Mendelian & Complex Traits. Quantitative Imaging Genomics. Genetics Terminology 2. Genetics Terminology 1. Human Genome. Genetics Terminology 3

Size: px
Start display at page:

Download "Mendelian & Complex Traits. Quantitative Imaging Genomics. Genetics Terminology 2. Genetics Terminology 1. Human Genome. Genetics Terminology 3"

Transcription

1 Mendelian & Complex Traits Quantitative Imaging Genomics David C. Glahn, PhD Olin Neuropsychiatry Research Center & Department of Psychiatry, Yale University July, 010 Mendelian Trait A trait influenced by a single gene producing a clear pattern of dominant or recessive inheritance within families. Examples: cystic fibrosis, sickle cell anemia, hemophilia Complex Trait A trait influenced by multiple genes and their interactions with each other and with the environment. Examples: autism, schizophrenia, Alzheimer s, brain anatomy, BOLD signal Genetics Terminology 1 Genetics Terminology Quantitative Trait Locus (QTL), a location, usually a chromosomal region, implicated as containing one or more genes that influence a phenotype of interest Quantitative Trait Nucleotide (QTN), a specific sequence variation that has been implicated as having a functional effect on a phenotype of interest A QTL may contain multiple QTNs Chromosome: a single long string of DNA, humans have two copies of each chromosome (diploid), one from mom, one from dad Autosome: None sex chromosome ( in humans) Sex chromosome: X or Y chromosome, females have X, males have 1X and 1Y Mitochondrial DNA: non-nuclear DNA, inherited only from the mother Human Genome Genetics Terminology 3 3 Chromosomes ~0-5,000 genes ~3 billion base pairs Gene: a unit of DNA that codes for a protein (but the term may be used to include both coding and non-coding elements) Locus: location, sometimes used interchangably with gene Allele: the specific variant you have at a particular site in the genome, the possible variants at a locus

2 Genetics Terminology 4 Loci, Alleles, Genotypes, Genotype: the combination of alleles on the two chromosomes of an individual Haplotype: the alleles at different loci being carried together on the same chromosome Phenotype: the trait of interest, some measurable property of the individual Examples: neuroanatomy, neurophysiology, schizophrenia, bipolar disorder, Alzheimer s A 1 Two loci: letter locus & number locus Each locus has two alleles: A or B, 1 or The genotype at the letter locus is AB The haplotype on the first chromosome shown is A1 B Within A Gene Exon: specifies the mrna, which is translated into the series of amino acids in the protein, coding sequence Intron: non-coding, intravening sequence Splice site: the juncture between an exon & an intron Promoter, enhancer: regulatory element (usually non-coding), controls time, place, amount of transcription Functional & physical unit of heredity passed from parent to offspring (pieces of DNA) Typically contain information to make a specific protein Composed of nucleotides, sequence of four organic bases (Adenine, Guanine, Cytocine, and Thyamine) Matching nucleotides on the complimentary DNA strands form a base-pair The Gene A Small Gene: FVII gene (~15 kb) How to do Genetics -33 ± 10bp -401 G/T -1 T/C -40 G/A 73 G/A H115H A94V A/G R353Q IVS 7 S333S G/A Question What do you want to know? -668 A/C -316 C/T -68 A/G 1a 1b C/A T/C 60 A/G G/A A/G G/C 3.94 G/A 364 G/A T/A T/G A/G C/T 7.79 G/A 3.43 G/T 698 T/C 705 G/A 710 C/G bp 799 T/C 806 G/A 811 C/G 833T/C 945 G/A 3.98 G/A G/A G/A G/T 6.45 G/T T G/A T/C 9.79 G/A C/T G/A del AG ins AA Sample Who do you need to study? Method How will you use your data?

3 Questions for the Study of 1) Is this trait influenced by genetic factors? How strong are these genetic influences? ) Which traits are influenced by the same genes? 3) Where are the genes that influence a trait? 4) What are the specific genes that influence the trait? 5) What specific genetic variants influence the trait and how do they interact with each other and with the environment? Six Types of Samples for Genetics 1. Adoptees: separating the effects of genes and family environment. Unrelated individuals: association only, estimation of effect size after variants are identified 3. Parent-child triads: association in the presence of linkage (transmission disequilibrium test), heritability/relative risk 4. Twins: heritability, relative risk, genetic correlations, linkage, association 5. Relative pairs: heritability, relative risk, genetic correlations, linkage, association 6. Pedigrees: heritability, relative risk, genetic correlations, linkage, association Subject Ascertainment Strategies Question 1: Heritability 1. By phenotype: if you re studying a rare disease, you must ascertain on phenotype. This is also necessary for some study designs (TDT, case/control).. Randomly: if you re studying a common disease, you ll find it in a random sample. If you re interested in multiple traits, ascertaining on one improves power only for that one. May also want to study normal variation. 3. Ascertainment also depends on (and limits) method of analysis TDT, affected relative pair linkage. Is this trait influenced by genetic factors? How strong are these genetic influences? Defining Heritability Variance Decomposition!"#"$% &#'()"*+#,'-.#/"#0 13-"4*+#,'-.#/"#0 Phenotype (P) = Genotype (G) + Environment (E)! µ µ= ^ "x i / n ^! ^ = "(x - µ) / n Almasy & Blangero, Am J Hum Genet, 1998! p =! g +! e! g =! a +! d! e =! c +! eu! p = total phenotypic! g = genetic! e = environmental! a = additive genetic! d = dominance

4 Broad-Sense Heritability (H ) Decomposing Genetic Effects All possible genetic contributions allelic variation (additive variance) dominance variation, epistatic (multi-genic) interactions, maternal and paternal effects H =! g! p! =! +! g a d AA AB BB -a 0 d +a Defining Dominance Estimating Additive & Dominate AA AB BB -a 0 +a If the heterozygote is half way between the two homozygotes, there s a dose-response effect, d is zero, and there is no dominance. V A = pq[a + d(q-p)] V D = (pqd) Narrow-Sense Heritability (h ) Conceptualizing Heritability Heritability (h ): the proportion of the phenotypic variance in a trait attributable to the additive effects of genes. h =! a! p Heritability estimates vary between 0 and 1 0, genetic factors do not influence trait variance 1, trait variance is completely under genetic control If h =0.5, then 50% of phenotypic variation is due to genetic variation. Not that the trait is 50% caused by genetics Stronger heritability does not imply simple genetics

5 Estimating Heritability with Twins Falconer s Method h =*(r MZ -r DZ ) r MZ = correlation between monozygotic co-twins r DZ = correlation between dizygotic co-twins Estimating Heritability with Twins Monozygotic (identical): V A +V D Dizygotic (fraternal): 1/ V A + 1/4 V D x Difference = V A + 3/ V D! h Assuming that shared environmental effects are equal for both types of twins. Twin Concordances Limitations of Twins 5)$6/ 1%'7.8-"#'3 9'8.:3-*;'6.-4"- 5#.-"<'3 5;=; >3#'%*;'6.-4"- ;"8-"66'.# >?1;!5; 1.%'3:*>.@'3 AB;!"#$%&'$($%) Common Environment Unless Raised Apart Twins reared apart are difficult to find Common prenatal environment; intrauterine competition Mother may be physically stressed Twin samples are fundamentally less powerful for QTL localization Variance Component Approach Modeling the Phenotype: p= µ + "# i x i + a+ d+e µ Population mean # Regression coefficients x Scaled covariates a Additive genetic effects d Dominance genetic effects e Random environmental effects Variance Component Approach $ = %! a + & 7! d + "! e # coefficient of relationship between individuals $ probability that individuals share both alleles IBD " Kronecker function

6 Defining Mendelian Relationships Simple Kinship Matrix Relatives Covariance Heritability Parent-child 1/V A b = 1/ h Half siblings 1/4V A r = 1/4 h Full siblings 1/V A + 1/4V A r! 1/ h Cousins 1/8V A r = 1/8 h ignoring interactions and shared environmental effects Dad 1 Mom 3 D M 1 3 D 1 0 % % % M 0 1 % % % 1 % % 1 % % % % % 1 % 3 % % % % 1 Kinship Matrix Limitations of Heritability Estimates % % % % 4 % % 0 1 & 5 0 % % & 1 1. Heritability is a population level parameter, summarizing the strength of genetic influences on variation in a trait among members of the population. It doesn t tell you anything about particular individuals.. Heritability is an aggregate of the effects of multiple genes. It tells you nothing about how many genes influence a phenotype. A high heritability is not necessarily better if it is due to many, many genes. Relative Risk Heritable vs. Familial The risk to a relative of an affected individual as compared to a randomly chosen member of the population, '. 1 - ( A trait can be familial without being heritable. Genes are not the only thing shared by members of a family (e.g. diet, exercise, environmental exposures, etc). Nuclear families vs. extended pedigrees Adoption studies

7 Heritability of Volume & Gryi Bartely et al., Brain, MZ / 9 DZ pairs Gray-Matter Thickness Heritability Kremen et al., NeuroImage, MZ / 9 DZ pairs Vertex-Wide Cortical Thickness Winkler et al., Unpublished 76 family members Gray-Matter Thickness Heritability Thompson et al., Nat Neuro, MZ / 10 DZ pairs Cortical Thickness & Surface Area Winkler et al., NeuroImage, family members Superior Occipitofrontal Fascicle Hulshoff Pol et al. J. Neurosci, MZ / 58 DZ pairs / 34 Sibs

8 White-Matter Tracts (DTI) h White-Matter Hyperintensity h Total Cranial: 0.91 Brain Parenchyma: 0.9 WMH: 0.73 Kochunov et al., NeuroImage, family members White-Matter Hyperintensity h 74 MZ / 71 DZ pairs Task Based fmri Heritability Dorsal anterior cingulate cortex Conflict Processing h=0.38 Whole-brain WMH: 0.7 Subcortical WMH: 0.66 Ependymal WMH: 0.73 Kochunov et al., Stroke, 009 Carmelli et al., Stroke, family members Task Based fmri Heritability Matthews et al., NeuroImage, MZ / 10 DZ pairs Resting State fmri Heritability h= 0.44 Koten et al., Science, MZ pairs / 10 sibs Glahn et al., Proc Nat Sci USA, family members

9 Heritability Conclusions Question : Pleiotropy We ve got heritability!! Which traits are influenced by the same genes? Levels of Pleiotropy Genetic Correlation (Pleiotropy) No Pleiotropy Trait 1 Trait Genetic correlation () g ): a measure of the overlap in genetic effects between traits. Partial Pleiotropy Trait 1 Trait ) g varies from -1 to 1 Full Pleiotropy Trait 1 Trait 0 = no pleiotropy; -1 or 1 = complete pleiotropy Estimating Pleiotropy Cortical Thickness & Surface Area ) p = ) g '(h 1 h ) +) e '((1-h 1 )(1-h )) h 1 and h are the heritabilities of traits 1 and Schmitt et al., Cerebral Cortex, MZ / 47 DZ / 8 others Winkler et al., NeuroImage, family members

10 White-Matter Hyperintensity & Cortical Thinning & IQ WMH - Executive Function ) g = 0.70 WMH - Mini-Mental State Exam ) g = 1.0 Carmelli et al., Neurobiol Ageing, MZ / 70 DZ pairs ) g = 1.0/1.0 ) g = 1.0/0.7 Brans et al., J Neurosci, MZ / 84 DZ pairs White Matter Tracts & Pleiotropy Conclusions Superior longitudinal fasciculus Spatial DRT: ) g = Karlsgodt et al., J Neurosci, family members Coffee Break

Imaging Genetics: Heritability, Linkage & Association

Imaging Genetics: Heritability, Linkage & Association Imaging Genetics: Heritability, Linkage & Association David C. Glahn, PhD Olin Neuropsychiatry Research Center & Department of Psychiatry, Yale University July 17, 2011 Memory Activation & APOE ε4 Risk

More information

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018 An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline What is Quantitative Genetics? Genotypic Values and Genetic Effects Heritability Linkage Disequilibrium

More information

Dan Koller, Ph.D. Medical and Molecular Genetics

Dan Koller, Ph.D. Medical and Molecular Genetics Design of Genetic Studies Dan Koller, Ph.D. Research Assistant Professor Medical and Molecular Genetics Genetics and Medicine Over the past decade, advances from genetics have permeated medicine Identification

More information

Neuroimaging and Genetics

Neuroimaging and Genetics Neuroimaging and Genetics Carrie E. Bearden, Ph.D. Departments of Psychiatry and Biobehavioral Sciences and Psychology Semel Institute for Neuroscience and Human Behavior University of California, Los

More information

Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes

Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes Today s Topics Mechanisms of Heredity Biology of Heredity Genetic Disorders Research Methods in Behavioral Genetics Gene x Environment Interactions The Process of Genetic Transmission Genes: segments of

More information

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Discontinuous Traits. Chapter 22. Quantitative Traits. Types of Quantitative Traits. Few, distinct phenotypes. Also called discrete characters

Discontinuous Traits. Chapter 22. Quantitative Traits. Types of Quantitative Traits. Few, distinct phenotypes. Also called discrete characters Discontinuous Traits Few, distinct phenotypes Chapter 22 Also called discrete characters Quantitative Genetics Examples: Pea shape, eye color in Drosophila, Flower color Quantitative Traits Phenotype is

More information

Resemblance between Relatives (Part 2) Resemblance Between Relatives (Part 2)

Resemblance between Relatives (Part 2) Resemblance Between Relatives (Part 2) Resemblance Between Relatives (Part 2) Resemblance of Full-Siblings Additive variance components can be estimated using the covariances of the trait values for relatives that do not have dominance effects.

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014 MULTIFACTORIAL DISEASES MG L-10 July 7 th 2014 Genetic Diseases Unifactorial Chromosomal Multifactorial AD Numerical AR Structural X-linked Microdeletions Mitochondrial Spectrum of Alterations in DNA Sequence

More information

Evolution II.2 Answers.

Evolution II.2 Answers. Evolution II.2 Answers. 1. (4 pts) Contrast the predictions of blending inheritance for F1 and F2 generations with those observed under Mendelian inheritance. Blending inheritance predicts both F1 and

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS

Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS Chapter Summary In order to study the transmission of human genetic traits to the next generation, a different method of operation had to be adopted. Instead

More information

Introduction to the Genetics of Complex Disease

Introduction to the Genetics of Complex Disease Introduction to the Genetics of Complex Disease Jeremiah M. Scharf, MD, PhD Departments of Neurology, Psychiatry and Center for Human Genetic Research Massachusetts General Hospital Breakthroughs in Genome

More information

Lab Activity 36. Principles of Heredity. Portland Community College BI 233

Lab Activity 36. Principles of Heredity. Portland Community College BI 233 Lab Activity 36 Principles of Heredity Portland Community College BI 233 Terminology of Chromosomes Homologous chromosomes: A pair, of which you get one from mom, and one from dad. Example: the pair of

More information

Quantitative Trait Analysis in Sibling Pairs. Biostatistics 666

Quantitative Trait Analysis in Sibling Pairs. Biostatistics 666 Quantitative Trait Analsis in Sibling Pairs Biostatistics 666 Outline Likelihood function for bivariate data Incorporate genetic kinship coefficients Incorporate IBD probabilities The data Pairs of measurements

More information

INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen

INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen DIFFERENT FACES OF GENETIC EPIDEMIOLOGY 1 Basic epidemiology 1.a Aims of epidemiology 1.b Designs in epidemiology 1.c An overview

More information

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder Introduction to linkage and family based designs to study the genetic epidemiology of complex traits Harold Snieder Overview of presentation Designs: population vs. family based Mendelian vs. complex diseases/traits

More information

Welcome to the Genetic Code: An Overview of Basic Genetics. October 24, :00pm 3:00pm

Welcome to the Genetic Code: An Overview of Basic Genetics. October 24, :00pm 3:00pm Welcome to the Genetic Code: An Overview of Basic Genetics October 24, 2016 12:00pm 3:00pm Course Schedule 12:00 pm 2:00 pm Principles of Mendelian Genetics Introduction to Genetics of Complex Disease

More information

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Medical Genetics University Hospital & University of Antwerp Programme Day 6: Genetics of common disorders with complex inheritance

More information

Human Genetics (Learning Objectives)

Human Genetics (Learning Objectives) Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic,

More information

Quantitative genetics: traits controlled by alleles at many loci

Quantitative genetics: traits controlled by alleles at many loci Quantitative genetics: traits controlled by alleles at many loci Human phenotypic adaptations and diseases commonly involve the effects of many genes, each will small effect Quantitative genetics allows

More information

Guided Notes: Simple Genetics

Guided Notes: Simple Genetics Punnett Squares Guided Notes: Simple Genetics In order to determine the a person might inherit, we use a simple diagram called a o Give us of an offspring having particular traits Pieces of the Punnett

More information

Behavioral genetics: The study of differences

Behavioral genetics: The study of differences University of Lethbridge Research Repository OPUS Faculty Research and Publications http://opus.uleth.ca Lalumière, Martin 2005 Behavioral genetics: The study of differences Lalumière, Martin L. Department

More information

Genetics and Diversity Punnett Squares

Genetics and Diversity Punnett Squares Genetics and Diversity Punnett Squares 1 OUTCOME QUESTION(S): S1-1-12: How are the features of the parents inherited to create unique offspring? Vocabulary & Concepts Allele Dominant Recessive Genotype

More information

Problem set questions from Final Exam Human Genetics, Nondisjunction, and Cancer

Problem set questions from Final Exam Human Genetics, Nondisjunction, and Cancer Problem set questions from Final Exam Human Genetics, Nondisjunction, and ancer Mapping in humans using SSRs and LOD scores 1. You set out to genetically map the locus for color blindness with respect

More information

Comparing heritability estimates for twin studies + : & Mary Ellen Koran. Tricia Thornton-Wells. Bennett Landman

Comparing heritability estimates for twin studies + : & Mary Ellen Koran. Tricia Thornton-Wells. Bennett Landman Comparing heritability estimates for twin studies + : & Mary Ellen Koran Tricia Thornton-Wells Bennett Landman January 20, 2014 Outline Motivation Software for performing heritability analysis Simulations

More information

Genetics and Genomics in Medicine Chapter 8 Questions

Genetics and Genomics in Medicine Chapter 8 Questions Genetics and Genomics in Medicine Chapter 8 Questions Linkage Analysis Question Question 8.1 Affected members of the pedigree above have an autosomal dominant disorder, and cytogenetic analyses using conventional

More information

(b) What is the allele frequency of the b allele in the new merged population on the island?

(b) What is the allele frequency of the b allele in the new merged population on the island? 2005 7.03 Problem Set 6 KEY Due before 5 PM on WEDNESDAY, November 23, 2005. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Two populations (Population One

More information

Psych 3102 Introduction to Behavior Genetics

Psych 3102 Introduction to Behavior Genetics Psych 3102 Introduction to Behavior Genetics Lecture 12 Quantitative analysis Covariance between relatives Sources of covariance between relatives covariance a measure of shared variance (how similar the

More information

Genetics of psychiatric disorders Dr Radwan Banimustafa

Genetics of psychiatric disorders Dr Radwan Banimustafa Genetics of psychiatric disorders Dr Radwan Banimustafa Schizophrenia Is a chronic relapsing psychotic disorder which affects young population and interfere with: - Thoughts - Perception - Volition - Behavior

More information

UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES. Many things come in many forms. Give me an example of something that comes in many forms.

UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES. Many things come in many forms. Give me an example of something that comes in many forms. UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES Many things come in many forms. Give me an example of something that comes in many forms. Genes, too, come in many forms. Main Idea #1 The same gene

More information

Estimating genetic variation within families

Estimating genetic variation within families Estimating genetic variation within families Peter M. Visscher Queensland Institute of Medical Research Brisbane, Australia peter.visscher@qimr.edu.au 1 Overview Estimation of genetic parameters Variation

More information

BST227 Introduction to Statistical Genetics. Lecture 4: Introduction to linkage and association analysis

BST227 Introduction to Statistical Genetics. Lecture 4: Introduction to linkage and association analysis BST227 Introduction to Statistical Genetics Lecture 4: Introduction to linkage and association analysis 1 Housekeeping Homework #1 due today Homework #2 posted (due Monday) Lab at 5:30PM today (FXB G13)

More information

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York Mendelian Inheritance Jurg Ott Columbia and Rockefeller Universities New York Genes Mendelian Inheritance Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments

More information

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes Chapter 6 Genetics and Inheritance Lecture 1: Genetics and Patterns of Inheritance Asexual reproduction = daughter cells genetically identical to parent (clones) Sexual reproduction = offspring are genetic

More information

Non-Mendelian inheritance

Non-Mendelian inheritance Non-Mendelian inheritance Focus on Human Disorders Peter K. Rogan, Ph.D. Laboratory of Human Molecular Genetics Children s Mercy Hospital Schools of Medicine & Computer Science and Engineering University

More information

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci Multifactorial Inheritance Prof. Dr. Nedime Serakinci GENETICS I. Importance of genetics. Genetic terminology. I. Mendelian Genetics, Mendel s Laws (Law of Segregation, Law of Independent Assortment).

More information

Combined Linkage and Association in Mx. Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels

Combined Linkage and Association in Mx. Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels Combined Linkage and Association in Mx Hermine Maes Kate Morley Dorret Boomsma Nick Martin Meike Bartels Boulder 2009 Outline Intro to Genetic Epidemiology Progression to Linkage via Path Models Linkage

More information

Complex Traits Activity INSTRUCTION MANUAL. ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik

Complex Traits Activity INSTRUCTION MANUAL. ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik Complex Traits Activity INSTRUCTION MANUAL ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik Introduction Human variation is complex. The simplest form of variation in a population

More information

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance Genetics Review Alleles These two different versions of gene A create a condition known as heterozygous. Only the dominant allele (A) will be expressed. When both chromosomes have identical copies of the

More information

Ch 8 Practice Questions

Ch 8 Practice Questions Ch 8 Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What fraction of offspring of the cross Aa Aa is homozygous for the dominant allele?

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Unit 5: Genetics Notes

Unit 5: Genetics Notes Unit 5: Genetics Notes https://goo.gl/fgtzef Name: Period: Test Date: Table of Contents Title of Page Page Number Date Warm-ups 3-4 Mendelian Genetics Notes 5-6 Mendelian Genetics Lets Practice 7 Monohybrid

More information

Developmental Psychology 2017

Developmental Psychology 2017 Developmental Psychology 2017 Table of Contents Lecture Notes pp. 2-29 Theorists, Theories & Evaluation pp. 29 36 Revision Questions (for all lectures) pp. 36-54 Lecture Notes Intro to Development Development

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

NOTES: : HUMAN HEREDITY

NOTES: : HUMAN HEREDITY NOTES: 14.1-14.2: HUMAN HEREDITY Human Genes: The human genome is the complete set of genetic information -it determines characteristics such as eye color and how proteins function within cells Recessive

More information

Chapter 1 Heredity. Prepared by: GOAD s Team

Chapter 1 Heredity. Prepared by: GOAD s Team Chapter 1 Heredity Prepared by: GOAD s Team IMPORTANT VOCABULARY WORDS Traits Character Genes Allele Genotype homozygote heterozygote Dominant recessive phenotype WHAT IS HEREDITY? HEREDITY - is a passing

More information

Chapter 5 INTERACTIONS OF GENES AND THE ENVIRONMENT

Chapter 5 INTERACTIONS OF GENES AND THE ENVIRONMENT Chapter 5 INTERACTIONS OF GENES AND THE ENVIRONMENT Chapter Summary Up to this point, the traits you have been studying have all been controlled by one pair of genes. However, many traits, including some

More information

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity. MCAT Biology Problem Drill PS07: Mendelian Genetics Question No. 1 of 10 Question 1. The smallest unit of heredity is. Question #01 (A) Cell (B) Gene (C) Chromosome (D) Allele Cells contain the units of

More information

Chapter 1 : Genetics 101

Chapter 1 : Genetics 101 Chapter 1 : Genetics 101 Understanding the underlying concepts of human genetics and the role of genes, behavior, and the environment will be important to appropriately collecting and applying genetic

More information

C) Show the chromosomes, including the alleles on each, in the F1 hybrid progeny at metaphase of Meiosis 1 and mitosis.

C) Show the chromosomes, including the alleles on each, in the F1 hybrid progeny at metaphase of Meiosis 1 and mitosis. On my honor, this is my work GENETICS 310 EXAM I all, 2017 I. Australian daises have 4 chromosomes (2 pairs). A gene on chromosome 1 affects petal color where M M is magenta, M M is pink and MM flowers

More information

Lecture 1 Mendelian Inheritance

Lecture 1 Mendelian Inheritance Genes Mendelian Inheritance Lecture 1 Mendelian Inheritance Jurg Ott Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments with the garden pea: Flower color and

More information

HEREDITY SAMPLE TOURNAMENT

HEREDITY SAMPLE TOURNAMENT HEREDITY SAMPLE TOURNAMENT PART 1 - BACKGROUND: 1. Heterozygous means. A. Information about heritable traits B. Unique/ different molecular forms of a gene that are possible at a given locus C. Having

More information

Complex Multifactorial Genetic Diseases

Complex Multifactorial Genetic Diseases Complex Multifactorial Genetic Diseases Nicola J Camp, University of Utah, Utah, USA Aruna Bansal, University of Utah, Utah, USA Secondary article Article Contents. Introduction. Continuous Variation.

More information

The Inheritance of Complex Traits

The Inheritance of Complex Traits The Inheritance of Complex Traits Differences Among Siblings Is due to both Genetic and Environmental Factors VIDEO: Designer Babies Traits Controlled by Two or More Genes Many phenotypes are influenced

More information

Genetics of Behavior (Learning Objectives)

Genetics of Behavior (Learning Objectives) Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: incidence, prevalence,

More information

The Meaning of Genetic Variation

The Meaning of Genetic Variation Activity 2 The Meaning of Genetic Variation Focus: Students investigate variation in the beta globin gene by identifying base changes that do and do not alter function, and by using several CD-ROM-based

More information

Genetics of Behavior (Learning Objectives)

Genetics of Behavior (Learning Objectives) Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: prevalence, incidence,

More information

Pedigree Construction Notes

Pedigree Construction Notes Name Date Pedigree Construction Notes GO TO à Mendelian Inheritance (http://www.uic.edu/classes/bms/bms655/lesson3.html) When human geneticists first began to publish family studies, they used a variety

More information

Non-parametric methods for linkage analysis

Non-parametric methods for linkage analysis BIOSTT516 Statistical Methods in Genetic Epidemiology utumn 005 Non-parametric methods for linkage analysis To this point, we have discussed model-based linkage analyses. These require one to specify a

More information

Take a look at the three adult bears shown in these photographs:

Take a look at the three adult bears shown in these photographs: Take a look at the three adult bears shown in these photographs: Which of these adult bears do you think is most likely to be the parent of the bear cubs shown in the photograph on the right? How did you

More information

Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder)

Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) September 14, 2012 Chun Xu M.D, M.Sc, Ph.D. Assistant professor Texas Tech University Health Sciences Center Paul

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Mendelian Genetics. Activity. Part I: Introduction. Instructions Activity Part I: Introduction Some of your traits are inherited and cannot be changed, while others can be influenced by the environment around you. There has been ongoing research in the causes of cancer.

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Jay M. Baraban MD, PhD January 2007 GENES AND BEHAVIOR

Jay M. Baraban MD, PhD January 2007 GENES AND BEHAVIOR Jay M. Baraban MD, PhD jay.baraban@gmail.com January 2007 GENES AND BEHAVIOR Overview One of the most fascinating topics in neuroscience is the role that inheritance plays in determining one s behavior.

More information

THE CONTENTS OF THIS THESIS

THE CONTENTS OF THIS THESIS THE CONTENTS OF THIS THESIS BACKGROUND TO GENETICS NATURE & NURTURE 5 HERITABILITY 5 Estimation of heritability 5 Shared and non-shared environment 5 MODES OF INHERITANCE 6 Mendelian traits 6 Complex traits

More information

Neural Development 1

Neural Development 1 Neural Development 1 Genes versus environment Nature versus nurture Instinct versus learning Interactive theory of development Hair color What language you speak Intelligence? Creativity? http://www.jove.com/science-education/5207/an-introduction-to-developmental-neurobiology

More information

What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins?

What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins? WHAT WILL YOU KNOW? What is the relationship between genes and chromosomes? Is twinning genetic or can a person choose to have twins? How could a person have the gene for something that is never apparent?

More information

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding? 1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?

More information

Chapter 11 Gene Expression

Chapter 11 Gene Expression Chapter 11 Gene Expression 11-1 Control of Gene Expression Gene Expression- the activation of a gene to form a protein -a gene is on or expressed when it is transcribed. -cells do not always need to produce

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

Goal: To identify the extent to which different aspects of psychopathology might be in some way inherited

Goal: To identify the extent to which different aspects of psychopathology might be in some way inherited Key Dates TH Mar 30 Unit 19; Term Paper Step 2 TU Apr 4 Begin Biological Perspectives, Unit IIIA and 20; Step 2 Assignment TH Apr 6 Unit 21 TU Apr 11 Unit 22; Biological Perspective Assignment TH Apr 13

More information

Quantitative Genetics. Statistics Overview: Mean. Statistics Overview: Variance. Statistics Overview: Distributions. Chapter 22

Quantitative Genetics. Statistics Overview: Mean. Statistics Overview: Variance. Statistics Overview: Distributions. Chapter 22 Quantitative Genetics Chapter Statistics Overview: Distributions Phenotypes on X axis, Frequencies on Y axis Statistics Overview: Mean Measure of central tendency (average) of a group of measurements X

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

Non-Mendelian Genetics

Non-Mendelian Genetics Non-Mendelian Genetics Complete dominance Law of segregation Law of independent assortment One gene one trait Mendelian Genetics Codominance Incomplete dominance Multiple alleles Pleiotropy Epistasis Polygenic

More information

Chapter 7: Pedigree Analysis B I O L O G Y

Chapter 7: Pedigree Analysis B I O L O G Y Name Date Period Chapter 7: Pedigree Analysis B I O L O G Y Introduction: A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships.

More information

Nature and nurture in. Department of Biological Psychology, Neuroscience Campus / EMGO + institute VU University, Amsterdam The Netherlands

Nature and nurture in. Department of Biological Psychology, Neuroscience Campus / EMGO + institute VU University, Amsterdam The Netherlands Nature and nurture in behavioral problems Eco de Geus Department of Biological Psychology, Neuroscience Campus / EMGO + institute VU University, Amsterdam The Netherlands Topics Quantitative Genetics Genetic

More information

8.1 Human Chromosomes and Genes

8.1 Human Chromosomes and Genes 8.1. Human Chromosomes and Genes www.ck12.org 8.1 Human Chromosomes and Genes Lesson Objective Define the human genome. Describe human chromosomes and genes. Explain linkage and linkage maps. Vocabulary

More information

Pedigrees: Genetic Family History

Pedigrees: Genetic Family History Pedigrees: Genetic Family History - Women are represented with a. - Men are represented with a. - Affected individuals are (individuals who express the trait). C B A D If this is you who are The other

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

Your DNA extractions! 10 kb

Your DNA extractions! 10 kb Your DNA extractions! 10 kb Quantitative characters: polygenes and environment Most ecologically important quantitative traits (QTs) vary. Distributions are often unimodal and approximately normal. Offspring

More information

Cognitive and Behavioral Genetics: An Overview. Steven Pinker

Cognitive and Behavioral Genetics: An Overview. Steven Pinker Cognitive and Behavioral Genetics: An Overview Steven Pinker What is Cognitive and Behavioral Genetics? Behavioral genetics = Genetic basis of behavior: How genes wire up a brain capable of seeing, moving,

More information

GENETICS - NOTES-

GENETICS - NOTES- GENETICS - NOTES- Warm Up Exercise Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. Use the genotype that you came

More information

Expression of Genetic Effects in the Environment. Expression of Genetic Effects in the Environment

Expression of Genetic Effects in the Environment. Expression of Genetic Effects in the Environment Expression of Genetic Effects in the Environment Genotype/Environment Correlations: Passive G/E Cs: Children inherit genetic tendencies from their parents and parents provide environments that match their

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions Single Gene (Monogenic) Disorders Mendelian Inheritance: Definitions A genetic locus is a specific position or location on a chromosome. Frequently, locus is used to refer to a specific gene. Alleles are

More information

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance What You ll Learn You will compare the inheritance of recessive and dominant traits in humans. You will analyze the inheritance patterns of traits with incomplete dominance and codominance. You will determine

More information

Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116

Mendelian Genetics & Inheritance Patterns. Practice Questions. Slide 1 / 116. Slide 2 / 116. Slide 3 / 116 New Jersey Center for Teaching and Learning Slide 1 / 116 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Progressive Science Initiative. Click to go to website:

Progressive Science Initiative. Click to go to website: Slide 1 / 116 New Jersey Center for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Heritability. The concept

Heritability. The concept Heritability The concept What is the Point of Heritability? Is a trait due to nature or nurture? (Genes or environment?) You and I think this is a good point to address, but it is not addressed! What is

More information

Critical assumptions of classical quantitative genetics and twin studies that warrant more attention

Critical assumptions of classical quantitative genetics and twin studies that warrant more attention Critical assumptions of classical quantitative genetics and twin studies that warrant more attention Peter J. Taylor Programs in Science, Technology & Values and Critical & Creative Thinking University

More information

INTRODUCTION TO GENETIC EPIDEMIOLOGY (1012GENEP1) Prof. Dr. Dr. K. Van Steen

INTRODUCTION TO GENETIC EPIDEMIOLOGY (1012GENEP1) Prof. Dr. Dr. K. Van Steen INTRODUCTION TO GENETIC EPIDEMIOLOGY (1012GENEP1) Prof. Dr. Dr. K. Van Steen DIFFERENT FACES OF GENETIC EPIDEMIOLOGY 1 Basic epidemiology 1.a Aims of epidemiology 1.b Designs in epidemiology 1.c An overview

More information

Lesson Overview Human Chromosomes

Lesson Overview Human Chromosomes Lesson Overview 14.1 Human Chromosomes Human Genome To find what makes us uniquely human, we have to explore the human genome, which is the full set of genetic information carried in our DNA. This DNA

More information

Multiple Approaches to Studying Gene-Environment Interplay. Sara Jaffee University of Pennsylvania

Multiple Approaches to Studying Gene-Environment Interplay. Sara Jaffee University of Pennsylvania Multiple Approaches to Studying Gene-Environment Interplay Sara Jaffee University of Pennsylvania What is GE Interplay? Gene-environment correlation (rge): Individual differences in exposure to environments

More information