Advances in genetic diagnosis of neurological disorders

Size: px
Start display at page:

Download "Advances in genetic diagnosis of neurological disorders"

Transcription

1 Acta Neurol Scand 2014: 129 (Suppl. 198): DOI: /ane John Wiley & Sons A/S. Published by John Wiley & Sons Ltd ACTA NEUROLOGICA SCANDINAVICA Review Article Advances in genetic diagnosis of neurological disorders Toft M. Advances in genetic diagnosis of neurological disorders. Acta Neurol Scand: 2014: 129 (Suppl. 198): John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Neurogenetics has developed enormously in recent years, and the genetic basis of human disorders is being unravelled rapidly. Many neurological disorders are Mendelian disorders, caused by mutations in genes involved in normal function of the brain, spinal cord, peripheral nerves or muscles. Due to high costs and time-consuming procedures, genetic tests have normally been performed late in the diagnostic process, when clinical examination and other tests have indicated a specific gene as the likely disease cause. Many neurological phenotypes are genetically very heterogeneous, and testing of all possible disease genes has been impossible. As a result, many patients with genetic neurological disorders have remained without a specific diagnosis, even when the disease is caused by mutations in known disease genes. Recent technological advances, in particular nextgeneration DNA sequencing techniques, have resulted in rapid identification of genes involved in Mendelian disorders and provided new possibilities for diagnostic genetic testing. The development of methods for coupling targeted capture and massively parallel DNA sequencing has made it possible to examine a large number of genes in a single reaction. Diagnostic genetic testing can today be performed by the use of gene panels and exome sequencing. This allows a more precise diagnosis of many neurological disorders, and genetic testing should now be considered earlier in the diagnostic procedure. M. Toft Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway Key words: diagnostic test; genetic; sequencing M. Toft, Department of Neurology, Oslo University Hospital Rikshospitalet, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway Tel.: Fax: mtoft@ous-hf.no Accepted for publication September 12, 2013 Introduction Many neurological disorders are caused by single mutations in genes involved in normal function of the brain, spinal cord, peripheral nerves or muscles. In addition to this, a large number of neurological disorders are so-called complex disorders, caused by a presumed interplay between several genetic and environmental factors. Over the past few years, the field of neurogenetics has developed rapidly and enabled a much greater understanding in the aetiology of many neurological disorders. Recent technological developments have led to an enormous increase in the identification of disease-related genes. These advances have allowed the determination of whole-genome structure and variation and examination of its impact on human phenotypes. Genome-wide association studies have provided information on how common genetic variability influences risk for the development of complex diseases. Furthermore, identification of rare disease-causing mutations has been followed by the discovery of novel biological pathways involved in disease pathogenesis. The purpose of this review is to give an introduction into the field of neurogenetics, and to discuss some of the recent advances in genetic technology. I will also discuss the implications these developments have on the use of genetic testing in the diagnostic process of neurological conditions. Mutations and genes In 1953, Crick and Watson identified the structure of DNA and showed that genetic information exists in the sequence of nucleotides on two 20

2 Genetics of neurological disorders strands of DNA (1). A gene is a sequence of DNA located on a chromosome, and the human genome contains more than 20,000 genes. The sequence of nucleotides in a gene is translated to a chain of amino acids, which in turn spontaneously fold into proteins. Before the human genome sequence was published in 2001, a limited number of disease-related genes had been identified and genetic testing was only performed for a very limited number of disorders. However, the completion of the Human Genome Project provided the necessary basis for the identification of disease genes as it provided an almost complete map of human genes (2). Only a little more than 1% of the human genome encodes genes. The remaining sequence has regulatory or largely unknown functions. Several million variants in the genome sequence exist in the human population. Despite this, more than 99.9% of two individual s genetic sequence is identical. The information in a gene is not always identical in two individuals, these alternative forms are called alleles. Spontaneous changes in genes, referred to as mutations, can give rise to new alleles with different properties. These new alleles can either be recessive or dominant. An individual s allele at a specific locus is called this person s genotype. A mutation is a permanent change in the nucleotide sequence or DNA structure. The consequence of a mutation on the function or amount of proteins is normally the molecular cause of a genetic disease. The vast majority of normally occurring genetic variants in the genome, so-called single-nucleotide polymorphisms (SNPs), are occurring in intronic regions that are not encoding amino acids. These variants therefore do not cause changes of protein sequence, but can influence regulatory elements and gene promoters and thus be involved in disease susceptibility. The most common form of mutations is point mutations caused by the substitution of a single nucleotide. On the protein level, this can cause a substitution of a single amino acid (missense mutation) or the introduction of a premature stop codon (nonsense mutation). Point mutations can also change splicing of exons or influence regulatory regions affecting gene expression. Structural mutations that are adding or deleting small sequences of nucleotides or large parts of chromosomes also exist. In addition, expansions of repeated sequence can also alter gene function and cause neurological disorders. Mutations can cause disease through different mechanisms. A common mechanism is that the mutation leads to a reduced or completely abolished function of the protein. This is typical for autosomal recessive disorders caused by defects of enzymes. Alternatively, the mutation causes disease by a gain of function, with increased protein activity or altered protein function for example in the form of protein aggregation. The genetics of neurological disorders The central nervous system is very complex, and normal function of neurons is depending on the correct performance of thousands of genes and their products. A large number of genetic disorders are therefore affecting functions of the nervous system. There are several different types of inherited genetic disorders, and neurological disease can be caused by all these different mechanisms. Chromosomal disorders This group of disorders is caused by structural mutations of one or several chromosomes. Chromosome abnormalities impair cell functions because of missing or extra chromosomal material (either whole chromosome or segments of chromosomes) or because a structural rearrangement interrupts a gene (3). Chromosome abnormalities are a relatively common cause of developmental disorders, occurring in 1 in 200 individuals. Chromosomal disorders are common syndromes with a complex phenotype and frequently involve intellectual disability. Thus, these syndromes are mostly diagnosed in childhood. However, neurologists are involved in the treatment for symptoms persisting into adulthood as epilepsy and spasticity. A diagnosis of a chromosomal disorder was traditionally based on cytogenetic testing using karyograms and fluorescent in situ hybridization (FISH). Due to recent advances in diagnostic techniques, including the development of arraybased comparative genomic hybridization (acgh), genomic copy number variations can be detected at a much higher resolution level than through traditional methods. This had led to the identification of a large number of chromosomal disorders in the last years. As an example, acgh has been applied to identify the molecular causes of several types of epilepsy (4). Mendelian disorders These disorders are caused by a mutation in a single gene and are therefore also known as monogenic disorders. In Mendelian disorders, 21

3 Toft one copy (for dominant genes) or two copies (for recessive genes) of the mutant gene inevitably lead to the development of the disease. Diseases with such simple inheritance patterns are each relatively rare and constitute a small proportion of all cases of neurological disease. However, the total frequency of all inherited neurological disorders is considerable. There are a many Mendelian neurological disorders, including neuropathies, myopathies, epilepsies, ataxias and other degenerative disorders of the brain and spinal cord. In 1993, one of the first molecular causes of a Mendelian disorder was found when an international consortium identified the gene causing Huntington s disease (5). Huntington s disease is caused by an expansion of a CAG trinucleotide repeat. A number of repeat disorders are caused by abnormal length of a repeated section within a gene, including Friedreich s ataxia, several spinocerebellar ataxias and myotonic dystrophy. Interestingly, a hexanucleotide repeat within the C9orf72 gene has recently been identified in a substantial proportion of both familial and sporadic forms of frontotemporal dementia and amyotrophic lateral sclerosis (6). This indicates that repeat disorders might be even more frequent than appreciated. The most common causes of Mendelian neurological disorders are however missense and nonsense mutations within the coding region of a gene. Many neurological phenotypes are genetically heterogeneous. Different mutations within a single gene can cause the same disease (allelic heterogeneity), and mutations in several different genes can be related to the same clinical expression (locus heterogeneity). For example, a large number of genes have been identified in neuropathies (7), myopathies (8) and ataxias (9). In addition to these more traditional genetic disorders, Mendelian forms of disorders that are normally occurring sporadically have also been identified. As an example, a proportion of patients with Parkinson s disease have inherited mutations in one of several disease genes (10). Even more complex is the aetiology of epilepsies, where a number of environmental causes are also known. In addition to improved diagnostic possibilities, these forms of disease have identified pathways that are involved in disease pathogenesis, providing information that is applicable also for the more common sporadic forms. Complex disorders Complex disorders are presumably caused by interplay between a large number of genetic, environmental and stochastic factors. Genome-wide association studies (GWAS) have identified large numbers of loci that contribute to the genetic basis of complex traits. For example, a large international study of multiple sclerosis, which included Norwegian participants, identified 29 new risk loci in addition to the more than 20 previously known loci (11). Many of the identified genes are involved in immune response, in particular differentiation of T-helper cells, further emphasizing the role of the immune system in the pathogenesis of multiple sclerosis. Despite the identification of many susceptibility genes for complex disorders, these genes collectively contribute very little to disease risk of each individual patient. We recently confirmed a number of disease associations in a large Scandinavian study of Parkinson s disease (12). However, the results from risk-profile analysis showed that the group of individuals with the largest number of risk alleles only had an about three times higher disease risk than individuals with few risk alleles. Thus, the most important contribution of genetic association studies is increased general insights, rather than individual predictions. There is therefore currently a very limited role for genetic testing of complex disorders. Nevertheless, detailed genetic and molecular characterizations might in the future translate into personalized and better treatment options for patients with these common disorders (13). Genetic testing today The neurological diagnostic process starts with the anamnesis followed by a clinical neurological and general examination. This is followed by a variable number of biochemical laboratory test, MRI or other imaging techniques, neurophysiological examinations and other diagnostic tests. Diagnostic genetic tests are being carried out by polymerase chain reaction (PCR) followed by analysis of known frequent mutations, capillary sequencing of known disease genes, or by testing of multiplications, deletions and repeat expansions within these genes (Fig. 1). An updated list of diagnostic genetic tests provided by Norwegian laboratories is available on Diagnostic genetic tests are relatively time-consuming and expensive. Thus, such tests have normally been performed late in the diagnostic process, when the clinical examination and other performed tests have indicated a mutation in a specific gene as the likely disease cause (Fig. 2A). As previously mentioned, many neurological phenotypes are genetically heterogeneous, and complex 22

4 Genetics of neurological disorders A B C Figure 1. Detection of genetic mutations. Different types of mutations have to be tested using different techniques. (A) Gel electrophoresis to separate DNA of different size, for example heterozygous trinucleotide repeat expansions. (B) DNA capillary sequencing to detect nucleotide exchanges. A homozygous point mutation is marked in the electropherogram with an asterix. (C) Semiquantitative PCR to detect deletions and multiplications. A heterozygous deletion in the two samples in the middle is demonstrated by a reduction in gene product by around 50%. A B Figure 2. Current and new strategies for genetic testing in myopathies. (A) Genetic testing of single mutations or genes is currently being performed late in the diagnostic process. (B) With the use of gene panels and exome sequencing, genetic testing of genetically heterogeneous phenotypes could be performed earlier in the diagnostic process. diagnostic algorithms have been proposed, as testing of all possible disease genes has been impossible (Fig. 3) (14). As a result, many patients with genetic neurological disorders have remained without a specific diagnosis, even when the disease is caused by mutations in known disease genes. Technological developments New genomic technologies developed in the last decade have provided unprecedented opportunities to perform large-scale analyses of an individual s genome. Microarray-based techniques as acgh and genome-wide SNP arrays have largely replaced cytogenetic testing. Recently, next-generation DNA sequencing platforms have become widely available, reducing the cost of DNA sequencing by several orders of magnitude compared with traditional capillary sequencing. The development of methods for coupling targeted capture and massively parallel DNA sequencing has made it possible to examine a large number of genes (gene panels) or nearly all of the coding parts of genes (exome sequencing) in a single reaction. Also, whole-genome sequencing is gradually becoming routine, but requires more bioinformatic resources. These advances have resulted in a rapid identification of genes involved in 23

5 Toft bioinformatics analyses than tests using a gene panel, and it increases the likelihood of findings that are unrelated to the neurological disorder. Thus, this technique has several additional ethical issues that must be addressed. Figure 3. Proposed diagnostic algorithm for Charcot Marie Tooth disease (CMT). In patients with suspected autosomal dominant neuropathy, this diagnostic algorithm has been proposed (modified from Li, Semin Neurol 2012). Similar algorithms have been proposed for autosomal recessive neuropathy. Mendelian diseases and provided new possibilities for diagnostic genetic testing (15). Genetic testing in the future The recent tremendous advances in sequencing technology now allow for much broader testing of disease genes than in the past. Several laboratories offer testing of gene panels, where a large number of genes related to a specific phenotype are tested in a single reaction. This is particularly interesting for genetically heterogeneous disorders, especially if other diagnostic tests are cumbersome and expensive. An example is myopathies, in which neurophysiological examinations and muscle biopsies are frequently being performed. For these disorders, genetic testing using gene panels should be considered earlier in the diagnostic process (Fig. 2B). This might result in a molecular diagnosis preventing the use of further diagnostic tests. A recent study using a gene panel to examine patients with hereditary spastic paraparesis identified the genetic cause in 25% of patients, even though the most common genetic form had already been excluded (16). In some patients with unknown familial disorders, complex phenotypes or atypical manifestations exome sequencing might be the test of choice. In exome sequencing, nearly all coding regions of genes are tested, and thus also previously unknown disease genes can be found using this method. Exome sequencing requires more Conclusions Today, diagnostic genetic testing of neurological disorders is normally performed late in the diagnostic process. Due to recent developments in sequencing technology, new genetic disease causes are identified almost on a daily basis. These technological advances also enable comprehensive genetic testing of large panels of candidate genes or the whole exome. This allows a more precise diagnosis of many neurological disorders, and genetic testing should be considered earlier in the diagnostic procedure. Acknowledgments Genetic studies in the author s research group are supported by grants from the Research Council of Norway and the South-Eastern Norway Regional Health Authority. Conflict of interest The author reports no financial conflict of interest. References 1. WATSON JD, CRICK FHC. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 1953;4356: LANDER ES, LINTON LM, BIRREN B et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: BIESECKER LG, SPINNER NB. A genomic view of mosaicism and human disease. Nat Rev Genet 2013;14: MULLEY JC, MEFFORD HC. Epilepsy and the new cytogenetics. Epilepsia 2011;52: The Huntington s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington s disease chromosomes. Cell 1993;72: VAN LANGENHOVE T, VAN DER ZEE J, VAN BROECKHOVEN C. The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 2012;44: BRAATHEN GJ. Genetic epidemiology of Charcot-Marie- Tooth disease. Acta Neurol Scand Suppl 2012;193:iv MERCURI E, MUNTONI F. Muscular dystrophies. Lancet 2013;381: HERSHESON J, HAWORTH A, HOULDEN H. The inherited ataxias: genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Hum Mutat 2012;33: HOULDEN H, SINGLETON AB. The genetics and neuropathology of Parkinson s disease. Acta Neuropathol 2012;124:

6 Genetics of neurological disorders 11. International Multiple Sclerosis Genetics Consortium, Wellcome Trust Case Control Consortium 2, SAWCER S et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011;476: PIHLSTRØM L, AXELSSON G, BJØRNARA KA et al. Supportive evidence for 11 loci from genome-wide association studies in Parkinson s disease. Neurobiol Aging, 2013;34:1708. e HARBO HF, MERO IL. From genes to characteristics of multiple sclerosis. Acta Neurol Scand Suppl 2012;195: LI J. Inherited neuropathies. Semin Neurol 2012;32: BAMSHAD MJ, NG SB, BIGHAM AW et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011;12: KUMAR KR, BLAIR NF, VANDEBONA H, et al. Targeted next generation sequencing in SPAST-negative hereditary spastic paraplegia. J Neurol 2013;260:

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi

CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE. Dr. Bahar Naghavi 2 CURRENT GENETIC TESTING TOOLS IN NEONATAL MEDICINE Dr. Bahar Naghavi Assistant professor of Basic Science Department, Shahid Beheshti University of Medical Sciences, Tehran,Iran 3 Introduction Over 4000

More information

variant led to a premature stop codon p.k316* which resulted in nonsense-mediated mrna decay. Although the exact function of the C19L1 is still

variant led to a premature stop codon p.k316* which resulted in nonsense-mediated mrna decay. Although the exact function of the C19L1 is still 157 Neurological disorders primarily affect and impair the functioning of the brain and/or neurological system. Structural, electrical or metabolic abnormalities in the brain or neurological system can

More information

Non-Mendelian inheritance

Non-Mendelian inheritance Non-Mendelian inheritance Focus on Human Disorders Peter K. Rogan, Ph.D. Laboratory of Human Molecular Genetics Children s Mercy Hospital Schools of Medicine & Computer Science and Engineering University

More information

Introduction to genetic variation. He Zhang Bioinformatics Core Facility 6/22/2016

Introduction to genetic variation. He Zhang Bioinformatics Core Facility 6/22/2016 Introduction to genetic variation He Zhang Bioinformatics Core Facility 6/22/2016 Outline Basic concepts of genetic variation Genetic variation in human populations Variation and genetic disorders Databases

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

CHROMOSOMAL MICROARRAY (CGH+SNP)

CHROMOSOMAL MICROARRAY (CGH+SNP) Chromosome imbalances are a significant cause of developmental delay, mental retardation, autism spectrum disorders, dysmorphic features and/or birth defects. The imbalance of genetic material may be due

More information

CentoXome FUTURE'S KNOWLEDGE APPLIED TODAY

CentoXome FUTURE'S KNOWLEDGE APPLIED TODAY CentoXome FUTURE'S KNOWLEDGE APPLIED TODAY More genetic information requires cutting-edge interpretation techniques Whole Exome Sequencing For certain patients the combination of symptoms does not allow

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Amyotrophic Lateral Sclerosis 10 (ALS10) and Amyotrophic Lateral Sclerosis 6 (ALS6)

More information

Benefits and pitfalls of new genetic tests

Benefits and pitfalls of new genetic tests Benefits and pitfalls of new genetic tests Amanda Krause Division of Human Genetics, NHLS and University of the Witwatersrand Definition of Genetic Testing the analysis of human DNA, RNA, chromosomes,

More information

Genetics and Genomics in Medicine Chapter 8 Questions

Genetics and Genomics in Medicine Chapter 8 Questions Genetics and Genomics in Medicine Chapter 8 Questions Linkage Analysis Question Question 8.1 Affected members of the pedigree above have an autosomal dominant disorder, and cytogenetic analyses using conventional

More information

CentoXome FUTURE'S KNOWLEDGE APPLIED TODAY

CentoXome FUTURE'S KNOWLEDGE APPLIED TODAY CentoXome FUTURE'S KNOWLEDGE APPLIED TODAY More genetic information requires cutting-edge interpretation techniques Whole Exome Sequencing For some patients, the combination of symptoms does not allow

More information

Basic Definitions. Dr. Mohammed Hussein Assi MBChB MSc DCH (UK) MRCPCH

Basic Definitions. Dr. Mohammed Hussein Assi MBChB MSc DCH (UK) MRCPCH Basic Definitions Chromosomes There are two types of chromosomes: autosomes (1-22) and sex chromosomes (X & Y). Humans are composed of two groups of cells: Gametes. Ova and sperm cells, which are haploid,

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Invasive Prenatal (Fetal) Diagnostic Testing File Name: Origination: Last CAP Review: Next CAP Review: Last Review: invasive_prenatal_(fetal)_diagnostic_testing 12/2014 3/2018

More information

Welcome to the Genetic Code: An Overview of Basic Genetics. October 24, :00pm 3:00pm

Welcome to the Genetic Code: An Overview of Basic Genetics. October 24, :00pm 3:00pm Welcome to the Genetic Code: An Overview of Basic Genetics October 24, 2016 12:00pm 3:00pm Course Schedule 12:00 pm 2:00 pm Principles of Mendelian Genetics Introduction to Genetics of Complex Disease

More information

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014 Challenges of CGH array testing in children with developmental delay Dr Sally Davies 17 th September 2014 CGH array What is CGH array? Understanding the test Benefits Results to expect Consent issues Ethical

More information

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions Single Gene (Monogenic) Disorders Mendelian Inheritance: Definitions A genetic locus is a specific position or location on a chromosome. Frequently, locus is used to refer to a specific gene. Alleles are

More information

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG)

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG) Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG) Ordering Information Acceptable specimen types: Fresh blood sample (3-6 ml EDTA; no time limitations associated with receipt)

More information

What s the Human Genome Project Got to Do with Developmental Disabilities?

What s the Human Genome Project Got to Do with Developmental Disabilities? What s the Human Genome Project Got to Do with Developmental Disabilities? Disclosures Neither speaker has anything to disclose. Phase Two: Interpretation Officially started in October 1990 Goals of the

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

Psych 3102 Lecture 3. Mendelian Genetics

Psych 3102 Lecture 3. Mendelian Genetics Psych 3102 Lecture 3 Mendelian Genetics Gregor Mendel 1822 1884, paper read 1865-66 Augustinian monk genotype alleles present at a locus can we identify this? phenotype expressed trait/characteristic can

More information

Proteins. Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids

Proteins. Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids Proteins Protein carbon, hydrogen, oxygen, nitrogen and often sulphur Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids During protein synthesis, amino acids

More information

Dan Koller, Ph.D. Medical and Molecular Genetics

Dan Koller, Ph.D. Medical and Molecular Genetics Design of Genetic Studies Dan Koller, Ph.D. Research Assistant Professor Medical and Molecular Genetics Genetics and Medicine Over the past decade, advances from genetics have permeated medicine Identification

More information

Chapter 1 : Genetics 101

Chapter 1 : Genetics 101 Chapter 1 : Genetics 101 Understanding the underlying concepts of human genetics and the role of genes, behavior, and the environment will be important to appropriately collecting and applying genetic

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#4:(October-0-4-2010) Cancer and Signals 1 2 1 2 Evidence in Favor Somatic mutations, Aneuploidy, Copy-number changes and LOH

More information

Gaucher disease 3/22/2009. Mendelian pedigree patterns. Autosomal-dominant inheritance

Gaucher disease 3/22/2009. Mendelian pedigree patterns. Autosomal-dominant inheritance Mendelian pedigree patterns Autosomal-dominant inheritance Autosomal dominant Autosomal recessive X-linked dominant X-linked recessive Y-linked Examples of AD inheritance Autosomal-recessive inheritance

More information

Clinical Spectrum and Genetic Mechanism of GLUT1-DS. Yasushi ITO (Tokyo Women s Medical University, Japan)

Clinical Spectrum and Genetic Mechanism of GLUT1-DS. Yasushi ITO (Tokyo Women s Medical University, Japan) Clinical Spectrum and Genetic Mechanism of GLUT1-DS Yasushi ITO (Tokyo Women s Medical University, Japan) Glucose transporter type 1 (GLUT1) deficiency syndrome Mutation in the SLC2A1 / GLUT1 gene Deficiency

More information

Association for Molecular Pathology Promoting Clinical Practice, Basic Research, and Education in Molecular Pathology

Association for Molecular Pathology Promoting Clinical Practice, Basic Research, and Education in Molecular Pathology Association for Molecular Pathology Promoting Clinical Practice, Basic Research, and Education in Molecular Pathology 9650 Rockville Pike, Bethesda, Maryland 20814 Tel: 301-634-7939 Fax: 301-634-7990 Email:

More information

Approach to Mental Retardation and Developmental Delay. SR Ghaffari MSc MD PhD

Approach to Mental Retardation and Developmental Delay. SR Ghaffari MSc MD PhD Approach to Mental Retardation and Developmental Delay SR Ghaffari MSc MD PhD Introduction Objectives Definition of MR and DD Classification Epidemiology (prevalence, recurrence risk, ) Etiology Importance

More information

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK CHAPTER 6 DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK Genetic research aimed at the identification of new breast cancer susceptibility genes is at an interesting crossroad. On the one hand, the existence

More information

Cytogenetics 101: Clinical Research and Molecular Genetic Technologies

Cytogenetics 101: Clinical Research and Molecular Genetic Technologies Cytogenetics 101: Clinical Research and Molecular Genetic Technologies Topics for Today s Presentation 1 Classical vs Molecular Cytogenetics 2 What acgh? 3 What is FISH? 4 What is NGS? 5 How can these

More information

Genetics and Genomics: Applications to Developmental Disability

Genetics and Genomics: Applications to Developmental Disability Tuesday, 12:30 2:00, B1 Objective: Genetics and Genomics: Applications to Developmental Disability Helga Toriello 616-234-2712 toriello@msu.edu Identify advances in clinical assessment and management of

More information

Genetic diagnosis of limb girdle muscular dystrophy type 2A, A Case Report

Genetic diagnosis of limb girdle muscular dystrophy type 2A, A Case Report Genetic diagnosis of limb girdle muscular dystrophy type 2A, A Case Report Roshanak Jazayeri, MD, PhD Assistant Professor of Medical Genetics Faculty of Medicine, Alborz University of Medical Sciences

More information

Genetic Diseases. SCPA202: Basic Pathology

Genetic Diseases. SCPA202: Basic Pathology Genetic Diseases SCPA202: Basic Pathology Amornrat N. Jensen, Ph.D. Department of Pathobiology School of Science, Mahidol University amornrat.nar@mahidol.ac.th Genetic disease An illness caused by abnormalities

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

Genetic Diseases. SCPA202: Basic Pathology

Genetic Diseases. SCPA202: Basic Pathology Genetic Diseases SCPA202: Basic Pathology Amornrat N. Jensen, Ph.D. Department of Pathobiology School of Science, Mahidol University amornrat.nar@mahidol.ac.th Genetic disease An illness caused by abnormalities

More information

panel tests assessing multiple genes at the same time for the diagnosis of one or more related disorders

panel tests assessing multiple genes at the same time for the diagnosis of one or more related disorders NGS tests panel tests assessing multiple genes at the same time for the diagnosis of one or more related disorders UKGTN website lists 13 laboratories offering a total of 56 panel test UKGTN listed panel

More information

Multiple Copy Number Variations in a Patient with Developmental Delay ASCLS- March 31, 2016

Multiple Copy Number Variations in a Patient with Developmental Delay ASCLS- March 31, 2016 Multiple Copy Number Variations in a Patient with Developmental Delay ASCLS- March 31, 2016 Marwan Tayeh, PhD, FACMG Director, MMGL Molecular Genetics Assistant Professor of Pediatrics Department of Pediatrics

More information

Pedigree Construction Notes

Pedigree Construction Notes Name Date Pedigree Construction Notes GO TO à Mendelian Inheritance (http://www.uic.edu/classes/bms/bms655/lesson3.html) When human geneticists first began to publish family studies, they used a variety

More information

Genetics of Hereditary Spastic Paraplegia Dr. Arianna Tucci

Genetics of Hereditary Spastic Paraplegia Dr. Arianna Tucci Genetics of Hereditary Spastic Paraplegia 1 Clinical Research Fellow Institute of Neurology University College London Hereditary spastic paraplegia: definition Clinical designation for neurologic syndromes

More information

MEDICAL GENOMICS LABORATORY. Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG)

MEDICAL GENOMICS LABORATORY. Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG) Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG) Ordering Information Acceptable specimen types: Blood (3-6ml EDTA; no time limitations associated with

More information

Genomic structural variation

Genomic structural variation Genomic structural variation Mario Cáceres The new genomic variation DNA sequence differs across individuals much more than researchers had suspected through structural changes A huge amount of structural

More information

Genetic Testing for Single-Gene and Multifactorial Conditions

Genetic Testing for Single-Gene and Multifactorial Conditions Clinical Appropriateness Guidelines Genetic Testing for Single-Gene and Multifactorial Conditions EFFECTIVE DECEMBER 1, 2017 Appropriate.Safe.Affordable 2017 AIM Specialty Health 2069-1217 Table of Contents

More information

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Lab Activity Report: Mendelian Genetics - Genetic Disorders Name Date Period Lab Activity Report: Mendelian Genetics - Genetic Disorders Background: Sometimes genetic disorders are caused by mutations to normal genes. When the mutation has been in the population

More information

Genomics and Genetics in Healthcare. By Mary Knutson, RN, MSN

Genomics and Genetics in Healthcare. By Mary Knutson, RN, MSN Genomics and Genetics in Healthcare By Mary Knutson, RN, MSN Clinical Objectives Understand the importance of genomics to provide effective nursing care Integrate genetic knowledge and skills into nursing

More information

MRC-Holland MLPA. Description version 08; 30 March 2015

MRC-Holland MLPA. Description version 08; 30 March 2015 SALSA MLPA probemix P351-C1 / P352-D1 PKD1-PKD2 P351-C1 lot C1-0914: as compared to the previous version B2 lot B2-0511 one target probe has been removed and three reference probes have been replaced.

More information

An Update on PGD: Where we are today

An Update on PGD: Where we are today An Update on PGD: Where we are today Joyce Harper UCL Centre for PG&D and CRGH Institute for Womens Health University College London Overview What is PGD/PGS How we do it Disadvantages and advantages Future

More information

What is New in Genetic Testing. Steven D. Shapiro MS, DMD, MD

What is New in Genetic Testing. Steven D. Shapiro MS, DMD, MD What is New in Genetic Testing Steven D. Shapiro MS, DMD, MD 18th Annual Primary Care Symposium Financial and Commercial Disclosure I have a no financial or commercial interest in my presentation. 2 Genetic

More information

How many disease-causing variants in a normal person? Matthew Hurles

How many disease-causing variants in a normal person? Matthew Hurles How many disease-causing variants in a normal person? Matthew Hurles Summary What is in a genome? What is normal? Depends on age What is a disease-causing variant? Different classes of variation Final

More information

Jay M. Baraban MD, PhD January 2007 GENES AND BEHAVIOR

Jay M. Baraban MD, PhD January 2007 GENES AND BEHAVIOR Jay M. Baraban MD, PhD jay.baraban@gmail.com January 2007 GENES AND BEHAVIOR Overview One of the most fascinating topics in neuroscience is the role that inheritance plays in determining one s behavior.

More information

Original Policy Date

Original Policy Date MP 2.04.76 Genetic Counseling Medical Policy Section Medicine Issue 12:2013 Original Policy Date 12:2013 Last Review Status/Date Created Local Policy/ 12:2013 Return to Medical Policy Index Disclaimer

More information

CANCER GENETICS PROVIDER SURVEY

CANCER GENETICS PROVIDER SURVEY Dear Participant, Previously you agreed to participate in an evaluation of an education program we developed for primary care providers on the topic of cancer genetics. This is an IRB-approved, CDCfunded

More information

Genetics of Inclusion Body Myositis

Genetics of Inclusion Body Myositis Genetics of Inclusion Body Myositis Thomas Lloyd, MD, PhD Associate Professor of Neurology and Neuroscience Co-director, Johns Hopkins Myositis Center Sporadic IBM (IBM) Age at onset usually > 50 Prevalence

More information

The Meaning of Genetic Variation

The Meaning of Genetic Variation Activity 2 The Meaning of Genetic Variation Focus: Students investigate variation in the beta globin gene by identifying base changes that do and do not alter function, and by using several CD-ROM-based

More information

CS2220 Introduction to Computational Biology

CS2220 Introduction to Computational Biology CS2220 Introduction to Computational Biology WEEK 8: GENOME-WIDE ASSOCIATION STUDIES (GWAS) 1 Dr. Mengling FENG Institute for Infocomm Research Massachusetts Institute of Technology mfeng@mit.edu PLANS

More information

Sequencing studies implicate inherited mutations in autism

Sequencing studies implicate inherited mutations in autism NEWS Sequencing studies implicate inherited mutations in autism BY EMILY SINGER 23 JANUARY 2013 1 / 5 Unusual inheritance: Researchers have found a relatively mild mutation in a gene linked to Cohen syndrome,

More information

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY.

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY. SAMPLE REPORT SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY. RESULTS SNP Array Copy Number Variations Result: LOSS,

More information

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY.

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY. SAMPLE REPORT SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY. RESULTS SNP Array Copy Number Variations Result: GAIN,

More information

Human Genetics of Tuberculosis. Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980

Human Genetics of Tuberculosis. Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980 Human Genetics of Tuberculosis Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980 Human genetics in tuberculosis? Concept Epidemiological/familial

More information

Identifying Mutations Responsible for Rare Disorders Using New Technologies

Identifying Mutations Responsible for Rare Disorders Using New Technologies Identifying Mutations Responsible for Rare Disorders Using New Technologies Jacek Majewski, Department of Human Genetics, McGill University, Montreal, QC Canada Mendelian Diseases Clear mode of inheritance

More information

Genome 371, Autumn 2018 Quiz Section 9: Genetics of Cancer Worksheet

Genome 371, Autumn 2018 Quiz Section 9: Genetics of Cancer Worksheet Genome 371, Autumn 2018 Quiz Section 9: Genetics of Cancer Worksheet All cancer is due to genetic mutations. However, in cancer that clusters in families (familial cancer) at least one of these mutations

More information

SALSA MLPA KIT P060-B2 SMA

SALSA MLPA KIT P060-B2 SMA SALSA MLPA KIT P6-B2 SMA Lot 111, 511: As compared to the previous version B1 (lot 11), the 88 and 96 nt DNA Denaturation control fragments have been replaced (QDX2). Please note that, in contrast to the

More information

DNA is the genetic material that provides instructions for what our bodies look like and how they function. DNA is packaged into structures called

DNA is the genetic material that provides instructions for what our bodies look like and how they function. DNA is packaged into structures called DNA is the genetic material that provides instructions for what our bodies look like and how they function. DNA is packaged into structures called chromosomes. We have 23 pairs of chromosomes (for a total

More information

Understanding The Genetics of Diamond Blackfan Anemia

Understanding The Genetics of Diamond Blackfan Anemia Understanding The Genetics of Diamond Blackfan Anemia Jason Farrar, MD jefarrar@ About Me Assistant Professor of Pediatrics at University of Arkansas for Medical Sciences & Arkansas Children s Hospital

More information

MRC-Holland MLPA. Description version 19;

MRC-Holland MLPA. Description version 19; SALSA MLPA probemix P6-B2 SMA Lot B2-712, B2-312, B2-111, B2-511: As compared to the previous version B1 (lot B1-11), the 88 and 96 nt DNA Denaturation control fragments have been replaced (QDX2). SPINAL

More information

5/2/18. After this class students should be able to: Stephanie Moon, Ph.D. - GWAS. How do we distinguish Mendelian from non-mendelian traits?

5/2/18. After this class students should be able to: Stephanie Moon, Ph.D. - GWAS. How do we distinguish Mendelian from non-mendelian traits? corebio II - genetics: WED 25 April 2018. 2018 Stephanie Moon, Ph.D. - GWAS After this class students should be able to: 1. Compare and contrast methods used to discover the genetic basis of traits or

More information

Genetic diseases. - chromosomal disorders (aneuploidy) - mitochondrial inherited diseases (female lineage transmission)

Genetic diseases. - chromosomal disorders (aneuploidy) - mitochondrial inherited diseases (female lineage transmission) Genetic diseases - chromosomal disorders (aneuploidy) - monogenic diseases (mendelian transmission) - mitochondrial inherited diseases (female lineage transmission) HOWEVER: interaction gene-environment

More information

The Human Major Histocompatibility Complex

The Human Major Histocompatibility Complex The Human Major Histocompatibility Complex 1 Location and Organization of the HLA Complex on Chromosome 6 NEJM 343(10):702-9 2 Inheritance of the HLA Complex Haplotype Inheritance (Family Study) 3 Structure

More information

Egypt 90 Million People Power Seven Thousands Year Culture 29 Governorates

Egypt 90 Million People Power Seven Thousands Year Culture 29 Governorates Egypt 90 Million People Power Seven Thousands Year Culture 29 Governorates Recent advances in Molecular Medicine: Changing the practice of neurology Presentation by Nagwa Meguid, Prof. of Human Genetics

More information

Evolution of Genetic Testing. Joan Pellegrino MD Associate Professor of Pediatrics SUNY Upstate Medical University

Evolution of Genetic Testing. Joan Pellegrino MD Associate Professor of Pediatrics SUNY Upstate Medical University Evolution of Genetic Testing Joan Pellegrino MD Associate Professor of Pediatrics SUNY Upstate Medical University Genetic Testing Chromosomal analysis Flourescent in situ hybridization (FISH) Chromosome

More information

Genetic Disorders. SCPA 501: General Pathology. Amornrat Naranuntarat Jensen

Genetic Disorders. SCPA 501: General Pathology. Amornrat Naranuntarat Jensen Genetic Disorders SCPA 501: General Pathology Amornrat Naranuntarat Jensen amornrat.nar@mahidol.ac.th Human has 46 chromosomes (23 pairs) Sex chromosomes Human genome contains approximately 3 billion base

More information

Sharan Goobie, MD, MSc, FRCPC

Sharan Goobie, MD, MSc, FRCPC Sharan Goobie, MD, MSc, FRCPC Chromosome testing in 2014 Presenter Disclosure: Sharan Goobie has no potential for conflict of interest with this presentation Objectives Review of standard genetic investigations

More information

The Foundations of Personalized Medicine

The Foundations of Personalized Medicine The Foundations of Personalized Medicine Jeremy M. Berg Pittsburgh Foundation Professor and Director, Institute for Personalized Medicine University of Pittsburgh Personalized Medicine Physicians have

More information

Whole Exome Sequencing (WES) Whole Exome Sequencing. What Is Whole Exome Sequencing?

Whole Exome Sequencing (WES) Whole Exome Sequencing. What Is Whole Exome Sequencing? Whole Exome Sequencing (WES) Procedure(s) addressed by this policy: Exome (e.g., unexplained constitutional or heritable disorder or syndrome); sequence analysis Sequence analysis, each comparator exome

More information

Exploding Genetic Knowledge in Developmental Disabilities. Disclosures. The Genetic Principle

Exploding Genetic Knowledge in Developmental Disabilities. Disclosures. The Genetic Principle Exploding Genetic Knowledge in Developmental Disabilities How to acquire the data and how to make use of it Elliott H. Sherr MD PhD Professor of Neurology & Pediatrics UCSF Disclosures InVitae: clinical

More information

Putative low penetrance or susceptibility variants: sodium channel genes in painful neuropathy as an example

Putative low penetrance or susceptibility variants: sodium channel genes in painful neuropathy as an example Putative low penetrance or susceptibility variants: sodium channel genes in painful neuropathy as an example Carl Fratter 1 Kate Sergeant 1, Julie C Evans 1, Anneke Seller 1, David Bennett 2 1 Oxford Medical

More information

Hands-On Ten The BRCA1 Gene and Protein

Hands-On Ten The BRCA1 Gene and Protein Hands-On Ten The BRCA1 Gene and Protein Objective: To review transcription, translation, reading frames, mutations, and reading files from GenBank, and to review some of the bioinformatics tools, such

More information

SEX-LINKED INHERITANCE. Dr Rasime Kalkan

SEX-LINKED INHERITANCE. Dr Rasime Kalkan SEX-LINKED INHERITANCE Dr Rasime Kalkan Human Karyotype Picture of Human Chromosomes 22 Autosomes and 2 Sex Chromosomes Autosomal vs. Sex-Linked Traits can be either: Autosomal: traits (genes) are located

More information

Human Genetics 542 Winter 2018 Syllabus

Human Genetics 542 Winter 2018 Syllabus Human Genetics 542 Winter 2018 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Jan 3 rd Wed Mapping disease genes I: inheritance patterns and linkage analysis

More information

Mutational and phenotypical spectrum of phenylalanine hydroxylase deficiency in Denmark

Mutational and phenotypical spectrum of phenylalanine hydroxylase deficiency in Denmark Clin Genet 2016: 90: 247 251 Printed in Singapore. All rights reserved Short Report 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12692 Mutational and

More information

22q11.2 DELETION SYNDROME. Anna Mª Cueto González Clinical Geneticist Programa de Medicina Molecular y Genética Hospital Vall d Hebrón (Barcelona)

22q11.2 DELETION SYNDROME. Anna Mª Cueto González Clinical Geneticist Programa de Medicina Molecular y Genética Hospital Vall d Hebrón (Barcelona) 22q11.2 DELETION SYNDROME Anna Mª Cueto González Clinical Geneticist Programa de Medicina Molecular y Genética Hospital Vall d Hebrón (Barcelona) Genomic disorders GENOMICS DISORDERS refers to those diseases

More information

Gene Therapy. Definition: A disease resulting from a defect in individual genes. > 6000 inherited diseases 1:200 Births

Gene Therapy. Definition: A disease resulting from a defect in individual genes. > 6000 inherited diseases 1:200 Births Inherited Disease (AKA Genetic Disease): A disease that is caused by a defect in the genome and that, like other genetic features, can be passed from parents to offspring. Epigenetics: A heritable change

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

Biology 2C03: Genetics What is a Gene?

Biology 2C03: Genetics What is a Gene? Biology 2C03: Genetics What is a Gene? September 9 th, 2013 Model Organisms - E. coli - Yeast - Worms - Arabodopsis - Fruitflie - Mouse What is a Gene? - Define, recognize, describe and apply Mendel s

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Leber congenital amaurosis OMIM number for disease 204000 Disease alternative

More information

Human Genetics 542 Winter 2017 Syllabus

Human Genetics 542 Winter 2017 Syllabus Human Genetics 542 Winter 2017 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Module I: Mapping and characterizing simple genetic diseases Jan 4 th Wed Mapping

More information

Introduction to the Genetics of Complex Disease

Introduction to the Genetics of Complex Disease Introduction to the Genetics of Complex Disease Jeremiah M. Scharf, MD, PhD Departments of Neurology, Psychiatry and Center for Human Genetic Research Massachusetts General Hospital Breakthroughs in Genome

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

NOTES: : HUMAN HEREDITY

NOTES: : HUMAN HEREDITY NOTES: 14.1-14.2: HUMAN HEREDITY Human Genes: The human genome is the complete set of genetic information -it determines characteristics such as eye color and how proteins function within cells Recessive

More information

Clinical Genetics & Dementia

Clinical Genetics & Dementia Clinical Genetics & Dementia Dr Nayana Lahiri Consultant in Clinical Genetics & Honorary Senior Lecturer Nayana.lahiri@nhs.net Aims of the Session To appreciate the potential utility of family history

More information

NGS in neurodegenerative disorders - our experience

NGS in neurodegenerative disorders - our experience Neurology Clinic, Clinical Center of Serbia Faculty of Medicine, University of Belgrade Belgrade, Serbia NGS in neurodegenerative disorders - our experience Marija Branković, MSc Belgrade, 2018 Next Generation

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Practical challenges that copy number variation and whole genome sequencing create for genetic diagnostic labs

Practical challenges that copy number variation and whole genome sequencing create for genetic diagnostic labs Practical challenges that copy number variation and whole genome sequencing create for genetic diagnostic labs Joris Vermeesch, Center for Human Genetics K.U.Leuven, Belgium ESHG June 11, 2010 When and

More information

MRC-Holland MLPA. Description version 29; 31 July 2015

MRC-Holland MLPA. Description version 29; 31 July 2015 SALSA MLPA probemix P081-C1/P082-C1 NF1 P081 Lot C1-0114. As compared to the previous B2 version (lot 0813 and 0912), 11 target probes are replaced or added, and 10 new reference probes are included. P082

More information

Genetic Testing for Neurologic Disorders

Genetic Testing for Neurologic Disorders Genetic Testing for Neurologic Disorders MP9497 Covered Service: Prior Authorization Required: Additional Information: Yes when meets criteria below Yes as shown below Pre- and post-test genetic counseling

More information

MEDICAL GENOMICS LABORATORY. Peripheral Nerve Sheath Tumor Panel by Next-Gen Sequencing (PNT-NG)

MEDICAL GENOMICS LABORATORY. Peripheral Nerve Sheath Tumor Panel by Next-Gen Sequencing (PNT-NG) Peripheral Nerve Sheath Tumor Panel by Next-Gen Sequencing (PNT-NG) Ordering Information Acceptable specimen types: Blood (3-6ml EDTA; no time limitations associated with receipt) Saliva (OGR-575 DNA Genotek;

More information

Generating Spontaneous Copy Number Variants (CNVs) Jennifer Freeman Assistant Professor of Toxicology School of Health Sciences Purdue University

Generating Spontaneous Copy Number Variants (CNVs) Jennifer Freeman Assistant Professor of Toxicology School of Health Sciences Purdue University Role of Chemical lexposure in Generating Spontaneous Copy Number Variants (CNVs) Jennifer Freeman Assistant Professor of Toxicology School of Health Sciences Purdue University CNV Discovery Reference Genetic

More information

AMERICAN BOARD OF MEDICAL GENETICS AND GENOMICS

AMERICAN BOARD OF MEDICAL GENETICS AND GENOMICS AMERICAN BOARD OF MEDICAL GENETICS AND GENOMICS Logbook Guidelines for Certification in Clinical Genetics and Genomics for the 2017 Examination as of 10/5/2015 Purpose: The purpose of the logbook is to

More information

Lecture 20. Disease Genetics

Lecture 20. Disease Genetics Lecture 20. Disease Genetics Michael Schatz April 12 2018 JHU 600.749: Applied Comparative Genomics Part 1: Pre-genome Era Sickle Cell Anaemia Sickle-cell anaemia (SCA) is an abnormality in the oxygen-carrying

More information

Abstract. Introduction

Abstract. Introduction Brazilian Journal of Medical and Biological Research (2003) 36: 1403-1407 Thr(118)Met in Charcot-Marie-Tooth disease ISSN 0100-879X 1403 Thr(118)Met amino acid substitution in the peripheral myelin protein

More information