glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal

Size: px
Start display at page:

Download "glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal"

Transcription

1 glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal Development in the Visual System of Drosophila Carole Chotard, Wendy Leung and Iris Salecker Supplemental Data Supplemental Results Epithelial and Marginal Glial Cells Originate from Multipotent Progenitor Pools To determine the relationship between gcm gene expression and the developmental sequence leading to glial fate commitment, we conducted lineage analysis experiments of epithelial and marginal glial cells using MARCM. The MARCM stock w hs-flp tubp-gal80 FRT19A; UASnlacZ UAS-cd8GFP; tubp-gal4/tm6b (kindly provided by A. Gould; Bello et al., 2003) was crossed to a wild type FRT19A line. Mitotic recombination was induced by heat shocking larvae in a 37 C water bath for 70 minutes at 48 hours after egg laying. Animals were analyzed during the late third instar larval stage. To score the composition of clones, glial cells and neurons were visualized using antibodies against the differentiation markers Repo and Elav, respectively. From 98 clones (corresponding to 92 optic lobes), images were taken at different focal planes throughout the optic lobe and some of these were processed to obtain a 3D view. The majority of clones (n=95) within GPC areas contained glial cells and neurons. Epithelial and marginal glial cells emanated from the distal half of clones within GPC areas, whereas the proximal half included a subpopulation of Elav-positive medulla neurons (Figures S1A-S1D). These proximal medulla neurons extended prominent axon bundles into ventral or dorsal parts of the medulla neuropil, which are not innervated by R-cell axons (Figures S1B and S1D; Fischbach and Dittrich, 1989). Epithelial and marginal glial cells are thus derived from multipotent progenitor pools. In three samples, we obtained small clones that consisted exclusively of glial cells (Figures S1G and S1H). Clones could be traced to the areas immediately adjacent to the margins of GPC areas, where epithelial and marginal glial cells accumulate before entering the R-cell projection field. Staining with an antibody specific for phospho-histone H3 labeled individual cells in mitosis adjacent to Repo-positive glial cells in 1

2 this area (Figure S1F). This indicates that common progenitors give rise to clusters of committed, mitotically active glial precursor cells at the lamina margins. Intriguingly, some differentiated epithelial and marginal glial cells are mitotically active after completing their migration into the R-cell projection field (Figure S1E). High magnification images further revealed that individually labeled glial cells at the lamina border extend leading processes towards neighboring glial cells to form a migratory chain in direction of the R-cell projection field (Figures S1G and S1H). In summary, our clonal analysis revealed the following developmental sequence underlying the generation of epithelial and marginal cells in the optic lobe: GPC areas include multipotent progenitors because epithelial and marginal glial cells share the same lineage with a subtype of medulla neurons that specifically innervate the proximal medulla neuropil. These common progenitors give rise to committed glial precursor cells at the border of the R-cell projection field, which in turn produce differentiated epithelial and marginal glial cells. Gcm and Gcm2 expression begins within these committed glial precursor cells at the lamina margins. Supplemental References Bello, B.C., Hirth, F., and Gould, AP. (2003). A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37, Fischbach, K.F., and Dittrich, A.P.M. (1989). The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258,

3 Supplemental Figures Figure S1. Figure S1. Epithelial and Marginal Glial Cells Are Derived From Multipotent Progenitor Pools. (A) The schematic diagram summarizes the lineage of epithelial (eg) and marginal (mg) glial cells. These glial cells originate from the distal part of dorsal and ventral glial precursor cell (GPC) areas, whereas proximal medulla neurons (prox mn) and some lateral medulla neurons (lat mn) innervating the medulla neuropil (asterisk) are derived from the lower part of GPC areas. The black arrow indicates the location of committed glial precursors, which accumulate at the border of the R-cell projection field. R1-R6 axons terminate in the lamina, whereas R7 and R8 3

4 axons project into the medulla. OPC, outer proliferation center; LPC, lamina precursor cells; ln, lamina neurons; mn, medulla neurons; meg, medulla glia; mng, medulla neuropil glia. (B-D, G and H) Lineage analysis was performed using MARCM. Wild type clones express GFP (green). Glial cells were visualized using anti-repo (blue C-H) and R-cell axons using mab24b10 (red D, G and H) or anti-hrp (green E and F). The 3D reconstruction (B) and staining of another clone (C), which displays proximal Elav-positive cells (red, arrowhead) and distal Elav-negative cells (arrow), underscore the multipotent nature of GPC areas. (D) Successive focal planes of the clone shown in B illustrate that a continuous bridge of cells emanating from the distal half of the clone within the GPC area is directly connected to the rows of epithelial and marginal glial cells. Glial cells accumulate at the lamina margin before entering the R-cell projection field (arrows). The lower half of the clone gives rise to proximal medulla neurons innervating the medulla neuropil (arrowheads), as well as scattered lateral medulla neurons. (E and insets) Some Repo-positive differentiated glial cells (blue) retain their ability to divide and are positively labeled with phospho-histone H3 (red) after migrating to their positions along the lamina plexus (arrowheads). (F and insets) Repo-positive glial cells accumulate and intermingle with mitotically active precursor cells at the border of the GPC area (arrowheads). (G and H) Glial cells extend leading processes as they migrate towards the R-cell projection field (PF). All samples were orientated in a frontal view (see Figure S3), as this enabled us to unambiguously identify different glial cell types based on their position relative to R-cell axons. Figure S2. Figure S2. gcm and gcm2 are not Required for Asense expression in the Outer Proliferation Center. Clones in the target area were generated using the ELF system and visualized by the absence of GFP expression (green). In wild type (A), neuroblasts in the Outer Proliferation Center (OPC) and lamina precursor cells (LPC) express Asense (red). In Df(2L)200 mosaic animals (B), expression of this marker is not affected. 4

5 Figure S3. Figure S3. Schematic Drawings Illustrating Frontal, Horizontal and Lateral Orientation of Optic Lobes. GPC, glial precursor cell areas; LF, lamina furrow; LPC, lamina precursor cells; OPC, outer proliferation center. 5

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Expression of escargot (esg) and genetic approach for achieving IPC-specific knockdown. (a) esg MH766 -Gal4 UAS-cd8GFP (green) and esg-lacz B7-2-22 (red) show similar expression

More information

Article. The Color-Vision Circuit in the Medulla of Drosophila. Javier Morante 1 and Claude Desplan 1, * 1

Article. The Color-Vision Circuit in the Medulla of Drosophila. Javier Morante 1 and Claude Desplan 1, * 1 Current Biology 18, 1 13, April 22, 2008 ª2008 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2008.02.075 The Color-Vision Circuit in the Medulla of Drosophila Article Javier Morante 1 and Claude Desplan

More information

Viktorin, G. and Riebli, N. and Popkova, A. and Giangrande, A. and Reichert, H.

Viktorin, G. and Riebli, N. and Popkova, A. and Giangrande, A. and Reichert, H. Institutional Repository of the University of Basel University Library Schoenbeinstrasse 18-20 CH-4056 Basel, Switzerland http://edoc.unibas.ch/ Year: 2011 Multipotent neural stem cells generate glial

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature07173 SUPPLEMENTARY INFORMATION Supplementary Figure Legends: Supplementary Figure 1: Model of SSC and CPC divisions a, Somatic stem cells (SSC) reside adjacent to the hub (red), self-renew

More information

Supplemental Data SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Supplemental Data SUPPLEMENTAL EXPERIMENTAL PROCEDURES Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cédric Maurange, Louise Cheng and Alex P. Gould Supplemental Data SUPPLEMENTAL EXPERIMENTAL PROCEDURES

More information

Developmental Biology

Developmental Biology Developmental iology 356 (2011) 553 565 ontents lists available at ScienceDirect Developmental iology journal homepage: www.elsevier.com/developmentalbiology Multipotent neural stem cells generate glial

More information

Cell Birth and Death. Chapter Three

Cell Birth and Death. Chapter Three Cell Birth and Death Chapter Three Neurogenesis All neurons and glial cells begin in the neural tube Differentiated into neurons rather than ectoderm based on factors we have already discussed If these

More information

The Tumor Suppressors Brat and Numb Regulate Transit-Amplifying Neuroblast Lineages in Drosophila

The Tumor Suppressors Brat and Numb Regulate Transit-Amplifying Neuroblast Lineages in Drosophila Article The Tumor Suppressors Brat and Numb Regulate Transit-Amplifying Neuroblast Lineages in Drosophila Sarah K. Bowman, 1 Vivien Rolland, 1 Joerg Betschinger, 1,3 Kaolin A. Kinsey, 2 Gregory Emery,

More information

Concentric zones, cell migration and neuronal circuits in the Drosophila visual center

Concentric zones, cell migration and neuronal circuits in the Drosophila visual center 983 Development 138, 983-993 (2011) doi:10.1242/dev.058370 2011. Published by The Company of Biologists Ltd Concentric zones, cell migration and neuronal circuits in the Drosophila visual center Eri Hasegawa

More information

Cell migration in Drosophila optic lobe neurons is controlled by eyeless/pax6

Cell migration in Drosophila optic lobe neurons is controlled by eyeless/pax6 687 Development 138, 687-693 (2011) doi:10.1242/dev.056069 2011. Published by The Company of Biologists Ltd Cell migration in Drosophila optic lobe neurons is controlled by eyeless/pax6 Javier Morante

More information

G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila

G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila nature methods G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila Cory J Evans, John M Olson, Kathy T Ngo, Eunha Kim, Noemi E Lee, Edward Kuoy, Alexander N Patananan, Daniel Sitz, PhuongThao

More information

A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system

A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system Europe PMC Funders Group Author Manuscript Published in final edited form as: Nat Neurosci. 2015 January ; 18(1): 46 55. doi:10.1038/nn.3896. A region-specific neurogenesis mode requires migratory progenitors

More information

Postembryonic Development of Amplifying Neuroblast Lineages in the Drosophila Brain: Proliferation, Differentiation and Projection Patterns.

Postembryonic Development of Amplifying Neuroblast Lineages in the Drosophila Brain: Proliferation, Differentiation and Projection Patterns. Postembryonic Development of Amplifying Neuroblast Lineages in the Drosophila Brain: Proliferation, Differentiation and Projection Patterns. Inauguraldissertation zur Erlangung der Würde eines Doktors

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2419 Figure S1 NiGFP localization in Dl mutant dividing SOPs. a-c) time-lapse analysis of NiGFP (green) in Dl mutant SOPs (H2B-RFP, red; clones were identified by the loss of nlsgfp) showing

More information

Supplementary Figure 1. Chimeric analysis of inner ears. (A-H) Chimeric inner ears with fluorescent ES cells and (I,J) Rainbow inner ears.

Supplementary Figure 1. Chimeric analysis of inner ears. (A-H) Chimeric inner ears with fluorescent ES cells and (I,J) Rainbow inner ears. Supplementary Figure 1. himeric analysis of inner ears. (A-H) himeric inner ears with fluorescent ES cells and (I,J) Rainbow inner ears. (A,B) omposite images showing three colors in different vestibular

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones.

Nature Neuroscience: doi: /nn Supplementary Figure 1. MADM labeling of thalamic clones. Supplementary Figure 1 MADM labeling of thalamic clones. (a) Confocal images of an E12 Nestin-CreERT2;Ai9-tdTomato brain treated with TM at E10 and stained for BLBP (green), a radial glial progenitor-specific

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Supplementary Figure 1 Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites. Staining with fluorescence antibodies to detect GFP (Green), β-galactosidase (magenta/white). (a, b) Class

More information

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed in the testes. The testes were immunostained with GFP

More information

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is Supplementary Figure 1. (a) Nos is detected in glial cells in both control and GFAP R79H transgenic flies (arrows), but not in deletion mutant Nos Δ15 animals. Repo is a glial cell marker. DAPI labels

More information

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were electroporated with β- Catenin S33Y in PiggyBac expression

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION b 350 300 250 200 150 100 50 0 E0 E10 E50 E0 E10 E50 E0 E10 E50 E0 E10 E50 Number of organoids per well 350 300 250 200 150 100 50 0 R0 R50 R100 R500 1st 2nd 3rd Noggin 100 ng/ml Noggin 10 ng/ml Noggin

More information

Supplemental Information. Proprioceptive Opsin Functions. in Drosophila Larval Locomotion

Supplemental Information. Proprioceptive Opsin Functions. in Drosophila Larval Locomotion Neuron, Volume 98 Supplemental Information Proprioceptive Opsin Functions in Drosophila Larval Locomotion Damiano Zanini, Diego Giraldo, Ben Warren, Radoslaw Katana, Marta Andrés, Suneel Reddy, Stephanie

More information

Temporal Patterning of Neuroblasts Controls Notch-Mediated Cell Survival through Regulation of Hid or Reaper

Temporal Patterning of Neuroblasts Controls Notch-Mediated Cell Survival through Regulation of Hid or Reaper Temporal Patterning of Neuroblasts Controls Notch-Mediated Cell Survival through Regulation of Hid or Reaper Claire Bertet, 1 Xin Li, 1 Ted Erclik, 1 Matthieu Cavey, 1 Brent Wells, 1 and Claude Desplan

More information

A quantitative three-dimensional model of the Drosophila optic lobes Karlheinz Rein*, Malte Zöckler and Martin Heisenberg*

A quantitative three-dimensional model of the Drosophila optic lobes Karlheinz Rein*, Malte Zöckler and Martin Heisenberg* Brief Communication 93 A quantitative three-dimensional model of the Drosophila optic lobes Karlheinz Rein*, Malte Zöckler and Martin Heisenberg* A big step in the neurobiology of Drosophila would be to

More information

Supplementary Information

Supplementary Information Supplementary Information Figure S1: Follicular melanocytes in the wound peripheral area migrate to the epidermis in response to wounding stimuli. Dorsal skin of Trp2-LacZ mice stained with X-gal and analyzed

More information

doi: /nature09554

doi: /nature09554 SUPPLEMENTARY INFORMATION doi:10.1038/nature09554 Supplementary Figure 1: Optical Tracing with New Photoactivatable GFP Variants Reveals Enhanced Labeling of Neuronal Processes We qualitatively compare

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10188 Supplementary Figure 1. Embryonic epicardial genes are down-regulated from midgestation stages and barely detectable post-natally. Real time qrt-pcr revealed a significant down-regulation

More information

Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system

Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system Development 121, 1173-1182 (1995) Printed in Great Britain The Company of Biologists Limited 1995 1173 Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system

More information

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23 Neurodevelopment II Structure Formation Reading: BCP Chapter 23 Phases of Development Ovum + Sperm = Zygote Cell division (multiplication) Neurogenesis Induction of the neural plate Neural proliferation

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11306 Supplementary Figures Supplementary Figure 1. Basic characterization of GFP+ RGLs in the dentate gyrus of adult nestin-gfp mice. a, Sample confocal images

More information

Insect nervous system. Zoo 514 Dr. Reem Alajmi

Insect nervous system. Zoo 514 Dr. Reem Alajmi Insect nervous system Zoo 514 Dr. Reem Alajmi Nervous System The nervous system is the primary mechanism of conduction and control in the body. In insects it serves as an elaborate (complex) connecting

More information

Progress Report for NJCSCR (Yu-Wen Chang)

Progress Report for NJCSCR (Yu-Wen Chang) Progress Report for NJCSCR (Yu-Wen Chang) Overall Plan Summary: Traumatic injury to the spinal cord initiates a cascade of degenerative processes, known as secondary injury, which include various inflammatory

More information

Dissecting and Staining Drosophila Optic Lobes PAGE PROOFS

Dissecting and Staining Drosophila Optic Lobes PAGE PROOFS Ch10_DNB:Drosophila Neurobiology Manual 2/19/10 9:11 AM Page 1 10 Dissecting and Staining Drosophila Optic Lobes ABSTRACT The Drosophila visual system is composed of Optic Lobes at Different Stages of

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

SOMATOSENSORY SYSTEMS

SOMATOSENSORY SYSTEMS SOMATOSENSORY SYSTEMS Schematic diagram illustrating the neural pathways that convey somatosensory information to the cortex and, subsequently, to the motor system. Double arrows show reciprocal connections.

More information

Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo

Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts in the grasshopper embryo Development 118, 941-955 (1993) Printed in Great Britain The Company of Biologists Limited 1993 941 Neurogenesis in the insect brain: cellular identification and molecular characterization of brain neuroblasts

More information

Cancer Stem Cells & Glioblastoma

Cancer Stem Cells & Glioblastoma Cancer Stem Cells & Glioblastoma JP Hugnot «Brain plasticity, Neural stem cells and Glial tumors» INSERM U1051-UM2 Institut des Neurosciences de Montpellier Montpellier 1-Stem cells and Brain Stem Cells

More information

Mammalian Cerebral Cortex: Embryonic Development and Cytoarchitecture

Mammalian Cerebral Cortex: Embryonic Development and Cytoarchitecture Mammalian Cerebral Cortex: Embryonic Development and Cytoarchitecture 2 The prenatal developmental of the mammalian cerebral cortex, including that of humans, is characterized by two sequential and interrelated

More information

Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster

Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster RESEARCH ARTICLE 53 Development 137, 53-61 (2010) doi:10.1242/dev.041749 Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster James W. Truman*,, Wanda

More information

Cell Type Nervous System I. Developmental Readout. Foundations. Stem cells. Organ formation. Human issues.

Cell Type Nervous System I. Developmental Readout. Foundations. Stem cells. Organ formation. Human issues. 7.72 10.11.06 Cell Type Nervous System I Human issues Organ formation Stem cells Developmental Readout Axes Cell type Axon guidance 3D structure Analysis Model + + organisms Foundations Principles 1 What

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Krenn et al., http://www.jcb.org/cgi/content/full/jcb.201110013/dc1 Figure S1. Levels of expressed proteins and demonstration that C-terminal

More information

Olfactory ensheathing glia

Olfactory ensheathing glia Olfactory ensheathing glia From Wikipedia, the free encyclopedia Neuroglia of the brain shown by Golgi's method. Olfactory ensheathing glia (OEG), also known as olfactory ensheathing cells (OECs) or olfactory

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Global TeNT expression effectively impairs synaptic transmission. Injection of 100 pg tent mrna leads to a reduction of vesicle mediated synaptic transmission in the spinal cord

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Figure 1. Ras V12 expression in the entire eye-antennal disc does not cause invasive tumours. a, Eye-antennal discs expressing Ras V12 in all cells (marked with GFP, green) overgrow moderately

More information

Neuroepithelial Cells and Neural Differentiation

Neuroepithelial Cells and Neural Differentiation Neuroepithelial Cells and Neural Differentiation Neurulation The cells of the neural tube are NEUROEPITHELIAL CELLS Neural crest cells migrate out of neural tube Neuroepithelial cells are embryonic stem

More information

CSE511 Brain & Memory Modeling. Lect03: Intro to Neuroscience

CSE511 Brain & Memory Modeling. Lect03: Intro to Neuroscience CSE511 Brain & Memory Modeling CSE511 Brain & Memory Modeling Lect02: BOSS Discrete Event Simulator Lect03: Intro to Neuroscience Chapter 1 of Purves et al., 4e Larry Wittie Computer Science, StonyBrook

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 0.038/ncb33 a b c 0 min 6 min 7 min (fixed) DIC -GFP, CenpF 3 µm Nocodazole Single optical plane -GFP, CenpF Max. intensity projection d µm -GFP, CenpF, -GFP CenpF 3-D rendering e f 0 min 4 min 0

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2988 Supplementary Figure 1 Kif7 L130P encodes a stable protein that does not localize to cilia tips. (a) Immunoblot with KIF7 antibody in cell lysates of wild-type, Kif7 L130P and Kif7

More information

20 2 Stomach Fig. 2.1 An illustration showing different patterns of the myenteric plexus peculiar to the regions in the guinea-pig stomach stained wit

20 2 Stomach Fig. 2.1 An illustration showing different patterns of the myenteric plexus peculiar to the regions in the guinea-pig stomach stained wit Stomach 2 The stomach is unique in that ICC have a different distribution in proximal and distal regions of the same organ. ICC-CM and ICC-LM are densely distributed throughout the thick circular and longitudinal

More information

The Neural Substrate of Spectral Preference in Drosophila

The Neural Substrate of Spectral Preference in Drosophila Article The Neural Substrate of Spectral Preference in Drosophila Shuying Gao, 1,8 Shin-ya Takemura, 2,8 Chun-Yuan Ting, 1,8 Songling Huang, 1 Zhiyuan Lu, 2 Haojiang Luan, 3 Jens Rister, 4,9 Andreas S.

More information

Compartmental organization of the Drosophila genital imaginal discs

Compartmental organization of the Drosophila genital imaginal discs Development 124, 205-218 (1997) Printed in Great Britain The Company of Biologists Limited 1997 DEV8366 205 Compartmental organization of the Drosophila genital imaginal discs Elizabeth H. Chen 1 and Bruce

More information

Option A: Neurobiology & Behavior HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND

Option A: Neurobiology & Behavior HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND Option A: Neurobiology & Behavior A1: NEURAL DEVELOPMENT USE THE INFO IN THE PRESENTATION TO COMPLETE A1 NOTES GUIDE INFORMATION TAKEN FROM: HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND WARD BIOLOGY

More information

A Genetic Program for Embryonic Development

A Genetic Program for Embryonic Development Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types

More information

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus a: Expression of Vimentin, GFAP, Sox2 and Nestin in anterior, central and posterior hypothalamus. In the anterior

More information

Supplemental Information. Ciliary Beating Compartmentalizes. Cerebrospinal Fluid Flow in the Brain. and Regulates Ventricular Development

Supplemental Information. Ciliary Beating Compartmentalizes. Cerebrospinal Fluid Flow in the Brain. and Regulates Ventricular Development Current Biology, Volume Supplemental Information Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development Emilie W. Olstad, Christa Ringers, Jan N.

More information

Supplementary Figure 1. Identification of the type II spiral ganglion neurons (SGN) via immunofluorescence of peripherin protein (PRPH).

Supplementary Figure 1. Identification of the type II spiral ganglion neurons (SGN) via immunofluorescence of peripherin protein (PRPH). Supplementary Figure 1. Identification of the type II spiral ganglion neurons (SGN) via immunofluorescence of peripherin protein (PRPH). (a), (b), PRPH immunolabelling of cryosections from post-natal day

More information

Glia and Muscle Sculpt Neuromuscular Arbors by Engulfing Destabilized Synaptic Boutons and Shed Presynaptic Debris

Glia and Muscle Sculpt Neuromuscular Arbors by Engulfing Destabilized Synaptic Boutons and Shed Presynaptic Debris Glia and Muscle Sculpt Neuromuscular Arbors by Engulfing Destabilized Synaptic Boutons and Shed Presynaptic Debris Yuly Fuentes-Medel, Mary A. Logan, James Ashley, Bulent Ataman, Vivian Budnik*, Marc R.

More information

DEVELOPMENT. Levan Mchedlishvili 1,2, Hans H. Epperlein 2, Anja Telzerow 1 and Elly M. Tanaka 1, *

DEVELOPMENT. Levan Mchedlishvili 1,2, Hans H. Epperlein 2, Anja Telzerow 1 and Elly M. Tanaka 1, * RESEARCH ARTICLE 2083 Development 134, 2083-2093 (2007) doi:10.1242/dev.02852 A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted

More information

Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse

Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse Supplemental figure legends Supplemental Figure 1. Intracranial transduction of a modified ptomo lentiviral vector in the mouse hippocampus targets GFAP-positive but not NeuN-positive cells. (A) Stereotaxic

More information

Microglia-derived extracellular vesicles regulate the proliferation and differentiation of oligodendrocyte precursor cells

Microglia-derived extracellular vesicles regulate the proliferation and differentiation of oligodendrocyte precursor cells University of Turin CNR Institute of Neuroscience Microglia-derived extracellular vesicles regulate the proliferation and differentiation of oligodendrocyte precursor cells Roberta Parolisi Turin, December

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. nrg1 bns101/bns101 embryos develop a functional heart and survive to adulthood (a-b) Cartoon of Talen-induced nrg1 mutation with a 14-base-pair deletion in

More information

ErbB4 migrazione I parte. 3- ErbB4- NRG1

ErbB4 migrazione I parte. 3- ErbB4- NRG1 ErbB4 migrazione I parte 3- ErbB4- NRG1 1 In rodent brains postnatal neuronal migration is evident in three main areas: the cerebellum (CB), the hippocampus (Hipp) and the rostral migratory stream (RMS).

More information

Zhu et al, page 1. Supplementary Figures

Zhu et al, page 1. Supplementary Figures Zhu et al, page 1 Supplementary Figures Supplementary Figure 1: Visual behavior and avoidance behavioral response in EPM trials. (a) Measures of visual behavior that performed the light avoidance behavior

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 Kif1a RNAi effect on basal progenitor differentiation Related to Figure 2. Representative confocal images of the VZ and SVZ of rat cortices transfected at E16 with scrambled or Kif1a

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

NG2 + CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration

NG2 + CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration Article NG2 + CNS Glial Progenitors Remain Committed to the Oligodendrocyte Lineage in Postnatal Life and following Neurodegeneration Shin H. Kang, 1 Masahiro Fukaya, 2,4 Jason K. Yang, 1 Jeffrey D. Rothstein,

More information

Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors

Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5055 5060, April 1999 Developmental Biology Negative regulation of atonal in proneural cluster formation of Drosophila R8 photoreceptors CHIEN-KUO CHEN AND CHENG-TING

More information

Figure S 1. S1. Histological evaluation of lateral hemisection.

Figure S 1. S1. Histological evaluation of lateral hemisection. Dorsal Central Ventral Figure S1. Histological evaluation of lateral hemisection. Schematic Figure S1. Histological evaluation of lateral hemisection. Schematic representation of hemisection at. Dashed

More information

Supplementary Information

Supplementary Information Supplementary Information Title Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis Authors Shin H. Kang, Ying Li, Masahiro Fukaya, Ileana Lorenzini,

More information

Neurogenesis and neuronal circuit formation in the Drosophila visual center

Neurogenesis and neuronal circuit formation in the Drosophila visual center The Japanese Society of Developmental Biologists Develop. Growth Differ. (2014) 56, 491 498 doi: 10.1111/dgd.12151 Review Article Neurogenesis and neuronal circuit formation in the Drosophila visual center

More information

Transgenic Expression of the Helicobacter pylori Virulence Factor CagA Promotes Apoptosis or Tumorigenesis through JNK Activation in Drosophila

Transgenic Expression of the Helicobacter pylori Virulence Factor CagA Promotes Apoptosis or Tumorigenesis through JNK Activation in Drosophila Transgenic Expression of the Helicobacter pylori Virulence Factor CagA Promotes Apoptosis or Tumorigenesis through JNK Activation in Drosophila Anica M. Wandler, Karen Guillemin* Institute of Molecular

More information

A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines

A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines Supplemental Data A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines the Initial Trajectory of Mammalian Motor Axons Ivo Lieberam, Dritan Agalliu, Takashi Nagasawa, Johan Ericson, and Thomas M. Jessell

More information

Prss56, a novel marker of adult neurogenesis in the mouse brain. - Supplemental Figures 1 to 5- Brain Structure and Function

Prss56, a novel marker of adult neurogenesis in the mouse brain. - Supplemental Figures 1 to 5- Brain Structure and Function Prss56, a novel marker of adult neurogenesis in the mouse brain - Supplemental Figures 1 to 5- Brain Structure and Function Alexandre Jourdon 1,2, Aurélie Gresset 1, Nathalie Spassky 1, Patrick Charnay

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2638 Figure S1 Morphological characteristics of fetal testes and ovaries from 6.5-20 developmental weeks. Representative images of Hematoxylin and Eosin staining of testes and ovaries over

More information

SUPPLEMENTARY FIG. S2. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of dnscs.

SUPPLEMENTARY FIG. S2. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of dnscs. Supplementary Data SUPPLEMENTARY FIG. S1. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of anpcs. A panel of lineage-specific markers were used

More information

Does History Repeat Itself? The case of cortical columns. Those who fail to learn the lessons of history are condemned to repeat it George Santayana

Does History Repeat Itself? The case of cortical columns. Those who fail to learn the lessons of history are condemned to repeat it George Santayana Does History Repeat Itself? The case of cortical columns Those who fail to learn the lessons of history are condemned to repeat it George Santayana Stripe of Gennari Gennari says that he first saw his

More information

The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function

The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function The Serotonergic Central Nervous System of the Drosophila Larva: Anatomy and Behavioral Function Annina Huser 1., Astrid Rohwedder 1,5., Anthi A. Apostolopoulou 1,5, Annekathrin Widmann 1,5, Johanna E.

More information

Ahtiainen et al., http :// /cgi /content /full /jcb /DC1

Ahtiainen et al., http ://  /cgi /content /full /jcb /DC1 Supplemental material JCB Ahtiainen et al., http ://www.jcb.org /cgi /content /full /jcb.201512074 /DC1 THE JOURNAL OF CELL BIOLOGY Figure S1. Distinct distribution of different cell cycle phases in the

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1

Nature Neuroscience: doi: /nn Supplementary Figure 1 Supplementary Figure 1 Subcellular segregation of VGluT2-IR and TH-IR within the same VGluT2-TH axon (wild type rats). (a-e) Serial sections of a dual VGluT2-TH labeled axon. This axon (blue outline) has

More information

Supporting Information

Supporting Information Supporting Information Plikus et al. 10.1073/pnas.1215935110 SI Text Movies S1, S2, S3, and S4 are time-lapse recordings from individually cultured Period2 Luc vibrissa follicles show that circadian cycles

More information

Notch regulates wingless expression and is not required for reception of the

Notch regulates wingless expression and is not required for reception of the Development 121, 2813-2824 (1995) Printed in Great Britain The Company of Biologists Limited 1995 2813 Notch regulates wingless expression and is not required for reception of the paracrine wingless signal

More information

Cell Migration II: CNS Cell Migration. Steven McLoon Department of Neuroscience University of Minnesota

Cell Migration II: CNS Cell Migration. Steven McLoon Department of Neuroscience University of Minnesota Cell Migration II: CNS Cell Migration Steven McLoon Department of Neuroscience University of Minnesota 1 Hey! The major concepts discussed relative to neural crest cell migration apply to cell migration

More information

Seafood Contaminants causing Foodborne Diseases

Seafood Contaminants causing Foodborne Diseases Seafood Contaminants causing Foodborne Diseases Bacteria and Viruses Vibrio species Viruses: Norwalk-like (NLV) and Hepatitis A (HAV) Industrial Compounds Mercury Polyclorinated biphenyls (PCBs) Natural

More information

Hypothalamus. To learn how the brain regulates neuroendocrine secretions NTA Ch 14, pgs Key Figs: 14-3; 14-4,

Hypothalamus. To learn how the brain regulates neuroendocrine secretions NTA Ch 14, pgs Key Figs: 14-3; 14-4, Hypothalamus Objectives To learn the general organization of the hypothalamus and the functions of the major nuclei NTA Ch 14, pgs. 419-422 Key Figs: 14-2, 14-3 To learn how the brain regulates neuroendocrine

More information

Development of B and T lymphocytes

Development of B and T lymphocytes Development of B and T lymphocytes What will we discuss today? B-cell development T-cell development B- cell development overview Stem cell In periphery Pro-B cell Pre-B cell Immature B cell Mature B cell

More information

atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain

atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain Neuron, Vol. 25, 549 561, March, 2000, Copyright 2000 by Cell Press atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain Bassem A. Hassan,* # Nessan A. Bermingham,*

More information

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and exclude YAP from the nucleus. (a) Schematic diagram of an E10.5 mouse embryo. (b,c) Sections at B and C in (a)

More information

Developmental Biology

Developmental Biology Developmental Biology 327 (2009) 288 300 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology The HLH protein Extramacrochaetae is required

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References File name: Supplementary Data 1 Description: Summary datasheets showing the spatial

More information

Ensheathing Glia Function as Phagocytes in the Adult Drosophila Brain

Ensheathing Glia Function as Phagocytes in the Adult Drosophila Brain 4768 The Journal of Neuroscience, April 15, 2009 29(15):4768 4781 Cellular/Molecular Ensheathing Glia Function as Phagocytes in the Adult Drosophila Brain Johnna Doherty,* Mary A. Logan,* Özge E. Taşdemir,

More information

A new subtype of progenitor cell in the mouse embryonic neocortex. Xiaoqun Wang, Jin-Wu Tsai, Bridget LaMonica & Arnold R.

A new subtype of progenitor cell in the mouse embryonic neocortex. Xiaoqun Wang, Jin-Wu Tsai, Bridget LaMonica & Arnold R. A new subtype of progenitor cell in the mouse embryonic neocortex Xiaoqun Wang, Jin-Wu Tsai, Bridget LaMonica & Arnold R. Kriegstein Supplementary Figures 1-6: Supplementary Movies 1-9: Supplementary

More information

100 mm Sucrose. +Berberine +Quinine

100 mm Sucrose. +Berberine +Quinine 8 mm Sucrose Probability (%) 7 6 5 4 3 Wild-type Gr32a / 2 +Caffeine +Berberine +Quinine +Denatonium Supplementary Figure 1: Detection of sucrose and bitter compounds is not affected in Gr32a / flies.

More information

Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis

Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis AND STEM CELLS 191 Development 137, 191-201 (2010) doi:10.1242/dev.043604 Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis Maria Monastirioti 1, Nikolaos

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

Developmental Biology

Developmental Biology Developmental Biology xxx (2011) xxx xxx YDBIO-05383; No. of pages: 11; 4C: 3, 4, 5, 6, 7, 8, 10 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology

More information

a 0,8 Figure S1 8 h 12 h y = 0,036x + 0,2115 y = 0,0366x + 0,206 Labeling index Labeling index ctrl shrna Time (h) Time (h) ctrl shrna S G2 M G1

a 0,8 Figure S1 8 h 12 h y = 0,036x + 0,2115 y = 0,0366x + 0,206 Labeling index Labeling index ctrl shrna Time (h) Time (h) ctrl shrna S G2 M G1 (GFP+ BrdU+)/GFP+ Labeling index Labeling index Figure S a, b, y =,x +, y =,x +,,,,,,,, Time (h) - - Time (h) c d S G M G h M G S G M G S G h Time of BrdU injection after electroporation (h) M G S G M

More information

Epithelia will be discussed according to the following scheme: Type Number of layers Shape Line drawing. Squamous Cuboidal Columnar

Epithelia will be discussed according to the following scheme: Type Number of layers Shape Line drawing. Squamous Cuboidal Columnar Epithelia Epithelia will be discussed according to the following scheme: Type Number of layers Shape Line drawing Simple Squamous Cuboidal Columnar Covering and Lining epithelium Pseudostratified Stratified

More information

Supplementary Figure S1: TIPF reporter validation in the wing disc.

Supplementary Figure S1: TIPF reporter validation in the wing disc. Supplementary Figure S1: TIPF reporter validation in the wing disc. a,b, Test of put RNAi. a, In wildtype discs the Dpp target gene Sal (red) is expressed in a broad stripe in the centre of the ventral

More information

T H E J O U R N A L O F C E L L B I O L O G Y

T H E J O U R N A L O F C E L L B I O L O G Y Supplemental material Wang and Page-McCaw, http://www.jcb.org/cgi/content/full/jcb.201403084/dc1 T H E J O U R N A L O F C E L L B I O L O G Y Figure S1. Extracellular anti-wg staining is specific. Note

More information