You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS."

Transcription

1 1

2 Nervous system maintains coordination through the use of electrical and chemical processes. There are three aspects: sensory, motor, and integrative, which we will discuss throughout the system. The nervous system has a set of unique characteristics 1. Excitability: Nervous cells can be stimulated or excited. All cells can do this, but neurons are the most efficient. 2. Conductivity: Nervous cells respond to stimuli by producing electrical signals that can be conducted out to other neurons or to muscle or to a gland. 3. Secretion: Nervous cells have the ability to secret a neurotransmitter that can stimulate other cells. (Neurotransmitter is a chemical which the nerve cells use to communicate with other cells) The nervous system has two parts: 1. The Central Nervous system and the Peripheral Nervous System. The CNS includes the brain and spinal cord and functions in processing and integration. The PNS includes the nervous tissue including nerves in the rest of the body and is responsible for detection/sensation, stimulates change in other systems, and are the doers. 2. The second division is the Somatic vs. Autonomic Systems 2

3 The Somatic System is voluntary and is largely involved with skeletal muscle The Autonomic System is involuntary, and is responsible for secretions, sensations, and control of cardiac and smooth muscle and glands The big questions to determine which system you have is to ask Do I or don t I have control? Most tissues receive nerve fibers from both systems. The divisions are not necessarily mutually exclusive (especially the somatic and autonomic). The Systems of both divisions work together to maintain control and homeostasis. 2

4 Neurons are the functional cell of the nervous system. If one characteristic of the nervous cells is that they are excitable, neurons take the cake. They are extremely excitable. It is not enough that they are excited, but they have to make other cells excited too. They are like 3 year olds. Once they are really excited, they have to tell everyone. So they are excitable and they conduct impulses. There are three types of neurons. 1. Sensory or afferent neurons detect stimuli found in the PNS and transmits them to CNS. Think of them like an Inbox. 2. Motor or efferent send signals to the muscles and gland cells from the CNS. Motor neurons begin in the spinal cord, but most of the cell is in the PNS. They carry out going signals. Think of them like an Outbox. 3. Interneurons or association neurons are entirely in the CNS. Their function is to process, store, and retrieve info received from sensory neurons and pass on a response to the motor neurons. These cells are like some street lanes, traffic only goes one way. You can t use the same neuron to send messages in and out, like you can t drive east on a westbound lane. 3

5 You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS. The interneurons determine that you finger needs to move and send an appropriate response to the motor neuron. The motor neuron then send the message to the muscle that will move your finger. 4

6 The neuron has a unique anatomy. The following structures are typical of a motor neuron. Sensory neurons have a slightly different shape. A Soma is the cell body and is the processing part of cell. This is where the normal cell stuff and functions occur. Within the soma we will find Nissl bodies. Nissl bodies are rough ER, this is unique to the neuron. Dendrites are extensions of the soma that are used to detect stimulus. They are the receiving portion of a neuron. They are usually short and highly branched. The Axon hillock is considered the trigger zone or where an impulse is generated. Once a signal is generated in the axon hillock, it is sent down the Axon. The single axon is a long thick extension used to send signals to other cells. The Terminal branches are where the axon splits, so it can branch out towards multiple cells. Compared to axons, they do not have myelin (we will get to the details of myelin shortly.) Finally, Synaptic Knobs are the very ends of the branches and interacts with other cells (think of your neuromusclular junction). They also contain neurotransmitters. 5

7 This is the structural classification of neurons. 6

8 We have two types of cells in nervous system: neurons and neuroglial cells or glial cells. Neuroglia are helper cells in the nervous system. Oligodendrocytes make a myelin sheath, but only for the cells in the CNS. They are octopus shape with branches that reach out and wrap around neurons. Whereas the schwann cells (in PNS) only wrap around one cell, the branches of oligodendrocytes wrap around multiple neurons. Ependymal cells resemble cuboidal epithelium and are found in the CNS and produce cerebrospinal fluid. Microglial cells wonder around the CNS and remove dead nervous tissue, microorganisms and other foreign matter. Clusters of microglia can be used to find damaged areas. Astrocytes are the most abundant glial cells in the CNS and have a star shape. They also have the most diverse functions: they provide a supportive framework, form the blood-brain barrier (more on that shortly), supply nourishment, secrete nerve growth factors, and influence signaling. Satellite are only found in the PNS. Little is known of their actual function, but they surround neuron cell bodies. 7

9 Schawnn cells are on the next slide 7

10 Schwann cells are a type of neuroglia that forms myelin sheath around the neurons in the PNS. They wrap around the axon over and over again. The inner layers of the wrap are called the myelin sheath. In this sheath, a substance called myelin is released. Myelin is a fatty protein that insulates the axons which provides protection for the electrical signal. By doing so, myelin helps speed up the signal. This is analogous to the plastic coating around an electrical cord. The myelin prevents the electrical signal form dispersing and flowing in multiple directions and keeps it going straight down the axon. As the schwann cells wrap around the axon, the cytoplasm and nucleus gets pushed to the outside layer. This outside layer is called the neurilemma. The Neurilemma be can used as a guide to help a cut axon grow back down its original path. It provides a regeneration tube to help the axon heal. Schwann cells are too small to coat the entire axon, which is really long, so it takes multiple cells. The spaces between the cells are called the nodes of ranvier. They are NOT myelinated. As an impulse travels down the axon, the signal gets weaker the further it travels, the nodes allow the signal to recharge. In brain or spinal cord, some regions look white and some other look grey. The grey matter contains mostly unmyelinated axons where as white matter is made up of 8

11 mostly myelinated axons, which looks white. 8

12 Here is our schwann cell. The first layers wrap really tightly and pack together. This is where the myelin will be produced. You can also see the neurilemma with the schwann cell nucleus. 9

13 We can see in this diagram how a regeneration tube can form. You do not need to know the steps of regeneration, but be familiar with the concept as a role of the neurilemma. 10

14 Here is a diagram of the neuroglia cells in relation to neurons. The ones shown here are in the CNS. 11

15 One of the key characteristics of a neuron is that ability to send an electrical current. Before we go through the steps of how a neuron sends an impulse (or an electrical current), there are a few terms and concepts we need to discuss. Membrane potential or Electrical Potential This is a difference in the concentration of charged particles across the membrane. It creates a potential for energy (via current or flow of charged particles). If a cell has potential it is called polarized. Resting Membrane potential This is when a nerve is not conducting an impulse. 2 critical ions, Na+ and K+, are required to establish resting potential. There are more Na+ ions outside the cell than there are K+ inside the cell, the inside of the cell is negatively charged with respect to the outside of the cell. Resting Potential is usually measured around -70 millivolts (mv). A stimulus is anything that changes the resting potential. It will cause the cell membrane to be leaky. This results in more positive ions moving into the cell causing there to be less of difference between the inside and outside of the cell. The of movement of the ions causes the potential to move closer to equilibrium 12

16 Threshold potential is the critical voltage required to send in impulse. Neurons receive constant stimulus, and as previously mentioned, this causes the membrane to leak. A stimulus is considered strong enough to pass on, when enough ions have moved to cause a significant change in voltage. This is the threshold potential. It is usually -55 mv. 12

17 To continue with our terminology: Depolarization If threshold is reached, this opens more gates and allows more Na+ to flood into the cell. The neuron becomes more and more permeable to Na+. The membrane potential shifts to a less negative value. Repolarization After depolarization the membrane becomes more permeable to K+, and allows it to leave the cell quickly. Repolarization returns the cell to its original state. An Action Potential is a full cycle of depolarization and repolarization due to Na+ coming in and K+ going out in response to a really, really strong stimulus. A neuron can have 1000 action potentials in 1 sec, this allows the nervous system to be very, very fast. Hyperpolarization is the opposite of depolarization and creates a greater difference between the inside and outside of the cell. It makes the membrane more negative and it becomes harder for an action potential to occur. 13

18 Now that we are familiar with some of the terms, lets start to walk through the steps of an action potential. 1. An adequate stimulus is applied to the neuron. Causing Na to leak into the cell. Enough Na leaks in that threshold potential (-55mV) is reached. 2. Once threshold potential is reached, sodium channels open and Na flows into the axon causing the membrane to depolarize. 3. As the depolarizing occurs, more Na channels open and more Na flows in and the membrane depolarizes even more. 4. At a certain voltage (+35mV) the Na channels start closing. 14

19 5. Once +35mV is reached, there is a reversal of polarity and repolarization begins. 6. Potassium channels fully open and K+ rushes out of the cell. This counter acts the movement of Na. 7. The inside of the cell again becomes less positive and is referred to as repolarization. 8. Repolarization is aided by Na/K pumps. The pump removes 3 Na from the cell and brings in 2 K. Thus, returning the ions to their original locations. This is an active process as the ions are moving against their concentration gradients and requires ATP. 9. Hyperpolarization occurs. This is when the cell goes slightly pass its resting potential of -70mV because too many potassium ions have left the inside of the cell. 10. Finally go back to resting state with the aid of the Na/K pump. 15

20 There are a few key points about action potentials that need to be mentioned and recalled. First, action potentials do not happen all at once along the entire axon. There is a cascade effect to action potentials. The first action potentials start at the axon hillock and then stimulate action potentials in the next region. There is a cascade effect with action potentials, one will trigger another one to happen near by and so on down the line, like a domino effect. As mentioned, action potential starts at the axon hillock. There are gates per square micro unit in the hillock compared to elsewhere. Therefore, there is a greater chance of reaching threshold quicker here. This is an all or nothing event. Either threshold is reached or it isn t. Once it starts, it is not reversible. Sodium and Potassium are the key players and cause the change. Also while Na+/K+ are flowing through the gates, the Na+/K+ pump is shuttling 3 Na+ out and 2 K+ in to put the concentrations of each ion back to resting. This pump requires ATP. The key voltages to keep in mind are -70mV, -55mV, and +35mV 16

21 You may need to review the steps of the action potential a few times in order for it to sink in. This animation should help. 17

22 This diagram represents the change in voltage as the membrane moves through the action potential. Step one is the local potential (we ll define this momentarily) and leads to threshold potential which is step 2. Step 3 is depolarization followed by the critical voltage of +35 as step 4. We then switch to repolarization in step 5. Step 6 is the slight hyperpolarization. And step 7 is the return to resting. Notice that once you hit threshold potential, depolarization and repolarization happen quite quickly. 18

23 A Local Potential is a short range change in membrane potential and is reversible. If a stimulus is not strong enough, the change in potential will not start an action potential, and the membrane will go back to normal. A refractory period is a period of time when the neuron resists re-stimulation. There are two stages, an absolute and relative refractory period. The absolute refractory period is a portion of the action potential where no stimulus, regardless of how strong can trigger a new action potential to start in that location. The relative period is a segment of time when a very, very strong stimulus can cause can cause another action potential to happen at that location. 19

24 In this diagram, we can see the absolute and relative refractory periods. The absolute refractory covers the course of depolarization and repolarization. Regardless of how strong a stimulus is, the membrane cannot start another action potential. The relative refractory period occurs during hyperpolarization. During this time, an extremely strong stimulus can kick off another action potential. It will just take more movement of sodium to reach threshold than when a cell is at resting potential. 20

25 Saltatory Conduction is conduction via skipping and jumping of an impulse down the axon. The impulse flowing down the axon is fast, but slows down (runs out of juice), luckily at the Nodes of Ranvier the action potential is recharged. This diagram shows how the impulse travels down the axon and is recharged at the nodes. It is almost as if the impulse jumps from node to node. 21

26 A synapse is a region where a neuron carries info toward another structure like a muscle or a gland. There are 3 components: an axon (or pre-synaptic structure), synaptic cleft, and a post-synaptic structure (either another neuron or a different form of cell). Neurotransmitters are stored and released from vesicles in the presynaptic structure and travel across the cleft to the post-synaptic structure. This is how a an impulse can be passed on from cell to cell. There are 60 different kinds of neurotransmitters in our body. 22

27 A diagram of the synapse. Recall the neuromuscular junction. 23

28 24

Tips. Use the Study Guide (SG) to follow the lectures. Reading the SG before class will be helpful Use the textbook to supplement lectures/sg

Tips. Use the Study Guide (SG) to follow the lectures. Reading the SG before class will be helpful Use the textbook to supplement lectures/sg Tips Use the Study Guide (SG) to follow the lectures Lectures will be posted after class Reading the SG before class will be helpful Use the textbook to supplement lectures/sg The Nervous System N E U

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse

Nervous system function Central and peripheral nervous system. Myelinated neurons Nerve signal transmission Nerve Synapse Outline Nervous System - Neurons Biol 105 Lecture Packet 9 Chapter 7 I. II. III. IV. V. VI. Nervous system function Central and peripheral nervous system Nervous system cells Myelinated neurons Nerve signal

More information

Functions of Nervous System Neuron Structure

Functions of Nervous System Neuron Structure Chapter 10 Nervous System I Divisions of the Nervous System Cell Types of Neural Tissue neurons neuroglial cells Central Nervous System brain spinal cord Peripheral Nervous System nerves cranial nerves

More information

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi

The Nervous System & Nervous tissue. Dr. Ali Ebneshahidi The Nervous System & Nervous tissue Dr. Ali Ebneshahidi Functions of the Nervous System 1. Nervous system and endocrine system are the chief control centers in maintaining body homeostasis. 2. Nervous

More information

35-2 The Nervous System Slide 1 of 38

35-2 The Nervous System Slide 1 of 38 1 of 38 35-2 The Nervous System The nervous system controls and coordinates functions throughout the body and responds to internal and external stimuli. 2 of 38 Neurons Neurons The messages carried by

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Question No. 1 of 10 The human body contains different types of tissue. The tissue is formed into organs and organ systems.

More information

Nerve Cell Flashcards

Nerve Cell Flashcards 1. What does the word innervates mean? Refers to a nerve supplying a muscle or organ. For example, The phrenic nerve innervates the diaphragm muscle. 2. 3 parts of the Nervous System 1. Central Nervous

More information

6.5 Nerves, Hormones and Homeostasis

6.5 Nerves, Hormones and Homeostasis 6.5 Nerves, Hormones and Homeostasis IB Biology SL Part 1 - Nerves Outcomes Part 1 6.5.1State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

1/20/ : Overview of the Nervous System. Divisions of the Nervous System. Divisions of the Nervous System

1/20/ : Overview of the Nervous System. Divisions of the Nervous System. Divisions of the Nervous System 10.1: Overview of the Nervous System Chapter 10 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 5 2401 : Anatomy/Physiology Introduction Neural Tissue TextBook Readings Pages 388 through 397. Make use of the figures in your textbook ; a picture is worth a thousand words! Work

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

The Nervous System. Overall Function

The Nervous System. Overall Function The Nervous System The Nervous System Overall Function COMMUNICATION Works with the endocrine system in regulating body functioning, but the nervous system is specialized for SPEED Neurons A neuron is

More information

Lecture 3 (Oct 5 th ): NEURONS AND NERVE IMPULSES Lecture Outline

Lecture 3 (Oct 5 th ): NEURONS AND NERVE IMPULSES Lecture Outline Lecture 3 (Oct 5 th ): NEURONS AND NERVE IMPULSES Lecture Outline 1) CNS vs. PNS 2) Structure of Neurons parts of a neuron: soma, dendrites, axons 3) Glial Cells 4) Mitosis and Regeneration in Neurons

More information

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts:

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts: Animals: Nervous system Neuron and connection of neurons Outline 1. Key concepts 2. An Overview and Evolution 3. Human Nervous System 4. The Neurons 5. The Electrical Signals 6. Communication between Neurons

More information

Chapter 11: Fundamentals of the Nervous System and Nervous Tissue

Chapter 11: Fundamentals of the Nervous System and Nervous Tissue Chapter 11: Fundamentals of the Nervous System and Nervous Tissue Objectives: 1. List the basic functions of the nervous system. 2. Explain the structural and functional divisions of the nervous system.

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Functions of the Nervous System

Functions of the Nervous System Chapter 11 Functional Organization of Nervous Tissue 11-1 Functions of the Nervous System 1. Sensory input. Monitor internal and external stimuli 2. Integration. Brain and spinal cord process sensory input

More information

Biology 3201 Quiz on Nervous System. Total 33 points

Biology 3201 Quiz on Nervous System. Total 33 points Biology 3201 Quiz on Nervous System Total 33 points Name: Circle the best response to the following: (33 points) 1. What do we call the long fibre that carries impulses away from the nerve cell body? A.

More information

action potential afferent neuron Weblike; specifically, the weblike middle layer of the three meninges. arachnoid astrocytes autonomic nervous system

action potential afferent neuron Weblike; specifically, the weblike middle layer of the three meninges. arachnoid astrocytes autonomic nervous system action potential A large transient depolarization event, including polarity reversal, that is conducted along the membrane of a muscle cell or a nerve fiber. afferent neuron Nerve cell that carries impulses

More information

THE NERVOUS SYSTEM. Homeostasis Strand

THE NERVOUS SYSTEM. Homeostasis Strand THE NERVOUS SYSTEM Homeostasis Strand Introduction In general, a nervous system has three overlapping functions : 1. Sensory input conduction of signals from sensory receptors to integration centres 2.

More information

Blood & Nervous Tissue. Blood. Nervous Tissue 10/13/2008. BY: Jeremiah Peters, Brett Maggard, Miranda Asher, and Benjamin Oakes

Blood & Nervous Tissue. Blood. Nervous Tissue 10/13/2008. BY: Jeremiah Peters, Brett Maggard, Miranda Asher, and Benjamin Oakes Blood & Nervous Tissue BY: Jeremiah Peters, Brett Maggard, Miranda Asher, and Benjamin Oakes Blood Fluid within blood vessels Doesn t connect or give mechanical support Transports Nutrients, wastes, respiratory

More information

Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!)

Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!) Bio 201 Tissues and Skin 1 March 21, 2011 Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!) 1. The study of the normal functioning and disorders of the

More information

Neural Tissue. Chapter 12 Part B

Neural Tissue. Chapter 12 Part B Neural Tissue Chapter 12 Part B CNS Tumors - Neurons stop dividing at age 4 but glial cells retain the capacity to divide. - Primary CNS tumors in adults- division of abnormal neuroglia rather than from

More information

Teacher Key. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body.

Teacher Key. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body. Introduction to Neurons An individual s survival and reproductive success depends upon

More information

Faris Haddad. Dania Alkouz. Mohammad-Khatatbeh

Faris Haddad. Dania Alkouz. Mohammad-Khatatbeh 9 Faris Haddad Dania Alkouz Mohammad-Khatatbeh Revision of previous ideas I. The Action potential stages are mainly controlled by Na+ and K+ channels II. These channels can be either pumps (chemical gated)

More information

Nervous System. Unit 6.6 (6 th Edition) Chapter 7.6 (7 th Edition)

Nervous System. Unit 6.6 (6 th Edition) Chapter 7.6 (7 th Edition) Nervous System Unit 6.6 (6 th Edition) Chapter 7.6 (7 th Edition) 1 Learning Objectives Identify the main parts (anatomy) of a neuron. Identify the 2 divisions of nervous system. Classify the major types

More information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information NERVOUS SYSTEM Monitor changes External / internal Integrate input Primary Functions Process, interpret, make decisions, store information Initiate a response E.g., movement, hormone release, stimulate/inhibit

More information

Neural Tissue. Chapter 12 Part A

Neural Tissue. Chapter 12 Part A Neural Tissue Chapter 12 Part A Homeostasis Homeostasis refers to maintaining internal environment. How does body maintain homeostasis?? 1. Each cell, tissue or organ maintain their own internal environment

More information

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures Soma Collateral Overview of Neurons Psychology 470 Axon Hillock Teleodendria Introduction to Chemical Additions Steven E. Meier, Ph.D. Node of Ranvier Listen to the audio lecture while viewing these slides

More information

Chapter 44 Neurons and Nervous Systems

Chapter 44 Neurons and Nervous Systems Nervous System Cells Neuron a cell Chapter 44 Neurons and Nervous Systems signal direction dendrites cell body Structure fits function many entry points for signal one path out transmits signal signal

More information

BIOLOGY 12 NERVOUS SYSTEM PRACTICE

BIOLOGY 12 NERVOUS SYSTEM PRACTICE 1 Name: BIOLOGY 12 NERVOUS SYSTEM PRACTICE Date: 1) Identify structures X, Y and Z and give one function of each. 2) Which processes are involved in the movement of molecule Y from point X to point Z?

More information

The Nervous System. Nerves, nerves everywhere!

The Nervous System. Nerves, nerves everywhere! The Nervous System Nerves, nerves everywhere! Purpose of the Nervous System The information intake and response system of the body. Coordinates all body functions, voluntary and involuntary! Responds to

More information

Chapter 7 Nervous System

Chapter 7 Nervous System Chapter 7 Nervous System Two message centers: Functions of these systems: 1. * 2. * Overview of the Nervous System Parts: General Functions: Functions Sensory input: Sensation via nerves Integration: interpretation

More information

Chapter 48-49: The Nervous System & Neurons

Chapter 48-49: The Nervous System & Neurons Invertebrates Chapter 48-49: The Nervous System & Neurons Radial Symmetry - Nerve net Cnideria Bilateral Symmetry double, ventral, solid nerve cord brain (cephalization) Vertebrates Dorsal, single, hollow,

More information

Anatomy of a Neuron. Copyright 2000 by BSCS and Videodiscovery, Inc. Permission granted for classroom use. Updated Master 2.

Anatomy of a Neuron. Copyright 2000 by BSCS and Videodiscovery, Inc. Permission granted for classroom use. Updated Master 2. Anatomy of a Neuron Master 2.1 Neurons Interact with Other Neurons through Synapses Master 2.2 Name Date Due Cells of the Nervous System Learning Target: Identify and state the function of the components

More information

Biology 105 Midterm Exam 3 Review Sheet

Biology 105 Midterm Exam 3 Review Sheet Biology 105 Midterm Exam 3 Review Sheet The third midterm exam will cover the following lecture material (lectures 8, 9, 10, 11, 12, and 13): Skeletal System (from chapter 5 in the textbook), Nervous System

More information

13 - Cells of the Nervous System Taft College Human Physiology. Dendrite

13 - Cells of the Nervous System Taft College Human Physiology. Dendrite 13 - Cells of the Nervous System Taft College Human Physiology Dendrite Histology (Cells) of the Nervous System 2 major categories of cells are found in the nervous system: 1. Nerve cells (neurons) carry

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

Nervous System Notes

Nervous System Notes Nervous System Notes The nervous system consists of a network of nerve cells or neurons. I. A nervous system is an important part of a cell s (or an organism s) ability to respond to the environment. A.

More information

[CHAPTER 12: THE NERVOUS SYSTEM] [ANSWER KEY]

[CHAPTER 12: THE NERVOUS SYSTEM] [ANSWER KEY] WORDBANK: Cholinesterase Dopamine Axon Choroid layer Cochlea Incus Action Potential Cataract Cornea Astigmatism Dendrite Malleus Alzheimer s Disease Central Excitatory Response Fovea Centralis Acetylcholine

More information

Warm-up. Warm-up. Warm-up. Chapter 48. Why do animals need a nervous system? 3/9/2012. Nervous System

Warm-up. Warm-up. Warm-up. Chapter 48. Why do animals need a nervous system? 3/9/2012. Nervous System Warm-up Objective: Explain how membrane potentials arise from differences in ion concentrations between cells' content and the extracellular fluid. Warm-up: Cells from this structure migrate to other parts

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials Depolarize to decrease the resting membrane potential. Decreasing membrane potential means that the membrane potential is becoming more positive. Excitatory postsynaptic potentials (EPSP) graded postsynaptic

More information

Department of medical physiology 1 st week

Department of medical physiology 1 st week Department of medical physiology 1 st week Semester: summer Study program: Dental medicine Lecture: RNDr. Soňa Grešová, PhD. Department of medical physiology 1 st week 1. General neurophysiology 2. Central

More information

CHAPTER 12 LECTURE OUTLINE I. OVERVIEW OF THE NERVOUS SYSTEM 1. The nervous system, along with the endocrine system, helps to keep controlled

CHAPTER 12 LECTURE OUTLINE I. OVERVIEW OF THE NERVOUS SYSTEM 1. The nervous system, along with the endocrine system, helps to keep controlled CHAPTER 12 LECTURE OUTLINE I. OVERVIEW OF THE NERVOUS SYSTEM 1. The nervous system, along with the endocrine system, helps to keep controlled conditions within limits that maintain health and helps to

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood

Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood Link download full: https://digitalcontentmarket.org/download/test-bankfor-human-physiology-from-cells-to-systems-8thedition-by-sherwood

More information

vesicles filled with neurotransmitters

vesicles filled with neurotransmitters Nervous Tissue Controls and integrates all body activities within limits that maintain life Three basic functions sensing changes with sensory receptors fullness of stomach or sun on your face interpreting

More information

anatomic divisions central nervous system peripheral nervous system Anatomic Divisions of the PNS afferent or sensory division

anatomic divisions central nervous system peripheral nervous system Anatomic Divisions of the PNS afferent or sensory division Chapter 12 Functional Organization of the Nervous System I. Two anatomic divisions: CNS and PNS A. central nervous system (CNS) 1. consists of the brain and spinal cord and is encased in bone. 2. Surrounded

More information

Chapter 22. The Nervous and Endocrine Systems Worksheets. 561

Chapter 22. The Nervous and Endocrine Systems Worksheets. 561 Chapter 22 The Nervous and Endocrine Systems Worksheets (Opening image copyright by Sebastian Kaulitzki, 2010. Used under license from Shutterstock.com.) Lesson 22.1: The Nervous System Lesson 22.2: The

More information

Ch 7. The Nervous System

Ch 7. The Nervous System Ch 7 The Nervous System SLOs 7.1 7.2 Describe the different types of neurons and supporting cells, and identify their functions. Identify the myelin sheath and describe how it is formed in the CNS and

More information

THE NERVOUS SYSTEM AS A TARGET ORGAN

THE NERVOUS SYSTEM AS A TARGET ORGAN THE NERVOUS SYSTEM AS A TARGET ORGAN Summary A target organ is an organ or organs of the body which adversely responds to systemic exposure of a chemical. The function of the nervous system is to communicate

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

Objectives. ! Describe the major structures of the nervous system. ! Explain how a nerve impulse is transmitted.

Objectives. ! Describe the major structures of the nervous system. ! Explain how a nerve impulse is transmitted. Objectives! Describe the major structures of the nervous system.! Explain how a nerve impulse is transmitted.! Distinguish between the functions of the central and peripheral nervous systems.! Identify

More information

SBI4U PRACTICE QUIZ Endocrine and Nervous Systems

SBI4U PRACTICE QUIZ Endocrine and Nervous Systems SBI4U PRACTICE QUIZ Endocrine and Nervous Systems Part I: Multiple Choice 1. Steroid hormones operate by: A. crossing the cell membrane and starting transcription for the appropriate protein B. attaching

More information

Learning Modules - Medical Gross Anatomy Nervous System Overview - Page 1 of 14

Learning Modules - Medical Gross Anatomy Nervous System Overview - Page 1 of 14 Nervous System Overview - Page 1 of 14 Overview of the Nervous System Every minute of every day, your nervous system is sending and receiving countless messages about what is happening both inside and

More information

NERVOUS SYSTEM C H A P T E R 2 8

NERVOUS SYSTEM C H A P T E R 2 8 NERVOUS SYSTEM C H A P T E R 2 8 CAN AN INJURED SPINAL CORD BE FIXED? Injuries to the spinal cord disrupt communication between the central nervous system (brain and spinal cord) and the rest of the body

More information

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems

Bio11 schedule. Chapter 13 and 14. The Nervous System. The Nervous System. Organization of Nervous Systems. Nerves. Nervous and Sensory Systems Bio11 schedule Lecture Nervous system and senses Lab Current events reports (10 pts) Urinalysis Lecture exam 2 Thursday Feb 24 Same format as before Study guide will be posted Your total points so far

More information

STOP. The Nervous System How you know when to. doing something stupid. Or Keep doing something pleasurable. The Neuron. Different Types of Neurons

STOP. The Nervous System How you know when to. doing something stupid. Or Keep doing something pleasurable. The Neuron. Different Types of Neurons The Nervous System How you know when to STOP doing something stupid. Or Keep doing something pleasurable Complexity of the Brain The brain contains approximately 100 billion nerve cells, or neurons, and

More information

Human Anatomy and Physiology I Laboratory

Human Anatomy and Physiology I Laboratory Human Anatomy and Physiology I Laboratory Histology of Nervous Tissue and The Spinal Cord This lab involves two laboratory exercises: 1) Histology of Nervous Tissue, and 2) Spinal Cord, Spinal Nerves,

More information

BENG 260 Supplementary neurophysiology slides

BENG 260 Supplementary neurophysiology slides BENG 260 Supplementary neurophysiology slides Fall 2013 Slides are taken from Vander s Human Physiology, 11 th edition, McGraw Hill (ISBN 0077216091)" These slides cover:" Chapter 6, Neuronal Signaling

More information

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period Name: Period Version A AP* Biology: Nervous System Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the one that is best in

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous system links the two -Consists

More information

Neurons: Structure and communication

Neurons: Structure and communication Neurons: Structure and communication http://faculty.washington.edu/chudler/gall1.html Common Components of a Neuron Dendrites Input, receives neurotransmitters Soma Processing, decision Axon Transmits

More information

Module 5 : Anatomy The nervous system

Module 5 : Anatomy The nervous system Module 5 : Anatomy The nervous system In this module you will learn: The main parts of the nervous system The different sections of the brain and how it functions The structure and function of the spinal

More information

Notes are online at The Neuron

Notes are online at  The Neuron Notes are online at http://cogsci.ucsd.edu/~clovett/neuronotescogs17.pdf A. What is a neuron? The Neuron 1. A neuron is a type of cell that receives and transmits information in the Central Nervous System

More information

Nervous System Worksheet

Nervous System Worksheet Nervous System Worksheet Name Section A: Intro to Nervous System The Nervous System regulates and coordinates activities within the body. It detects, interprets and responds to changes that occur internally

More information

NERVOUS SYSTEM. Somatic (SNS) - Fibers send impulses from CNS to control voluntary action of skeletal muscle. impulses from visceral organs to the CNS

NERVOUS SYSTEM. Somatic (SNS) - Fibers send impulses from CNS to control voluntary action of skeletal muscle. impulses from visceral organs to the CNS NERVOUS SYSTEM The master controlling and communicating system of the body --- cells communicate via electrical and chemical signals. Signals are rapid, specific and cause almost immediate responses. Functions

More information

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017 The Synapses Conduction of a Depolarization o In dendrites: passive propagation : There is attenuation of signal transmission -Further away they

More information

1. 01/20/15 Ch 8: Muscular System /09/15 Ch 9: Nervous System 16

1. 01/20/15 Ch 8: Muscular System /09/15 Ch 9: Nervous System 16 Table of Contents # Date Title Page # 1. 01/20/15 Ch 8: Muscular System 1 2. 02/09/15 Ch 9: Nervous System 16 i 1 Anatomy and Physiology Sem 2 Ch 9 Nervous System.notebook 02/09/15 Ch. 9 Nervous System

More information

PHYSIOLOGICAL ADAPTATIONS FOR SURVIVAL

PHYSIOLOGICAL ADAPTATIONS FOR SURVIVAL PHYSIOLOGICAL ADAPTATIONS FOR SURVIVAL HOMEOSTASIS Homeostasis means staying similar or unchanging and refers to the constant internal environment or steady state of an organism. It also includes the processes

More information

The Neuron by Richard H. Hall, 1998

The Neuron by Richard H. Hall, 1998 The Neuron by Richard H. Hall, 1998 External Structure A neuron can be defined as a nerve cell. The neuron is often thought of as the "building block" of the nervous system, and for good reason. The neuron

More information

Ion Channels (Part 2)

Ion Channels (Part 2) Ion Channels (Part 2) Graphics are used with permission of : adam.com (http://www.adam.com/) Benjamin/Cummings Publishing Co (http://www.awl.com/bc) -57- Quiz Question #2: Ion Channels This question asks

More information

211MDS Pain theories

211MDS Pain theories 211MDS Pain theories Definition In 1986, the International Association for the Study of Pain (IASP) defined pain as a sensory and emotional experience associated with real or potential injuries, or described

More information

Nervous Systems: Diversity & Functional Organization

Nervous Systems: Diversity & Functional Organization Nervous Systems: Diversity & Functional Organization Diversity of Neural Signaling The diversity of neuron structure and function allows neurons to play many roles. 3 basic function of all neurons: Receive

More information

Name: Period: Test Review: Chapter 2

Name: Period: Test Review: Chapter 2 Name: Period: Test Review: Chapter 2 1. The function of dendrites is to A) receive incoming signals from other neurons. B) release neurotransmitters into the spatial junctions between neurons. C) coordinate

More information

Impact of Demyelination Disease on Neuronal Networks

Impact of Demyelination Disease on Neuronal Networks Impact of Demyelination Disease on Neuronal Networks Sandeep Adem Chiyuan Chang Mark Fleming sadem@eng.ucsd.edu chc418@eng.ucsd.edu m3flemin@eng.ucsd.edu 1. Abstract Demyelination has a detrimental impact

More information

Intro to the Biological Perspective

Intro to the Biological Perspective Psychology Biology 01 Notes Intro to the Biological Perspective The Biological perspective of Psychology encompasses all of the physical attributes of the human body that play a part in how we act, think

More information

BIOLOGICAL PROCESSES

BIOLOGICAL PROCESSES BIOLOGICAL PROCESSES CHAPTER 3 1 LEARNING GOALS Discuss how the nervous system communicates internally. Describe the structure and function of neurons Describe how the neuron transmits information Describe

More information

Biological Psychology. Unit Two AA Mr. Cline Marshall High School Psychology

Biological Psychology. Unit Two AA Mr. Cline Marshall High School Psychology Biological Psychology Unit Two AA Mr. Cline Marshall High School Psychology What are the biological factors that affect our behavior? In this unit we are going to take a look at biological psychology,

More information

Nerve Cell Communication

Nerve Cell Communication Nerve Cell Communication Core Concept: Nerve cells communicate using electrical and chemical signals. Class time required: Approximately 40 minutes if Part 4 is completed for homework. Teacher Provides:

More information

Muscle and Neuromuscular Junction. Peter Takizawa Department of Cell Biology

Muscle and Neuromuscular Junction. Peter Takizawa Department of Cell Biology Muscle and Neuromuscular Junction Peter Takizawa Department of Cell Biology Types and structure of muscle cells Structural basis of contraction Triggering muscle contraction Skeletal muscle consists of

More information

HASPI Medical Anatomy & Physiology 11a Lab Activity

HASPI Medical Anatomy & Physiology 11a Lab Activity HASPI Medical Anatomy & Physiology 11a Lab Activity Name(s): Period: Date: The Nervous System The nervous system is an incredibly complex network of tissues that are capable of carrying information throughout

More information

Introduction. Chapter The Perceptual Process

Introduction. Chapter The Perceptual Process Chapter 1 Introduction Most of us take for granted our ability to perceive the external world. However, this is no simple deed at all. Imagine being given a task of designing a machine that can perceive,

More information

Electrical Synapses (p. 407) Chemical Synapses (pp ) Postsynaptic Potentials and Synaptic Integration (pp )

Electrical Synapses (p. 407) Chemical Synapses (pp ) Postsynaptic Potentials and Synaptic Integration (pp ) Fundamentals of the Nervous System and Nervous Tissue Functions and Divisions of the Nervous System (p. 387) Histology of Nervous Tissue (pp. 387 395) Neuroglia (pp. 388 390) Neurons (pp. 390 395) Membrane

More information

Activity 2 The Brain and Drugs

Activity 2 The Brain and Drugs Activity 2 The Brain and Drugs Core Concept: Addictive drugs affect signaling at the synapses in the reward pathway of the brain. Class time required: Approximately 40-60 minutes Teacher Provides: For

More information

Learning Intention. Name and describe the components of a neuron

Learning Intention. Name and describe the components of a neuron c) Neural Pathways Learning Intention Name and describe the components of a neuron Cells of the Nervous System The nervous system consists of a complex network of nerve cells called neurons which receive

More information

The Nervous System. Lab Exercise 29. Objectives. Introduction

The Nervous System. Lab Exercise 29. Objectives. Introduction Lab Exercise The Nervous System Objectives -You should be able to recognize a neuron and identify its components. - Be able to identify the principal components of the brain and be able to name at least

More information