meiosis and Genetics Unit Test: Theory 1. What is a karyotype? What stage of mitosis is the best for preparing karyotypes? a karyotype is a picture of all of the chromosomes in a cell, organized

More information

IB BIO I Genetics Test Madden

IB BIO I Genetics Test Madden Name Date Multiple Choice 1. What does the genotype X H X h indicate? A. A co-dominant female B. A heterozygous male C. A heterozygous female D. A co-dominant male 2. A pure breeding tall plant with smooth

More information

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics HONORS BIOLOGY Textbook Reading: Meiosis & Fertilization (Ch. 11.4, 14.1-2) and Classical Genetics (Ch. 11.1-3) Handouts:! NOTES Meiosis & Fertilization!

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

Ch 8 Practice Questions

Ch 8 Practice Questions Ch 8 Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What fraction of offspring of the cross Aa Aa is homozygous for the dominant allele?

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Principles of Genetics Biology 204 Marilyn M. Shannon, M.A.

Principles of Genetics Biology 204 Marilyn M. Shannon, M.A. Principles of Genetics Biology 204 Marilyn M. Shannon, M.A. Introduction Nature versus nurture is a topic often informally discussed. Are world-class musicians that good because they inherited the right

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms

More information

Genetics Practice Questions:

Genetics Practice Questions: Genetics Practice Questions: 1. Define the following Vocabulary Words: Fertilization fusion of a haploid nucleus of an egg cell and a haploid nucleus of a sperm cell haploid-- a nucleus containing a single

More information

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel: MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:

More information

The basic methods for studying human genetics are OBSERVATIONAL, not EXPERIMENTAL.

The basic methods for studying human genetics are OBSERVATIONAL, not EXPERIMENTAL. Human Heredity Chapter 5 Human Genetics 5:1 Studying Human Genetics Humans are not good subjects for genetic research because: 1. Humans cannot ethically be crossed in desired combinations. 2. Time between

More information

Patterns of Inheritance Review Game Page 1

Patterns of Inheritance Review Game Page 1 Patterns of Inheritance Review Game Page 1 1 The tendency of alleles that are located close together on a chromosome to be inherited together during meiosis is called epistasis. codominance. crossing over.

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

Lesson Overview. Human Genetic Disorders. Lesson Overview Human Genetic Disorders

Lesson Overview. Human Genetic Disorders. Lesson Overview Human Genetic Disorders Lesson Overview 14.2 Human Genetic Disorders From Molecule to Phenotype There is a direct connection between molecule and trait, and between genotype and phenotype. In other words, there is a molecular

More information

Chapter 17 Genetics Crosses:

Chapter 17 Genetics Crosses: Chapter 17 Genetics Crosses: 2.5 Genetics Objectives 2.5.6 Genetic Inheritance 2.5.10.H Origin of the Science of genetics 2.5.11 H Law of segregation 2.5.12 H Law of independent assortment 2.5.13.H Dihybrid

More information

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 9 Patterns of Inheritance Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 9.1 What Is The Physical Basis Of Inheritance? Inheritance occurs when genes

More information

Guided Notes: Simple Genetics

Guided Notes: Simple Genetics Punnett Squares Guided Notes: Simple Genetics In order to determine the a person might inherit, we use a simple diagram called a o Give us of an offspring having particular traits Pieces of the Punnett

More information

MONOHYBRID CROSSES WITH DOMINANT TRAITS

MONOHYBRID CROSSES WITH DOMINANT TRAITS HEREDITY WORKSHEET Name: MONOHYBRID CROSSES WITH DOMINANT TRAITS 1. The table below indicates dominant and recessive traits in corn plants. Refer to this information for questions 1 7. Dominant Tall (T)

More information

GENETICS NOTES. Chapters 12, 13, 14, 15 16

GENETICS NOTES. Chapters 12, 13, 14, 15 16 GENETICS NOTES Chapters 12, 13, 14, 15 16 DNA contains the genetic code for the production of PROTEINS. A gene is a segment of DNA, which consists of enough bases to code for many different proteins. The

More information