SUMITOMO Particle Therapy Technologies

Size: px
Start display at page:

Download "SUMITOMO Particle Therapy Technologies"

Transcription

1 55 th AAPM annual meeting Particle Beam Therapy Symposium SUMITOMO Particle Therapy Technologies August 3, 2013 Yukio Kumata

2 Experience accelerators for science Current Status proton and carbon Future Technologies particle therapy 2

3 Experience accelerators for science 3

4 Accelerator business since 1971 Medical accelerators since 1980 Particle therapy system since 1998 over 14 years (R&D started in 1989) 4

5 R&D Accelerators since 1970s CYCLOTRON Osaka Univ K=150MeV Tohoku Univ K=50MeV RIKEN 1986 Heavy Ions K=540MeV Japan Atomic Energy Agency 1989 K=110MeV 5

6 R&D Accelerators since 1970s Ritsumeikan Univ Electron 700MeV Superconducting SYNCHROTRON Hiroshima Univ Electron 700MeV Normal conducting Injector (Racetrack Microtron) Electron 150MeV 6

7 R&D Accelerators since 1970s Heavy Ion Linac RIKEN 1978 C MeV/n NIRS 1989 C 4+ 7MeV/n HIMAC (RFQ+Alvarez) 7

8 Medical Accelerators Proton Therapy System Boron Neutron Capture Therapy System Injector for Carbon Therapy PET cyclotron 8

9 Components for Particle Therapy Proton therapy cyclotron (IBA) Carbon therapy injector (Mitsubishi etc.) Cryocooler for superconducting cyclotron (Varian, MEVION) for MRI SC magnet, too (GE, Siemens, Philips) 9

10 Current Status Proton and carbon 10

11 Proton Reference Sites Samsung Medical Center Korea Chang Gung Memorial Hospital Taiwan National Cancer Center Japan Aizawa Hospital Japan Starting

12 Carbon Injector Reference Sites Gunma University Heavy-Ion Medical Center [GHMC] operational:2010 National Institute of Radiological Sciences [NIRS HIMAT] operational:1994 Hyogo Ion Beam Medical Center operational: 2001 Ion-beam Radiation Oncology Center In Kanagawa [i-rock] start: 2015 SAGA Heavy Ion Medical Accelerator in Tosu [SAGA HIMAT] start:

13 14-Years Operation at NCC 1998 Upgraded in Gantry #1: MLC, Pencil beam scanning Gantry #2: Robotic couch, Orthogonal DR, CT on rail G#1 G#2 13

14 Double Decker Compact Solution: Aizawa Treatment room with CT on rail Single Gantry Double Decker Small vault footprint: 53 x 66 (16m x 20m) Performance achieved!! Treatment starts in Gantry Matsumoto city Cyclotron Sectional View 14

15 Taiwan First Proton: CGMH Proton Center Linkou Chang Gung Memorial Hosp., Taiwan 4 Gantries + 1 Fixed beam port First beam delivered to the treatment room!! Treatment will start in

16 Korean Second Proton: Samsung One of the top hospitals in Korea 2 Gantries, 3 vaults for future expansion Major components have been installed!! Treatment will start in 2015 Samsung Medical Center, Korea Cyclotron Beamline Hospital Building 16

17 Small vault footprint Conventional Gantry Short-length Gantry 50% DOWN in length 33 (10 m) 30% DOWN in vault area 15 (4.6 m) 360 deg. rotation 360 deg. rotation 17

18 Broad Beam & Pencil Beam MLC Broad beam Pencil beam Broad beam with an MLC & Pencil beam scanning capabilities in a single nozzle (multi-purpose nozzle) 18

19 Performance of Multi-Purpose Nozzle Broad beam (wobbling) Scanning beam Relative dose MeV Lateral Dose Profile L1.X L1.Y L2.X L2.Y L3.X L3.Y X/Y [mm] Gantry angle 270 deg 0 deg 230 MeV 70 MeV Beam size: 3 9 mm (1 sigma) PDD MeV PDD by Ridge Filters SOBP10cm SOBP5cm SOBP3cm Dose [Gy/MU] MeV+SD 70 MeV Scanning, mono-energy beam 230 MeV Depth [mm] Depth [mm] 19

20 Image-Guided Proton Therapy Orthogonal Digital Radiograph x-ray Tube Fluoroscopy CBCT CT on rail Positron Emission Detection FPD CBCT PET CT on rail 20

21 Respiratory Gating for Moving Target Laser sensor Respiratory signal Without Gating Gating signal With Gating 21

22 Future Technologies Particle Therapy 22

23 Ultrafast Layer Change for Moving Target Scanning + Layer change Proton Tumor Time structure of 20-layers scanning for 1 liter volume Scanning Layer change Current Line Scanning 4 s 40 s Total 44 s Ultrafast Layer Change Total 4 s 6 s 2 s Layer change: 2 sec/layer 0.1 sec/layer 6 sec for 1 liter volume Breath-hold No interplay effect 23

24 Superconducting AVF cyclotron Normal Conducting AVF cyclotron Downsizing Light weight Less expensive Quick delivery No trade off! Superconducting AVF cyclotron Coil structure Beam orbit 24

25 SC AVF cyclotron + Half-turn gantry SC AVF cyclotron Energy Selection System Half-turn Gantry 25

26 Light Ion Therapy System 300 MeV/u AVF superconducting cyclotron H 2+,, Li 3+, B 5+,C deg. Proton gantry 0/45/90 deg. Light-ion nozzle 26

27 Boron Neutron Capture Therapy (BNCT) System Proton Accelerator Beam Transport Target and Irradiation Moderator Target Collimator Laser Marker (Positioning) Boron Compound Magnets Cyclotron (30MeV) Proton beam Scanning Magnet Fast Neutron Epithermal Neutron Thermal Neutron Patient Clinical Trial is under way at Kyoto University in Japan. 27

28 Thank you! 28

Heavy Ion Tumor Therapy

Heavy Ion Tumor Therapy Heavy Ion Tumor Therapy Applications Bence Mitlasoczki 25.06.2018 Heidelberg 1. Source (H 2 /CO 2 ) 2. Linac 3. Synchrotron 4. Guide 5. Treatment rooms 6. X-ray system 7. Gantry 8. Treatment room with

More information

Particle Therapy Systems by Mitsubishi Electric DG1101-KM-0034

Particle Therapy Systems by Mitsubishi Electric DG1101-KM-0034 Particle Therapy Systems by Mitsubishi Electric DG1101-KM-0034 Saudi-Japan Business Opportunities Forum February 1 2, 2012 1 2 Types of Treatment Conventional Radiation Therapy Uses photons (energetic

More information

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy -

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy - Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy - Takeshi Murakami Research Center of Charged Particle Therapy National Institute of Radiological Sciences 2012.11.21 1. Introduction to

More information

*Chien-Yi Yeh, Ji-Hong Hong * 葉健一洪志宏

*Chien-Yi Yeh, Ji-Hong Hong * 葉健一洪志宏 林口 Proton Therapy in Ti Taiwan *Chien-Yi Yeh, Ji-Hong Hong * 葉健一洪志宏 Chang Gung Memorial Hospital at Lin-Kou, Taiwan 林口長庚紀念醫院 OCPA2010 at Beijing, China Aug. 5, 2010 Outline 1. The principle of proton radiotherapy

More information

New Treatment Research Facility Project at HIMAC

New Treatment Research Facility Project at HIMAC New Treatment Research Facility Project at Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences IPAC10, Kyoto, JAPAN, 25th May, 2010 Contents 1. Introduction

More information

Proton Beam Therapy at Mayo Clinic

Proton Beam Therapy at Mayo Clinic Proton Beam Therapy at Mayo Clinic Jon J. Kruse, Ph.D. Mayo Clinic Dept. of Radiation Oncology Rochester, MN History of Proton Therapy at Mayo 2002: Decided to consider particle therapy analysis and education

More information

Review of Hadron machines for cancer therapy

Review of Hadron machines for cancer therapy Review of Hadron machines for cancer therapy M. Kanazawa NIRS cancer therapy with hadron (p, C) Clinical studies at New ideas of accelerators Compact facilities (p, C) Depth dose distribution Carbon, proton

More information

Present status and future of Proton beam therapy

Present status and future of Proton beam therapy Present status and future of Proton beam therapy Description At present, the types of proven treatment for cancer are surgery, radiotherapy, and chemotherapy. Depending on the characteristics of cancer

More information

Review of Heavy Ion Accelerators for Hadrontherapy

Review of Heavy Ion Accelerators for Hadrontherapy Review of Heavy Ion Accelerators for Hadrontherapy Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences 11 th Int l Conf. on Heavy Ion Accelerator Technology,

More information

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania Proton Treatment Keith Brown, Ph.D., CHP Associate Director, Radiation Safety University of Pennsylvania Proton Dose vs. Depth Wilson,. R.R. Radiological use of fast protons. Radiology 47:487-491, 1946.

More information

ABSTRACTS. of the NIRS International Seminar on the Heavy Charged Particle Therapy for Cancer and the XXVII PTCOG MEETING.

ABSTRACTS. of the NIRS International Seminar on the Heavy Charged Particle Therapy for Cancer and the XXVII PTCOG MEETING. P ROTON THERAPY C O- OPERATIVE GROUP Chair Michael Goitein Ph. D. Department of Radiation Oncology Massachusetts General Hospital Boston MA 02114 (617) 724-9529 (617) 724-9532 Fax Secret ary Janet Sisterson

More information

Progress of Heavy Ion Therapy

Progress of Heavy Ion Therapy Progress of Heavy Ion Therapy Fuminori Soga Division of Accelerator Physics and Engineering, National Institute of Radiological Sciences, 4-9-1 Anagawa. Inage-ku, Chiba 263-8555, Japan 1. Introduction

More information

Introduction to Ion Beam Cancer Therapy

Introduction to Ion Beam Cancer Therapy Introduction to Ion Beam Cancer Therapy Andrew M. Sessler (with some slides from David Robin) Lawrence Berkeley National Laboratory Berkeley, CA 94720 Cyclotron 10, Lanzhou September 10, 2010 Contents

More information

Nuclear Data for Radiation Therapy

Nuclear Data for Radiation Therapy Symposium on Nuclear Data 2004 Nov. 12, 2004 @ JAERI, Tokai Nuclear Data for Radiation Therapy ~from macroscopic to microscopic~ Naruhiro Matsufuji, Yuki Kase and Tatsuaki Kanai National Institute of Radiological

More information

A review of cyclotrons for Hadron Therapy. Y. Jongen Cyclotrons 2010 Lanzhou, September

A review of cyclotrons for Hadron Therapy. Y. Jongen Cyclotrons 2010 Lanzhou, September A review of cyclotrons for Hadron Therapy Y. Jongen Cyclotrons 2010 Lanzhou, September 10 2010 The early days The possible use of the Bragg peak of high energy ions in the radiotherapy of cancer was suggested

More information

III. Proton-therapytherapy. Rome SB - 5/5 1

III. Proton-therapytherapy. Rome SB - 5/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Supervisors Prof. V. Patera PhD R. Van Roermund Candidate Annalisa Patriarca

More information

Present Status and Future Developments in Proton Therapy

Present Status and Future Developments in Proton Therapy Present Status and Future Developments in Proton Therapy Alfred R. Smith Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030,

More information

Planning for the Installation of a Compact Superconducting Proton Therapy Unit in a Busy Medical Center Environment

Planning for the Installation of a Compact Superconducting Proton Therapy Unit in a Busy Medical Center Environment Planning for the Installation of a Compact Superconducting Proton Therapy Unit in a Busy Medical Center Environment Barry W. Wessels, Ph.D. Director of Medical Physics and Dosimetry Case Western Reserve

More information

T.Kanai, K. Yusa, M. Tashiro, H. Shimada, K. Torikai, Gunma University, Gunma, Japan

T.Kanai, K. Yusa, M. Tashiro, H. Shimada, K. Torikai, Gunma University, Gunma, Japan The carbon-ion cancer therapy facility at Gunma University T.Kanai, K. Yusa, M. Tashiro, H. Shimada, K. Torikai, J. Koya, T. Ishii, Y. Yoshida, S. Yamada, T. Ohno, T. Nakano Gunma University, Gunma, Japan

More information

Plans for the Precision Cancer Medicine Institute University of Oxford

Plans for the Precision Cancer Medicine Institute University of Oxford Plans for the Precision Cancer Medicine Institute University of Oxford STFC & Particle Accelerators and Beams group workshop on particle accelerators for medicine 17 th February 2015 Claire Timlin The

More information

Treatment Efficiency and Optimization of Patient Care with IBA ProteusOne

Treatment Efficiency and Optimization of Patient Care with IBA ProteusOne Treatment Efficiency and Optimization of Patient Care with IBA ProteusOne Terry Wu, Ph.D. Chief Physicist, Radiation Oncology Department Willis-Knighton Cancer Center/Proton Therapy Center Shreveport,

More information

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017 FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE Geoffrey S. Ibbott, Ph.D. June 20, 2017 1 DISCLOSURES My institution holds Strategic Partnership Research Agreements with Varian, Elekta, and Philips

More information

Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center

Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center The Heidelberg Ion Beam Therapy Center A Hospital-based Facility Dedicated to Precision and Flexibility Prof. Dr. Thomas Haberer Scientific-technical Director Heidelberg Iontherapy Center Carbon Ion Therapy

More information

Today, I will present the second of the two lectures on neutron interactions.

Today, I will present the second of the two lectures on neutron interactions. Today, I will present the second of the two lectures on neutron interactions. 1 The main goal of this lecture is to tell you a little about clinical neutron therapy, first with fast neutron beams, and

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Aspects of Industrialization of Accelerators for Particle Therapy ICABU, November 11, 2013, Daejeon

Aspects of Industrialization of Accelerators for Particle Therapy ICABU, November 11, 2013, Daejeon Aspects of Industrialization of Accelerators for Particle Therapy ICABU, November 11, 2013, Daejeon Introduction Why Particle Therapy? PT Milestones What is meant by Industrialization Examples Protons-only:

More information

SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT OF HADRONTHERAPY

SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT OF HADRONTHERAPY SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT OF HADRONTHERAPY SAVERIO BRACCINI * Albert Einstein Centre for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Sidlerstrasse

More information

H. Röcken, M. Abdel-Bary, E. Akcöltekin, P. Budz, T. Stephani, J. Wittschen

H. Röcken, M. Abdel-Bary, E. Akcöltekin, P. Budz, T. Stephani, J. Wittschen : Medical Operation of the 2 nd Machine, Production and Commissioning Status of Machines No. 3 to 7 H. Röcken, M. Abdel-Bary, E. Akcöltekin, P. Budz, T. Stephani, J. Wittschen VARIAN Medical Systems Particle

More information

Proton Therapy Market Outlook - Global Analysis

Proton Therapy Market Outlook - Global Analysis Proton Therapy Market Outlook - Global Analysis Proton Therapy Market Outlook - Global Analysis BioPortfolio has been marketing business and market research reports from selected publishers for over fifteen

More information

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC

Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC Radiation qualities in carbon-ion radiotherapy at NIRS/ Shunsuke YONAI Radiological Protection Section Research Center for Charged Particle Therapy National Institute of Radiological Sciences (NIRS) E-mail:

More information

HIMAC AND MEDICAL ACCELERATOR PROJECTS IN JAPAN

HIMAC AND MEDICAL ACCELERATOR PROJECTS IN JAPAN HIMAC AND MEDICAL ACCELERATOR PROJECTS IN JAPAN S. Yamada, T. Honma, M. Kanazawa, A. Kitagawa, S. Kouda, M. Kumada, T. Murakami, M. Muramatsu, T. Nishio, K. Noda, Y. Sato, M. Suda and E. Takada, Research

More information

V. 4. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT

V. 4. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT CYRIC Annual Report 2002 V. 4. Design and Benchmark Experiment for Cyclotron-based Neutron Source for BNCT Yonai S., ItogaT., Nakamura T., Baba M., Yashima, H. Yokobori H. *, and Tahara Y. ** Cyclotron

More information

Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba )

Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba ) Development of LINAC-Based Neutron Source for Boron Neutron Capture Therapy in University of Tsukuba ) Hiroaki KUMADA, Fujio NAITO 1), Kazuo HASEGAWA 2), Hitoshi KOBAYASHI 1), Toshikazu KURIHARA 1), Kenta

More information

X-ray Safety Discussion and Tour for Health Physicists

X-ray Safety Discussion and Tour for Health Physicists X-ray Safety Discussion and Tour for Health Physicists April 1, 2016 Health Physics Society Spring Meeting Jerry Bai Environmental Administrator, Field Operations Bureau of Radiation Control Florida Department

More information

Jefferies Healthcare Conference

Jefferies Healthcare Conference Jefferies Healthcare Conference Jean-Marc BOTHY - CSO June 8, 2017 2017 IBA SA Disclaimer This presentation may contain forward-looking statements concerning industry outlook, including growth drivers;

More information

Motion gating and tracking techniques: overview and recent developments

Motion gating and tracking techniques: overview and recent developments Motion gating and tracking techniques: overview and recent developments Gig S Mageras, PhD, FAAPM Department of Medical Physics Memorial Sloan Kettering Cancer Center, New York MSK/gsm 15-Jun-2018 1 Disclosure

More information

Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014)

Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014) The Challenge of Innovative Cancer Treatments Enabled by Vero4DRT -Development of High-precision Dose Delivery Features for Reducing Radiation Exposure of Healthy Tissue- 76 YASUNOBU SUZUKI *1 KUNIO TAKAHASHI

More information

REVIEW ON CYCLOTRONS FOR CANCER THERAPY

REVIEW ON CYCLOTRONS FOR CANCER THERAPY FRM1CIO01 Proceedings of CYCLOTRONS 2010, Lanzhou, China REVIEW ON CYCLOTRONS FOR CANCER THERAPY Yves Jongen#, IBA, Louvain-la-Neuve, Belgium Abstract The science and technology of proton and carbon therapy

More information

PROGRESS IN HADRONTHERAPY

PROGRESS IN HADRONTHERAPY PROGRESS IN HADRONTHERAPY Saverio Braccini TERA Foundation for Oncological Hadrontherapy IPRD06 - Siena - 01.10.06 - SB 1 Outline Introduction Radiation therapy with X rays and hadrontherapy Hadrontherapy

More information

Practical Challenges and Opportunities for Proton Beam Therapy. M. F. Moyers Loma Linda University Medical Center

Practical Challenges and Opportunities for Proton Beam Therapy. M. F. Moyers Loma Linda University Medical Center Practical Challenges and Opportunities for Proton Beam Therapy M. F. Moyers Loma Linda University Medical Center Outline I. Introduction II. Registration and Immobilization III. Beam Shaping IV. Localization

More information

Proton and heavy ion radiotherapy: Effect of LET

Proton and heavy ion radiotherapy: Effect of LET Proton and heavy ion radiotherapy: Effect of LET As a low LET particle traverses a DNA molecule, ionizations are far apart and double strand breaks are rare With high LET particles, ionizations are closer

More information

Status of Hadrontherapy facilities worldwide

Status of Hadrontherapy facilities worldwide Status of Hadrontherapy facilities worldwide Vienna 15.03.2011 The Gantry 1 of PSI Eros Pedroni Center for Proton Radiation Therapy Paul Scherrer Institute SWITZERLAND Author s competence: Gantry with

More information

The Heidelberg Ion Therapy Center. Thomas Haberer Heidelberg Ion Therapy Center Hadron Therapy Workshop, Erice 2009

The Heidelberg Ion Therapy Center. Thomas Haberer Heidelberg Ion Therapy Center Hadron Therapy Workshop, Erice 2009 The Heidelberg Ion Therapy Center Thomas Haberer Heidelberg Ion Therapy Center Hadron Therapy Workshop, Erice 2009 Goal The key element to improve the clinical outcome is local l control! entrance channel:

More information

SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES

SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES MELISSA C. MARTIN, M.S., FACR, FAAPM PRESIDENT AAPM - 2017 PRESIDENT - THERAPY PHYSICS INC., GARDENA, CA MELISSA@THERAPYPHYSICS.COM AAPM Spring

More information

Learning Objectives. Clinically operating proton therapy facilities. Overview of Quality Assurance in Proton Therapy. Omar Zeidan

Learning Objectives. Clinically operating proton therapy facilities. Overview of Quality Assurance in Proton Therapy. Omar Zeidan Overview of Quality Assurance in Proton Therapy Omar Zeidan AAPM 2012 Charlotte, NC July 30 st, 2012 Learning Objectives Understand proton beam dosimetry characteristics and compare them to photon beams

More information

I. Equipments for external beam radiotherapy

I. Equipments for external beam radiotherapy I. Equipments for external beam radiotherapy 5 linear accelerators (LINACs): Varian TrueBeam 6, 10 & 18 MV photons, 6-18 MeV electrons, image-guided (IGRT) and intensity modulated radiotherapy (IMRT),

More information

Intensity-Modulated and Image- Guided Radiation Treatment. Outline. Conformal Radiation Treatment

Intensity-Modulated and Image- Guided Radiation Treatment. Outline. Conformal Radiation Treatment Intensity-Modulated and Image- Guided Radiation Treatment J. Daniel Bourland, PhD Professor Departments of Radiation Oncology, Physics, and Biomedical Engineering Wake Forest University School of Medicine

More information

Medical Use of Radioisotopes

Medical Use of Radioisotopes Medical Use of Radioisotopes Therapy Radioisotopes prove to be useful in the application of brachytherapy, the procedure for using temporary irradiation close to the area of disease (i.e. cancer) 10% Medical

More information

Image Guided Proton Therapy and Treatment Adaptation

Image Guided Proton Therapy and Treatment Adaptation Image Guided Proton Therapy and Treatment Adaptation www.hollandptc.nl d.r.schaart@tudelft.nl Cancer in The Netherlands About 1 in 3 people get cancer in some stage of their life 86.800 new cancer patients

More information

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) Course Description: This course is an introduction to physics in medicine and is intended to introduce

More information

Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute

Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute Progress in Reactor and Accelerator Based BNCT at Kyoto University Research Reactor Institute Yoshinori Sakurai 1 Kyoto University Research Reactor Institute Asashiro-nishi 2-1010, Kumatori-cho, Sennan-gun,

More information

Design of a BSA for Producing Epithermal Neutron for BNCT

Design of a BSA for Producing Epithermal Neutron for BNCT Siam Physics Congress 2015 Design of a BSA for Producing Epithermal Neutron for BNCT M Asnal *, T Liamsuwan 2 and T Onjun 1 1 Sirindhorn International Institute of Technology, Thammasat University 2 Nuclear

More information

Road Map for the development of hadron therapy and associated nuclear medicine methods at JINR:

Road Map for the development of hadron therapy and associated nuclear medicine methods at JINR: НТС ОЭЗ, 07 октября 2011 Road Map for the development of hadron therapy and associated nuclear medicine methods at JINR: Development of 3D conformal Proton therapy Design of various devices for proton

More information

Applications of Particle Accelerators

Applications of Particle Accelerators Applications of Particle Accelerators Prof. Rob Edgecock STFC Rutherford Appleton Laboratory EMMA Accelerator at Daresbury Laboratory Applications >30000 accelerators in use world-wide: 44% for radiotherapy

More information

Ion Beam Therapy should we prioritise research on helium beams?

Ion Beam Therapy should we prioritise research on helium beams? Ion Beam Therapy should we prioritise research on helium beams? Stuart Green Medical Physics University Hospital Birmingham NHS Trust Follow-up from the EUCARD2 workshop, ION Beam Therapy: Clinical, Scientific

More information

Nano-X A Smarter and Smaller Cancer Radiotherapy System

Nano-X A Smarter and Smaller Cancer Radiotherapy System Nano-X A Smarter and Smaller Cancer Radiotherapy System Paul Keall, Ilana Feain, Chun-Chien Shieh, Brendan Whelan, Peter Bennett, Paul Liu, Jeff Barber, Michael Barton, Simon Downes, Michael Jackson, +++

More information

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center Thomas Haberer, Scientific Technical Director, Heidelberg Ion Therapy Center Situation / Indications 2/3 patients suffer

More information

Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments

Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments Alana Hudson *1 1 Tom Baker Cancer Centre, Department of Medical Physics, 1331

More information

Image Guided in Radiation Therapy (IGRT) Chumpot Kakanaporn Med Phys Radiation Oncology Siriraj Hospital

Image Guided in Radiation Therapy (IGRT) Chumpot Kakanaporn Med Phys Radiation Oncology Siriraj Hospital Image Guided in Radiation Therapy (IGRT) Chumpot Kakanaporn Med Phys Radiation Oncology Siriraj Hospital EBT Process Diagnosis Simulation Tx Planning Tx Verification Tx Delivery X-ray CT MRI NM Patho Process

More information

Integration of PT in an existing radiation oncology center

Integration of PT in an existing radiation oncology center Integration of PT in an existing radiation oncology center Tom Depuydt, PhD Head of medical Physics, Radiation Oncology UZ Leuven-KU Leuven and ParTICLe proton therapy project tom.depuydt@uzleuven.be 1

More information

Nuclear Physics in Proton Radiotherapy

Nuclear Physics in Proton Radiotherapy Nuclear Physics in Proton Radiotherapy Cynthia Keppel, PhD Thomas Jefferson National Accelerator Facility (Hampton University Proton Therapy institute) International Nuclear Physics Conference Adelaide,

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY S.V. Akulinichev, A. V. Andreev, V.M. Skorkin Institute for Nuclear Research of the RAS, Russia THE PROJECT OF NEUTRON SOURCES FOR THE NEUTRON

More information

Djoko S. Pudjorahardjo, Widarto, Isman Mulyadi T

Djoko S. Pudjorahardjo, Widarto, Isman Mulyadi T Indonesian Journal of Physics and NuclearApplications Volume 3, Number 1, February 2018, p. 15-20 e-issn 2550-0570, FSM UKSWPublication 2549-046X, FSM UKSWPublication Detail Engineering Design of Compact

More information

Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy

Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy Journal of Physics: Conference Series OPEN ACCESS Preliminary study of MAGAT polymer gel dosimetry for boron-neutron capture therapy To cite this article: Shin-ichiro Hayashi et al 2015 J. Phys.: Conf.

More information

Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization - )

Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization - ) Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization - ) Isao MURATA and Tsubasa OBATA Division of Electrical, Electronic and Information Engineering,

More information

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Brachytherapy Radioisotopes in contact with the tumor Overview

More information

EORTC Member Facility Questionnaire

EORTC Member Facility Questionnaire Page 1 of 9 EORTC Member Facility Questionnaire I. Administrative Data Name of person submitting this questionnaire Email address Function Phone Institution Address City Post code Country EORTC No Enter

More information

Option D: Medicinal Chemistry

Option D: Medicinal Chemistry Option D: Medicinal Chemistry Basics - unstable radioactive nuclei emit radiation in the form of smaller particles alpha, beta, positron, proton, neutron, & gamma are all used in nuclear medicine unstable

More information

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics Neutron Interactions Part 2 George Starkschall, Ph.D. Department of Radiation Physics Neutron shielding Fast neutrons Slow down rapidly by scatter in hydrogenous materials, e.g., polyethylene, paraffin,

More information

Activities at the Heidelberg Ion Therapy Center (HIT)

Activities at the Heidelberg Ion Therapy Center (HIT) Activities at the Heidelberg Ion Therapy Center (HIT) The people A. Mairani (now INFN), F. Sommerer (Uniklinikum Heidelberg), I. Rinaldi (DKFZ Heidelberg), K. Parodi (HIT and University of Heidelberg)

More information

Cancer Therapy: A new horizon

Cancer Therapy: A new horizon I S S U E 1 M a y 2 0 1 6 NEWSLETTER OF JAPANESE SOCIETY OF NEUTRON CAPTURE THERAPHY NCT News The Solution for Cancer this issue Cancer Therapy: A new horizon P.1 Topic: The accelerator-driven BNCT facility

More information

Quality assurance in external radiotherapy

Quality assurance in external radiotherapy Quality assurance in external radiotherapy dr. Marius Laurikaitis medical physicist Oncological Hospital of Kaunas Medical University Hospital Kaunas, 2010-10-14 Acceptance and Commissioning Acceptance

More information

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film E.B.Rajmohan¹, Pratik Kumar¹, Bhudatt Paliwal,² David Westerly², N.Gopishankar³, R.K.Bisht³, D.Tewatia²,

More information

Overview of Clinical and Research Activities at Georgetown University Hospital

Overview of Clinical and Research Activities at Georgetown University Hospital Overview of Clinical and Research Activities at Georgetown University Hospital Dalong Pang, Ph.D. Department of Radiation Medicine Georgetown University Hospital Clinical Operation Two Varian linear accelerators

More information

NUCLEAR PHYSICS FOR MEDICINE - HADRON THERAPY. Pawel Olko Institute of Nuclear Physics Krakow Poland

NUCLEAR PHYSICS FOR MEDICINE - HADRON THERAPY. Pawel Olko Institute of Nuclear Physics Krakow Poland NUCLEAR PHYSICS FOR MEDICINE - HADRON THERAPY Pawel Olko Institute of Nuclear Physics Krakow Poland The NuPECC report: Nuclear Physics in Medicine http://www.nupecc.org/pub/npmed2014.pdf Outline 1. Why

More information

ACCELERATORS FOR HADRONTHERAPY

ACCELERATORS FOR HADRONTHERAPY ACCELERATORS FOR HADRONTHERAPY Alberto Degiovanni CERN-BE IVICFA s Fridays: Medical Physics Valencia, 31.10.2014 Introduction: the icon of hadrontherapy Position of the Bragg peak depends on beam energy

More information

Modern Hadron Therapy Gantry Developments. 16th Jan 2014

Modern Hadron Therapy Gantry Developments. 16th Jan 2014 Modern Hadron Therapy Gantry Developments 16th Jan 2014 Protect, Enhance, and Save Lives - 2 - IBA ProteusONE THE TREND: MORE COMPACT, CHEAPER Access to PT is key ProteusPLUS ProteusONE 18000 ft² / 1672

More information

Basic Press Information

Basic Press Information Basic Press Information Contact MedAustron EBG MedAustron GmbH Marie Curie-Strasse 5 A-2700 Wiener Neustadt Austria T +43 2622 26 100-0 e-mail: office@medaustron.at Internet: www.medaustron.at Press contact:

More information

Implementation of advanced RT Techniques

Implementation of advanced RT Techniques Implementation of advanced RT Techniques Tibor Major, PhD National Institute of Oncology Budapest, Hungary 2. Kongres radiološke tehnologije, Vukovar, 23-25. September 2016. Current RT equipments at NIO,

More information

8/1/2016. Motion Management for Proton Lung SBRT. Outline. Protons and motion. Protons and Motion. Proton lung SBRT Future directions

8/1/2016. Motion Management for Proton Lung SBRT. Outline. Protons and motion. Protons and Motion. Proton lung SBRT Future directions Motion Management for Proton Lung SBRT AAPM 2016 Outline Protons and Motion Dosimetric effects Remedies and mitigation techniques Proton lung SBRT Future directions Protons and motion Dosimetric perturbation

More information

Future dosimetry issues: protons, hadrons & MR linacs

Future dosimetry issues: protons, hadrons & MR linacs Future dosimetry issues: protons, hadrons & MR linacs Hugo Bouchard, PhD, MCCPM Senior Research Scientist Radiation dosimetry group National Physical Laboratory May 2014 Overview 1. Proton and hadron therapy

More information

Particle Therapy in the 21st Century: Relevance to Developing Countries

Particle Therapy in the 21st Century: Relevance to Developing Countries Applied Radiation Biology and Radiotherapy Section International Atomic Energy Agency Particle Therapy in the 21st Century: Relevance to Developing Countries Vienna International Centre Vienna, Austria

More information

Analysis of Treatment and Delay Times by Disease Site and Delivery Technique at Samsung Medical Center - Proton Therapy Center

Analysis of Treatment and Delay Times by Disease Site and Delivery Technique at Samsung Medical Center - Proton Therapy Center Original Article PROGRESS in MEDICAL PHYSICS 27(4), Dec. 2016 https://doi.org/10.14316/pmp.2016.27.4.258 pissn 2508-4445, eissn 2508-4453 Analysis of Treatment and Delay Times by Disease Site and Delivery

More information

PAMELA Particle Accelerator for MEdicaL Applications

PAMELA Particle Accelerator for MEdicaL Applications PAMELA Particle Accelerator for MEdicaL Applications Suzie Sheehy, DPhil candidate John Adams Institute for Accelerator Science Particle Physics, University of Oxford 1 Clinical Requirements Charged Particle

More information

IN VIVO IMAGING Proton Beam Range Verification With PET/CT

IN VIVO IMAGING Proton Beam Range Verification With PET/CT IN VIVO IMAGING Proton Beam Range Verification With PET/CT Antje-Christin Knopf 1/3 K Parodi 2, H Paganetti 1, T Bortfeld 1 Siemens Medical Solutions Supports This Project 1 Department of Radiation Oncology,

More information

Future Proton Irradiation Facility at OncoRay

Future Proton Irradiation Facility at OncoRay Future Proton Irradiation Facility at OncoRay Seminar am Institut für Kern- und Teilchenphysik Technische Universität Dresden 14. Juli 2011 Wolfgang Enghardt OncoRay National Center for Radiation Research

More information

Look! Borg get upgrade already!

Look! Borg get upgrade already! Cancer, Partikel Terapi and PT accelerators Look! Borg get upgrade already! 1 Cancer, Partikel Terapi and PT accelerators Basic requirements to PT accelerator Accelerators for PT Siemens PT maskinen Alternativer:

More information

Therapeutic Medical Physics. Stephen J. Amadon Jr., Ph.D., DABR

Therapeutic Medical Physics. Stephen J. Amadon Jr., Ph.D., DABR Therapeutic Medical Physics Stephen J. Amadon Jr., Ph.D., DABR Outline 1. Why physicists are needed in medicine 2. Branches of medical physics 3. Physics in Radiation Oncology 4. Treatment types and Treatment

More information

Accelerator Seminar, April 2013

Accelerator Seminar, April 2013 , H. Röcken VARIAN Medical Systems Particle Therapy GmbH Friedrich-Ebert-Str. 1 D-51429 BERGISCH GLADBACH GERMANY OUTLINE Why having a Superconducting Cyclotron? Some Basics VARIAN PT Cyclotrons: ProBeam

More information

A Patient s Guide to SRS

A Patient s Guide to SRS A Patient s Guide to SRS Stereotactic Radiosurgery 230 Nebraska St. Sioux City, IA 51101 NOTES 230 Nebraska St. Sioux City, IA 51101 Contents page Introduction 1 SRS and how it works 2 The technology involved

More information

Summary of Synchrotron for Hadron Therapy

Summary of Synchrotron for Hadron Therapy Summary of Synchrotron for Hadron Therapy April 30, 09 Koji Noda 1. G.H. Rees ; A New Tracking Gantry-Synchrotron Idea 2. K. Noda ; Overview of NIRS Accelerator Activity 3. T. Haberer ; The Heidelberg

More information

Spatially Fractionated Radiation Therapy: GRID Sponsored by.decimal Friday, August 22, Pamela Myers, Ph.D.

Spatially Fractionated Radiation Therapy: GRID Sponsored by.decimal Friday, August 22, Pamela Myers, Ph.D. Spatially Fractionated Radiation Therapy: GRID Sponsored by.decimal Friday, August 22, 2014 Pamela Myers, Ph.D. Introduction o o o o o Outline GRID compensator Purpose of SFRT/GRID therapy Fractionation

More information

The Heidelberg Ion Therapy (HIT) Accelerator Coming Into Operation. Presented at EPAC 2008, Genova D. Ondreka, GSI

The Heidelberg Ion Therapy (HIT) Accelerator Coming Into Operation. Presented at EPAC 2008, Genova D. Ondreka, GSI The Heidelberg Ion Therapy (HIT) Accelerator Coming Into Operation Presented at EPAC 2008, Genova D. Ondreka, GSI Introduction Heidelberg Ion Therapy Centre: Europe's first dedicated particle therapy facility

More information

An Introduction to Cancer Therapy With Hadron Radiation

An Introduction to Cancer Therapy With Hadron Radiation An Introduction to Cancer Therapy With Hadron Radiation Andrew M. Sessler Lawrence Berkeley National Laboratory Berkeley, CA 94720 April, 2008 Contents 1. History 2. X-Ray Machines 3. Why Hadrons? Which

More information

Research on Cancer Therapy with Carbon Beams Development of Human Friendly Cancer Therapy with Carbon Ion Beams

Research on Cancer Therapy with Carbon Beams Development of Human Friendly Cancer Therapy with Carbon Ion Beams Research on Cancer Therapy with Carbon Beams Development of Human Friendly Cancer Therapy with Carbon Ion Beams Tadashi Kamada, M.D., Ph.D. Director of Research Center for Charged Particle Therapy E-mail:

More information

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan)

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan) PTCOG 46 Educational Workshop Session IV CLINICAL Head & Neck J. Mizoe (NIRS, Japan) Photon X-Ray γ-ray Fast Neutron Non-Charged Radiation Electron Proton Helium Light Ion Heavy Particle Carbon Neon Argon

More information

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy IL NUOVO CIMENTO 38 C (2015) 179 DOI 10.1393/ncc/i2015-15179-9 Colloquia: UCANS-V Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy I. Porras( 1 ),J.Praena(

More information

Tumor Therapy with Heavy Ions at GSI Darmstadt

Tumor Therapy with Heavy Ions at GSI Darmstadt Tumor Therapy with Heavy Ions at GSI Darmstadt D. Schardt 1) for the Heavy Ion Therapy Collaboration 2) 1) Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany 2) GSI Darmstadt / Radiologische

More information