ORIGINAL CONTRIBUTION. Clinically Undetected Motor Neuron Disease in Pathologically Proven Frontotemporal Lobar Degeneration With Motor Neuron Disease

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. Clinically Undetected Motor Neuron Disease in Pathologically Proven Frontotemporal Lobar Degeneration With Motor Neuron Disease"

Transcription

1 ORIGINAL CONTRIBUTION Clinically Undetected Motor Neuron Disease in Pathologically Proven Frontotemporal Lobar Degeneration With Motor Neuron Disease Keith A. Josephs, MST, MD; Joseph E. Parisi, MD; David S. Knopman, MD; Bradley F. Boeve, MD; Ronald C. Petersen, MD, PhD; Dennis W. Dickson, MD Background: Frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) is a pathological entity characterized by motor neuron degeneration and frontotemporal lobar degeneration. The ability to detect the clinical signs of dementia and motor neuron disease in pathologically confirmed FTLD-MND has not been assessed. Objectives: To determine if all cases of pathologically confirmed FTLD-MND have clinical evidence of frontotemporal dementia and motor neuron disease, and to determine the possible reasons for misdiagnosis. Method: Review of historical records and semiquantitative analysis of the motor and extramotor pathological findings of all cases of pathologically confirmed FTLD-MND. Results: From a total of 17 cases of pathologically confirmed FTLD-MND, all had clinical evidence of frontotemporal dementia, while only 10 (59%) had clinical evidence of motor neuron disease. Semiquantitative analysis of motor and extramotor pathological findings revealed a spectrum of pathological changes underlying FTLD-MND. Hippocampal sclerosis, predominantly of the subiculum, was a significantly more frequent occurrence in the cases without clinical evidence of motor neuron disease (P.01). In addition, neuronal loss, gliosis, and corticospinal tract degeneration were less severe in the other 3 cases without clinical evidence of motor neuron disease. Conclusions: Clinical diagnostic sensitivity for the elements of FTLD-MND is modest and may be affected by the fact that FTLD-MND represents a spectrum of pathological findings, rather than a single homogeneous entity. Detection of signs of clinical motor neuron disease is also difficult when motor neuron degeneration is mild and in patients with hippocampal sclerosis. Arch Neurol. 2006;63: Author Affiliations: Departments of Neurology (Drs Josephs, Knopman, Boeve, and Petersen) and Laboratory Medicine and Pathology (Dr Parisi), Mayo Clinic, Rochester, Minn; Department of Pathology and Neuroscience (Dr Dickson), Mayo Clinic, Jacksonville, Fla. FRONTOTEMPORAL DEMENTIA () is a clinical term applied to patients who present with progressive dementia with an insidious onset, prominent behavioral or language dysfunction, or both. Motor neuron disease (MND) is also a clinical term, but it is applied to patients with clinical evidence of corticospinal tract involvement, evidence of brainstem or spinal cord anterior horn cell involvement, or both. Recent studies have revealed that clinical features of and MND () can occur in the same patient and not infrequently. 1-3 For editorial comment see page 489 As with the clinical syndrome of - MND, pathologic studies have independently identified cases with frontotemporal lobar degeneration and features of typical motor neuron degeneration (FTLD- MND). 4 Therefore, FTLD-MND currently represents a distinct pathological entity. During the last decade, we and others have observed cases that at autopsy have had histologic evidence of mixed features of FTLD and MND. Furthermore, clinical studies have revealed an increased frequency of MND in cases of, 3 and an increased frequency of in cases of MND. 2 Unfortunately, studies correlating the clinical signs of - MND with the pathologic diagnosis of FTLD-MND are limited. 5 We therefore set out to assess the association of clinical features of and pathologically confirmed FTLD-MND. METHODS CASE ASCERTAINMENT The Mayo Clinic (Rochester, Minn) pathological database was searched to identify all cases that were autopsied with a pathological diagnosis of Pick disease, FTLD-MND, or demen- 506

2 tia lacking distinctive histopathologic features. We also reviewed our cases of FTLD, but none had pathologic evidence of motor neuron degeneration. 6 All identified cases were then reexamined pathologically with modern neuropathologic stains. Only cases with a final diagnosis of FTLD-MND were retained for this study. A retrospective review of the historical records of all cases with final pathological diagnosis of FTLD-MND was undertaken. Special attention was paid to any sign or symptom suggestive of bulbar dysfunction, upper or lower motor neuron disease (or both), and the treating physician s diagnoses at onset and throughout the disease course. PATHOLOGICAL ANALYSIS In all cases identified from the previously described electronic search, slides of frontal, temporal, and parietal neocortex, hippocampus, basal ganglia, thalamus, midbrain, pons, medulla, and cerebellum were reviewed. In all cases, sections were studied with hematoxylin-eosin (HE) and modified Bielschowsky staining, as well as other stains needed for routine evaluation, including immunohistochemistry for markers of glial pathology. Those stains include glial fibrillary acid protein for astrocytes and either CD68 or HLA-DR antigens for microglia. Neuronal pathology was studied with antibodies to neurofilament protein, ubiquitin, -synuclein, and phospho-tau. In all cases, the hypoglossal nucleus and/or cervical spinal anterior horn cells were reviewed for evidence of motor neuron degeneration with HE and ubiquitin. In many cases, stains for glial fibrillary acidic protein and macrophages were also available. Neuronal loss and gliosis were assessed semiquantitatively in the hypoglossal nucleus and the anterior horn cells of the spinal cord with a 4-point scale (0=none; 1 =focal neuronal loss and focal microgliosis; 2 =extensive neuronal loss with microgliosis and empty cell beds containing macrophages; 3 =almost complete loss of motor neurons with atrophy and astrocytic fibrillar gliosis). The presence of Bunina bodies was assessed on HE staining in motor neurons of the hypoglossal nucleus and spinal anterior horn cells. Lewy body like hyaline inclusions were assessed on HE staining and ubiquitin stains. Skeinlike and pleomorphic cytoplasmic inclusions were assessed on ubiquitin immunostains. The corticospinal tract was assessed for wallerian degeneration using HE (presence of atrophy with vacuolation and lipid-laden macrophages), myelin stains (pallor on Luxol fast blue), or macrophage stains (increased ameboid microglia) paying special attention to the pyramids in the medulla and the lateral funiculi in the spinal cord. The severity of corticospinal tract degeneration was assessed semiquantitatively on a 5-point scale (0=none, 1 =very mild vacuolation and sparse macrophages; 2 =vacuolation with many lipid-laden macrophages; 3 =many lipid-laden macrophages with myelin loss; 4 =myelinated fiber loss, tract atrophy and astrocytic gliosis). Extramotor inclusions were assessed semiquantitatively with ubiquitin immunostains with a 5-point grading scale (0=none; 0-1 =isolated; 1 =sparse; 2 =moderate; 3 =frequent number). Histopathologic analysis was conducted by neuropathologists with expertise in degenerative neuropathology (J.E.P. and D.W.D.). Semiquantitative analysis was conducted by a neuropathologist (D.W.D.). Frontotemporal lobar degeneration with motor neuron disease (Figure 1) was diagnosed if there was evidence of brainstem or spinal cord anterior horn cell degeneration or degeneration of the corticospinal tract, or both, in addition to histologic evidence of frontotemporal lobar degeneration. Histologic evidence of motor neuron degeneration included loss of large anterior horn cells in the spinal cord or hypoglossal motor neurons plus (1) shrunken residual motor neurons, (2) evidence of neuronophagia, (3) Bunina bodies, or (4) ubiquitinimmunoreactive intraneuronal inclusions, including Lewy body like hyaline inclusions, skeinlike inclusions, or pleomorphic cytoplasmic inclusions, which were grouped with skeinlike inclusions for the purpose of analysis. Evidence of frontotemporal lobar degeneration included the presence of superficial spongiosis, neuronal loss, and astrogliosis affecting predominantly layer II of the cortex, with or without the presence of ubiquitinimmunoreactive neuronal cytoplasmic inclusions. Neuronal intranuclear inclusions were not detected. STATISTICAL ANALYSIS Statistical analyses were performed with SigmaStat software (Systat Software Inc, Point Richmond, Calif). Univariate correlations for analysis of clinical and pathologic factors used Spearman rank order correlation analysis. A P value of less than.05 was considered significant. RESULTS We identified 18 cases that fulfilled pathological criteria for FTLD-MND, including presence of ubiquitinimmunoreactive neuronal inclusions in motor or extramotor neuronal populations or both in all cases. The ubiquitin-positive inclusions were negative for tau, -synuclein, and neurofilament. One case was removed from further analysis because of a clinical diagnosis of multiple sclerosis 20 years prior to death. The demographics of the other 17 cases are presented in Table 1. Of these, 13 (76%) were male. The mean age at onset and disease duration were 52 years and 2.3 years, respectively. CLINICAL FEATURES All patients had clinical features suggestive of frontotemporal dysfunction; however, only 10 cases carried a diagnosis of or a comparable diagnostic term (such as amyotrophic lateral sclerosis dementia or dementia with MND) prior to death. Of the other 7 cases, 4 were diagnosed as, 2 with a rapidly progressive dementing illness, and 1 as vs Alzheimer disease. All 10 cases with a clinical diagnosis of had evidence of motor neuron disease on clinical examination, while the other 7 did not. Two cases were initially diagnosed as only (data not shown); however, they later developed signs of MND and were subsequently diagnosed as. One of these 2 cases (case 13) developed signs of MND approximately 45 months after the onset of symptoms of. In addition to the features in keeping with a diagnosis of, 5 cases (cases 2, 3, 15, 16, and 17) also had symptoms of forgetfulness at initial examination. Memory impairment was not severe or more prominent than the other presenting features in any of these 5 cases. PATHOLOGIC FINDINGS Pathologic findings are presented in Table 2 and shown in Figure 1 and Figure 2. All cases met pathologic criteria for FTLD-MND. 4,7 The hypoglossal nucleus was 507

3 A B C D E F G H I J K L M N O P Q R Figure 1. Motor neuronal loss and gliosis (A-C), corticospinal tract degeneration (D-F), and motor neuron inclusions with routine histology (G-I) and with ubiquitin immunohistochemistry ( J-R). A, Anterior horn cell neuronal loss and gliosis. B, Anterior horn cell gliosis (glial fibrillary acidic protein). C, Hypoglossal nucleus microgliosis (HLA-DR antigens). D, Pyramidal degeneration and lipid-laden macrophages (arrows). E, Pyramidal myelin loss (Luxol fast blue stain). F, Pyramidal macrophages (HLA-DR antigens). G and I, Lewy body like inclusions anterior horn cells (arrows). H and I, Bunina bodies (arrowheads). J-M, Skeinlike inclusions. N and O, Lewy body like inclusions. P-R, Pleomorphic inclusions (for all figures, hematoxylin-eosin stain was used unless otherwise noted, original magnification 400). 508

4 Table 1. Demographics of 17 Cases of FTLD-MND* Case, No. /Sex Age at Onset, y Age at Death, y Disease Duration, y STMSS on Initial Examination Prominent Symptoms Early in Disease Course, (Less Prominent Symptoms) 1/F /38 Personality change, combative, agitative 2/F /38 Personality change, socially withdrawn, (forgetful) 3/F NA Behavioral dyscontrol, paranoia, pacing, and roaming, (forgetful) 4/M NA Inappropriate behaviors, apathetic, (unusual spontaneous laughter) 5/M /38 Personality change, apathetic, weight gain, inability to follow through 6/M /38 Socially withdrawn, emotional blunting, aphasia, easily distracted 7/M /38 Behavioral dyscontrol, hyperorality, visual hallucinations, (incontinence of urine) 8/M /38 Personality change, tangentional and circumstantial in language 9/M /38 Language difficulties, slowed speech, swallowing difficulties 10/M /38 Agitation, personality change, less interactive, rapid loss of verbal output 11/M NT Emotional blunting, irritability, decline in communication 12/F /38 Paranoia, difficulty with planning, organizing, speaking, (swallowing) 13/M /38 Personality change, sexual indiscretions, delusions involving bugs, lack of spontaneity 14/M /38 Personality change, apathetic, difficulty processing information 15/M /38 Irritability, anomia, (forgetful), spells of confusion, 1 hallucination seeing elves 16/M NA Language difficulties, slowed speech, (forgetful) 17/M NA Difficulty with speech, (forgetful), depression, difficulty performing job duties Abnormal Cranial Nerve and Motor Neuron Findings During Illness Babinski sign mixed spastic-flaccid dysarthria, Babinski sign Babinski sign, infrequent fasciculations Spastic dysarthria, fasciculations, tongue weakness Mixed spastic-flaccid dysarthria muscle atrophy Mixed spastic-flaccid dysarthria, prominent fasciculations Babinski sign, muscle wasting mild weakness, muscle atrophy Spasticity, spastic dysarthria, Babinski sign, prominent fasciculations Final Clinical Diagnosis RPD vs AD RP- Dementia/MND Dementia/ALS Dementia/ALS Dementia/MND Abbreviations: AD, Alzheimer disease; ALS, amyotrophic lateral sclerosis;, frontotemporal dementia; FTLD-MND, frontotemporal lobar degeneration with motor neuron disease; MND, motor neuron disease; NA, not able to be tested (either too severely affected or anarthric); NT, not tested (evaluated in 1986 before publication of the STMSS); RPD, rapidly progressive dementia; RP-, rapidly progressive frontotemporal dementia; STMSS, Short Test of Mental Status score. *Group 1 (cases 1-7); group 2 (cases 8-17). These cases were clinically diagnosed between 1987 and 1991 and explain the older terminology. available for review in 16 cases. In 14 cases, the cervical spinal cord, but more often multiple levels of spinal cord, were available for study. Bunina bodies were found in 14 cases and skeinlike inclusions, pleomorphic inclusions, or Lewy body like hyaline inclusions in motor neurons were found in 11 cases. Extramotor ubiquitin-positive neuronal inclusions were present in all cases, in the dentate fascia, neocortex, or both regions. Four cases had evidence of hippocampal sclerosis predominantly affecting the subiculum. Additional pathologic findings were present in a number of cases including 2 cases with skeletal muscle from the general autopsy; both had evidence of group atrophy with small acutely angulated fibers consistent with neurogeneic atrophy. SEMIQUANTITATIVE RESULTS Semiquantitative results are presented in Table 2. Neuronal loss and gliosis of the hypoglossal nucleus and spinal anterior horn cells were variable and ranged from 509

5 Table 2. Semiquantitative Data of Motor and Extramotor Neuron Pathologic Findings in FTLD-MND* Case, No. Neuronal Loss and Gliosis Cranial Nerve XII Anterior Horn Cell Motor Inclusions (Ubiquitin) Cranial Nerve XII Anterior Horn Cell CST Degeneration Dentate Fascia Extramotor Inclusions (Ubiquitin) Cortical Inclusions Cortical Neurites Hippocampal Sclerosis Additional Pathological Findings No No SUB Mild CAA and senile changes 2 0 NA No NA SUB None 3 2 (BB) 1 (BB) No No SUB Alzheimer disease 4 1 (BB) NA Yes NA CA1, SUB None 5 1 (BB; LBHI) 1 (BB; LBHI) Yes No No None 6 1 (BB) 2 (BB) No Yes No Muscle neurogenic atrophy; none 7 1 (BB) NA No NA No None 8 2 (BB; LBHI) 2 (BB) Yes Yes No None 9 1 (BB; LBHI) 1 (BB) Yes Yes No Mild CAA 10 2 (BB) 2 (BB; LBHI) NA No No None 11 3 (BB; LBHI) 2 (BB; LBHI) Yes Yes No None 12 2 (BB) 2 (BB; LBHI) No Yes No None 13 2 (BB) 1 (BB; LBHI) Yes No No Muscle neurogenic atrophy; none 14 1 (BB; LBHI) 3 (BB) No Yes No None 15 1 (LBHI) 2 (LBHI) Yes Yes No Acute hem infarct; incidental Lewy bodies 16 1 (BB) 1 (BB) No No No None 17 NA 1 (BB) NA No No None Abbreviations: BB, Bunina bodies; CA1, cornu ammonis 1; CAA, cerebral amyloid angiopathy; CST, corticospinal tract; FTLD-MND, frontotemporal lobar degeneration with motor neuron disease; LBHI, Lewy body like hyaline inclusions; NA, not able to evaluate; SUB, subiculum. *Group 1 (cases 1-7); group 2 (cases 8-17). For neuronal loss and gliosis, 0 = none; 1 = focal neuronal loss and focal microgliosis; 2 = extensive neuronal loss with microgliosis and empty cell beds containing macrophages; 3 = almost complete loss of motor neurons with atrophy and astrocytic fibrillar gliosis. For severity of corticospinal tract degeneration, 0 = none; 1 = very mild vacuolation and sparse macrophages; 2 = vacuolation with many lipid-laden macrophages; 3 = many lipid-laden macrophages with myelin loss; 4 = myelinated fiber loss, tract atrophy, and astrocytic gliosis. For extramotor inclusions, 0 = none; 0-1 = isolated; 1 = sparse; 2 = moderate; 3 = frequent number. Difficult to exclude Alzheimer disease neurites and inclusions. A B C D E F Figure 2. A range of ubiquitin-positive inclusions in the dentate fascia including granular inclusions that are polarized or circumferential (A-C), as well as crescent-shaped inclusions (arrows), and round Pick body like inclusions (arrowheads) (D-F). It should be emphasized that Pick body like inclusions are the minority in frontotemporal lobar degeneration with motor neuron disease and granular-type inclusions are the most common (for all figures, hematoxylin-eosin stain was used unless otherwise noted, original magnification 400). 510

6 absent to severe, and the severity of motor neuron pathologic features tended to correlate with clinical evidence of motor neuron disease (r=0.63, P.05 for hypoglossal nucleus; r=0.57, P=.10 for anterior horn cells). Similarly, corticospinal tract degeneration ranged from absent to severe. Severity of corticospinal tract degeneration did not correlate with clinical signs of motor neuron disease or with severity of neuronal loss and gliosis in the hypoglossal nucleus and spinal anterior horn cells. There was a weak correlation between severity of corticospinal tract degeneration and cases with cortical ubiquitinpositive inclusions (r=0.50, P.05). Extramotor ubiquitin-positive inclusions were absent to sparse in all cortical regions (except case 3 for which it was difficult to exclude Alzheimer disease neurites and inclusions), and absent to moderate in the dentate fascia of the hippocampus in almost all cases. In only 3 cases with hippocampal sclerosis were there frequent inclusions in the dentate fascia. CLINICOPATHOLOGIC CORRELATION We divided the cases into the following 2 groups: group 1 consisted of those cases that were not clinically diagnosed as (cases 1-7) and group 2 consisted of those that were clinically diagnosed as (cases 8-17). Four of the 7 cases from group 1, but none of the 10 cases from group 2, were found to have hippocampal sclerosis (3 of which also had frequent inclusions in the dentate fascia). In addition, the other 3 cases from group 1 (those without hippocampal sclerosis) were found to have minimal neuronal loss in hypoglossal nucleus and anterior horn cells as well as absent to minimal corticospinal tract degeneration. In contrast, the cases from group 2 had moderate to severe neuronal loss in the hypoglossal nucleus and anterior horn cells, moderate to severe corticospinal tract degeneration, or a mixture of both. Only case 16 from group 2 had minimal hypoglossal and anterior horn cell pathologic features. Spearman rank order correlation confirmed our observations and demonstrated that cases from group 1 were significantly more likely to have hippocampal sclerosis (r=0.70, P.01). Patients from group 1 also tended to be female (r=0.44, P=.08) and hippocampal sclerosis was significantly correlated with female sex (r=0.67, P.01). COMMENT This study demonstrates many important features regarding the co-occurrence of frontotemporal lobar degeneration and motor neuron disease. As expected, all 17 cases had neuronal loss and gliosis affecting the frontal and temporal cortices in keeping with a diagnosis of frontotemporal lobar degeneration. In addition, all cases had pathologic evidence of one form of motor neuron degeneration. Therefore, they were appropriately categorized as FTLD-MND. Furthermore, all 17 cases met pathologic criteria for FTLD-MND. 4,7 The pathologic features of FTLD-MND were variable. Most cases had a mixture of lower motor neuron degeneration and corticospinal tract degeneration, similar to amyotrophic lateral sclerosis, and the majority had Bunina bodies, which are a histologic hallmark of amyotrophic lateral sclerosis. The severity of motor neuron degeneration was variable and ranged from absent to severe. We found that some cases had a predominance of corticospinal tract degeneration (cases 1, 2, 4, 8, 9, 10, and 17), while others had no corticospinal tract degeneration (cases 3, 7, 14, and 15). Extramotor ubiquitinpositive pathologic findings were minimal overall and mostly granular in all cases. Despite these differences, at the present time there is no way to distinguish between cases on the basis of extramotor ubiquitin-positive pathologic features or on the basis of predominant involvement of upper or lower motor neurons. A larger sample size would be needed to address possible clinically useful subtypes. Four of the 7 cases without clinical evidence of motor neuron disease had hippocampal sclerosis, predominantly of the subicular region. Hippocampal sclerosis is a common feature of frontotemporal lobar degeneration with ubiquitin-only immunoreactive changes. 8,9 In addition, 3 of these 4 cases had frequent ubiquitinpositive inclusions in the dentate fascia of the hippocampus, which is another common feature of frontotemporal lobar degeneration with ubiquitin-only immunoreactive changes. We therefore argue that FTLD- MND should be thought of as a spectrum of diseases and include FTLD-MND with hippocampal sclerosis and FTLD-MND without hippocampal sclerosis. Frontotemporal lobar degeneration with motor neuron disease with hippocampal sclerosis seemed strikingly similar to other frontotemporal lobar degenerations with some evidence of MND, while FTLD-MND without hippocampal sclerosis seemed strikingly similar to amyotrophic lateral sclerosis with some evidence of FTLD. Fibers from the subiculum serve as the major output center for the hippocampus. Therefore, the cases with hippocampal sclerosis predominantly affecting the subiculum were likely to be more amnestic and impaired, which may explain why features of motor neuron disease were not clinically detected in these 4 cases with moderate motor neuron degeneration. Two of these 4 cases were so impaired that a mental status examination was not possible, the third was severely demented with a score of 13 out of 38 on the Short Test of Mental Status, 10 and the fourth was moderately to severely demented with a score of 21 out of 38. Three of the 7 cases with clinically undetected motor neuron disease, however, did not have hippocampal sclerosis. Semiquantitative analysis in these cases revealed very mild motor neuron pathological features. Therefore, another reason for inability to clinically detect motor neuron disease without the aid of detailed and specialized electrophysiologic studies or muscle biopsy may be very mild subclincal motor neuron degeneration. Routine electromyography had been completed in 2 of the 7 cases without clinical detection of motor neuron disease; in 1 case (case 7), electromyographic recordings had been taken 6 months prior to death and revealed normal findings. All 17 cases had clinical evidence of frontotemporal impairment and met research criteria for a diagnosis of 511

7 . 11 Five of the cases also had symptoms of mild forgetfulness in addition to the more prominent behavioral features. This is not surprising because memory loss is not an uncommon symptom or sign in. 12 We also show in this study that when and MND co-occur, signs of MND may not always be present early. In 2 cases, only features of dementia were noted early in the disease course and both initially carried a diagnosis of. Both cases later developed signs of MND. Surprisingly, in 1 of the 2 cases (case 16), there was no evidence of MND until almost 4 years into the disease course. Prior studies had suggested that MND typically postdates the onset of dementia by 6 to 26 months. 13,14 This study extends this interval to approximately 45 months. We did not find any cases of spinal cord anterior horn cell degeneration without hypoglossal nucleus involvement and we do not know if such cases exist. Therefore, spinal cord harvesting and analysis are of the utmost importance for future clinicopathologic studies in cases with combined dementia and motor neuron disease. Accepted for Publication: August 31, Correspondence: Keith A. Josephs, MST, MD, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN Author Contributions: Study concept and design: Josephs, Parisi, Knopman, Boeve, and Petersen. Acquisition of data: Josephs, Parisi, Knopman, Boeve, and Dickson. Analysis and interpretation of data: Josephs, Parisi, Boeve, Petersen, and Dickson. Drafting of the manuscript: Josephs, Parisi, and Petersen. Critical revision of the manuscript for important intellectual content: Josephs, Parisi, Knopman, Boeve, and Dickson. Obtained funding: Petersen. Administrative, technical, and material support: Josephs, Parisi, Boeve, and Dickson. Study supervision: Parisi and Knopman. Funding/Support: This study was supported by grants P50-AG16574 and U01-AG06786 from the National Institute on Aging, Bethesda, Md, and by the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer s Disease Research Programs of the Mayo Foundation. Acknowledgment: Phospho-tau was a gift from Peter Davies, PhD, Albert Einstein College of Medicine, Bronx, NY. REFERENCES 1. Caselli RJ, Windebank AJ, Petersen RC, et al. Rapidly progressive aphasic dementia and motor neuron disease. Ann Neurol. 1993;33: Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK, Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 2003; 60: Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59: Lowe J, Rossor MN. Frontotemporal lobar degeneration. In: Dickson DW, ed. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Basel, Switzerland: ISN Neuropath Press; 2003: Hodges JR, Davies RR, Xuereb JH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56: Josephs KA, Petersen RC, Knopman DS, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology. 2006; 66: McKhann GM, Albert MS, Grossman M, et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick s Disease. Arch Neurol. 2001;58: Josephs KA, Jones AG, Dickson DW. Hippocampal sclerosis and ubiquitinpositive inclusions in dementia lacking distinctive histopathology. Dement Geriatr Cogn Disord. 2004;17: Hatanpaa KJ, Blass DM, Pletnikova O, et al. Most cases of dementia with hippocampal sclerosis may represent frontotemporal dementia. Neurology. 2004; 63: Kokmen E, Naessens JM, Offord KP. A short test of mental status: description and preliminary results. Mayo Clin Proc. 1987;62: Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998;51: Graham A, Davies R, Xuereb J, et al. Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain. 2005;128: Mitsuyama Y. Dementia with motor neuron disease. Neuropathology. 2000;20(Suppl):S79-S Mitsuyama Y. Presenile dementia with motor neuron disease in Japan: clinicopathological review of 26 cases. J Neurol Neurosurg Psychiatry. 1984;47: Announcement Visit As an individual subscriber to Archives of Neurology, you have full-text online access to the journal from 1998 forward. In addition, you can find abstracts to the journal as far back as

Role of TDP-43 in Non-Alzheimer s and Alzheimer s Neurodegenerative Diseases

Role of TDP-43 in Non-Alzheimer s and Alzheimer s Neurodegenerative Diseases Role of TDP-43 in Non-Alzheimer s and Alzheimer s Neurodegenerative Diseases Keith A. Josephs, MD, MST, MSc Professor of Neurology 13th Annual Mild Cognitive Impairment (MCI) Symposium: Alzheimer and Non-Alzheimer

More information

Dementia Update. October 1, 2013 Dylan Wint, M.D. Cleveland Clinic Lou Ruvo Center for Brain Health Las Vegas, Nevada

Dementia Update. October 1, 2013 Dylan Wint, M.D. Cleveland Clinic Lou Ruvo Center for Brain Health Las Vegas, Nevada Dementia Update October 1, 2013 Dylan Wint, M.D. Cleveland Clinic Lou Ruvo Center for Brain Health Las Vegas, Nevada Outline New concepts in Alzheimer disease Biomarkers and in vivo diagnosis Future trends

More information

Upper and Lower Motoneurons for the Head Objectives

Upper and Lower Motoneurons for the Head Objectives Upper and Lower Motoneurons for the Head Objectives Know the locations of cranial nerve motor nuclei Describe the effects of motor cranial nerve lesions Describe how the corticobulbar tract innervates

More information

Brain dissection protocol for amyotrophic lateral sclerosis/motor neurone disease

Brain dissection protocol for amyotrophic lateral sclerosis/motor neurone disease Brain dissection protocol for amyotrophic lateral sclerosis/motor neurone disease Prepared by Approved by Approved by Revised by Name Signature Date Sampling and biomarker OPtimization and Harmonization

More information

ORIGINAL CONTRIBUTION. Rapidly Progressive Neurodegenerative Dementias

ORIGINAL CONTRIBUTION. Rapidly Progressive Neurodegenerative Dementias ORIGINAL CONTRIBUTION Rapidly Progressive Neurodegenerative Dementias Keith A. Josephs, MD; J. Eric Ahlskog, PhD, MD; Joseph E. Parisi, MD; Bradley F. Boeve, MD; Brian A. Crum, MD; Caterina Giannini, MD;

More information

Clinical phenotypes in autopsy-confirmed Pick disease

Clinical phenotypes in autopsy-confirmed Pick disease Clinical phenotypes in autopsy-confirmed Pick disease O. Piguet, PhD G.M. Halliday, PhD W.G.J. Reid, PhD B. Casey, PhD R. Carman, MPhil Y. Huang, PhD J.H. Xuereb, MD J.R. Hodges, FRCP J.J. Kril, PhD Address

More information

2016 Programs & Information

2016 Programs & Information Mayo Alzheimer s Disease Research Clinic Education Center 2016 Programs & Information BROCHURE TITLE FLUSH RIGHT for Persons & Families impacted by Mild Cognitive Impairment Alzheimer s Disease Dementia

More information

FRONTOTEMPORAL DEGENERATION: OVERVIEW, TRENDS AND DEVELOPMENTS

FRONTOTEMPORAL DEGENERATION: OVERVIEW, TRENDS AND DEVELOPMENTS FRONTOTEMPORAL DEGENERATION: OVERVIEW, TRENDS AND DEVELOPMENTS Norman L. Foster, M.D. Director, Center for Alzheimer s Care, Imaging and Research Chief, Division of Cognitive Neurology, Department of Neurology

More information

Dementia. Types of Dementia. Dementing Disorders. Concepts in the Evolution of Alzheimer s Disease and Treatment Approaches. Criteria for dementia:

Dementia. Types of Dementia. Dementing Disorders. Concepts in the Evolution of Alzheimer s Disease and Treatment Approaches. Criteria for dementia: Concepts in the Evolution of and Treatment Approaches Arnold Bakker, Ph.D. Department of Psychiatry and Behavioral Sciences Johns Hopkins University School of Medicine Dementia Criteria for dementia: Memory

More information

NEUROPATHOLOGY BRAIN CUTTING MANUAL LAST UPDATED ON 6/22/2015

NEUROPATHOLOGY BRAIN CUTTING MANUAL LAST UPDATED ON 6/22/2015 NEUROPATHOLOGY BRAIN CUTTING MANUAL LAST UPDATED ON 6/22/2015 Neuropathology Faculty involved in Brain Cutting: Dr. Sandra Camelo-Piragua Dr. Andrew Lieberman (Chief of the Division) Dr. Kathryn A. McFadden

More information

P20.2. Characteristics of different types of dementia and challenges for the clinician

P20.2. Characteristics of different types of dementia and challenges for the clinician P20.2. Characteristics of different types of dementia and challenges for the clinician, professor Danish Dementia Research Center Rigshospitalet, University of Copenhagen (Denmark) This project has received

More information

CN V! touch! pain! Touch! P/T!

CN V! touch! pain! Touch! P/T! CN V! touch! pain! Touch! P/T! Visual Pathways! L! R! B! A! C! D! LT! E! F! RT! G! hypothalamospinal! and! ALS! Vestibular Pathways! 1. Posture/Balance!!falling! 2. Head Position! 3. Eye-Head Movements

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Fig. S1. Weights of full-dose treatment groups comparing 1 st, 2 nd, and 3 rd generation gene replacement therapy. Mice were treated at p1 with 4x10 11 GC of the three different

More information

Movement Disorders. Psychology 372 Physiological Psychology. Background. Myasthenia Gravis. Many Types

Movement Disorders. Psychology 372 Physiological Psychology. Background. Myasthenia Gravis. Many Types Background Movement Disorders Psychology 372 Physiological Psychology Steven E. Meier, Ph.D. Listen to the audio lecture while viewing these slides Early Studies Found some patients with progressive weakness

More information

Objectives. Overview. Why FTD and AD? FTD May Mimic AD. Introduction and Process Norman L. Foster, MD. Introduction and Process 7BS.

Objectives. Overview. Why FTD and AD? FTD May Mimic AD. Introduction and Process Norman L. Foster, MD. Introduction and Process 7BS. Introduction and Process Norman L. Foster, MD 7BS.006 IMPROVING ACCURACY OF DEMENTIA DIAGNOSIS: CASE STUDIES WITH NEUROPATHOLOGY Norman L. Foster, MD University of Utah Salt Lake City, UT Edward Zamrini,

More information

Frontotemporal dementia : a clinical-pathological study

Frontotemporal dementia : a clinical-pathological study Acta neurol. belg., 2001, 101, 224-229 Clinical Pathological Conference Frontotemporal dementia : a clinical-pathological study A. MICHOTTE 1,2, S. GOLDMAN 3, P. TUGENDHAFT 4 and D. ZEGERS DE BEYL 4 1

More information

Simulated brain biopsy for diagnosing neurodegeneration using autopsy-confirmed cases

Simulated brain biopsy for diagnosing neurodegeneration using autopsy-confirmed cases Acta Neuropathol (2011) 122:737 745 DOI 10.1007/s00401-011-0880-5 ORIGINAL PAPER Simulated brain biopsy for diagnosing neurodegeneration using autopsy-confirmed cases Sriram Venneti John L. Robinson Subhojit

More information

MOTOR NEURONE DISEASE

MOTOR NEURONE DISEASE MOTOR NEURONE DISEASE Dr Arun Aggarwal Department of Rehabilitation Medicine, RPAH Department of Neurology, Concord Hospital. Motor Neurone Disease Umbrella term in UK and Australia (ALS in USA) Neurodegenerative

More information

Current Concepts in the Classification and Diagnosis of Frontotemporal Lobar Degenerations

Current Concepts in the Classification and Diagnosis of Frontotemporal Lobar Degenerations Current Concepts in the Classification and Diagnosis of Frontotemporal Lobar Degenerations Frontotemporal lobar degenerations are clinically, genetically, and molecularly heterogeneous diseases characterized

More information

SECTION 1: as each other, or as me. THE BRAIN AND DEMENTIA. C. Boden *

SECTION 1: as each other, or as me. THE BRAIN AND DEMENTIA. C. Boden * I read all the available books by other [people with] Alzheimer s disease but they never had quite the same problems as each other, or as me. I t s not like other diseases, where there is a standard set

More information

Chronic Traumatic Encephalopathy Provider and Parent Essentials

Chronic Traumatic Encephalopathy Provider and Parent Essentials Chronic Traumatic Encephalopathy Provider and Parent Essentials Concussion Global Cast July 30, 2014 John Lockhart, MD Seattle Children s Hospital Chronic Traumatic Encephaly (CTE) Working Definition Chronic

More information

Cheyenne 11/28 Neurological Disorders II. Transmissible Spongiform Encephalopathy

Cheyenne 11/28 Neurological Disorders II. Transmissible Spongiform Encephalopathy Cheyenne 11/28 Neurological Disorders II Transmissible Spongiform Encephalopathy -E.g Bovine4 Spongiform Encephalopathy (BSE= mad cow disease), Creutzfeldt-Jakob disease, scrapie (animal only) -Sporadic:

More information

Delirium & Dementia. Nicholas J. Silvestri, MD

Delirium & Dementia. Nicholas J. Silvestri, MD Delirium & Dementia Nicholas J. Silvestri, MD Outline Delirium vs. Dementia Neural pathways relating to consciousness Encephalopathy Stupor Coma Dementia Delirium vs. Dementia Delirium Abrupt onset Lasts

More information

ORIGINAL CONTRIBUTION. Neuropathologic Outcome of Mild Cognitive Impairment Following Progression to Clinical Dementia

ORIGINAL CONTRIBUTION. Neuropathologic Outcome of Mild Cognitive Impairment Following Progression to Clinical Dementia ORIGINAL CONTRIBUTION Neuropathologic Outcome of Mild Cognitive Impairment Following Progression to Clinical Dementia Gregory A. Jicha, MD, PhD; Joseph E. Parisi, MD; Dennis W. Dickson, MD; Kris Johnson,

More information

ORIGINAL CONTRIBUTION. Clinical and Psychometric Distinction of Frontotemporal and Alzheimer Dementias

ORIGINAL CONTRIBUTION. Clinical and Psychometric Distinction of Frontotemporal and Alzheimer Dementias ORIGINAL CONTRIBUTION Clinical and Psychometric Distinction of Frontotemporal and Alzheimer Dementias Rajka M. Liscic, MD, PhD; Martha Storandt, PhD; Nigel J. Cairns, PhD; John C. Morris, MD Background:

More information

Frontotemporal dementia and dementia with Lewy bodies in a case-control study of Alzheimer s disease

Frontotemporal dementia and dementia with Lewy bodies in a case-control study of Alzheimer s disease International Psychogeriatrics: page 1 of 8 C 2009 International Psychogeriatric Association doi:10.1017/s1041610209009454 Frontotemporal dementia and dementia with Lewy bodies in a case-control study

More information

Prof Tim Anderson. Neurologist University of Otago Christchurch

Prof Tim Anderson. Neurologist University of Otago Christchurch Prof Tim Anderson Neurologist University of Otago Christchurch Tim Anderson Christchurch Insidious cognitive loss From subjective memory complaints (SMC) to dementia Case 1. AR. 64 yrs Male GP referral

More information

ORIGINAL CONTRIBUTION. Detecting Dementia With the Mini-Mental State Examination in Highly Educated Individuals

ORIGINAL CONTRIBUTION. Detecting Dementia With the Mini-Mental State Examination in Highly Educated Individuals ORIGINAL CONTRIBUTION Detecting Dementia With the Mini-Mental State Examination in Highly Educated Individuals Sid E. O Bryant, PhD; Joy D. Humphreys, MA; Glenn E. Smith, PhD; Robert J. Ivnik, PhD; Neill

More information

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3)

UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM 1) State the 3 functions of the nervous system. 1) 2) 3) UNIT 5 REVIEW GUIDE - NERVOUS SYSTEM State the 3 functions of the nervous system. Briefly describe the general function(s) of each of the following neuron types: a) SENSORY NEURONS: b) INTERNEURONS: c)

More information

ORIGINAL CONTRIBUTION. An Observational Study of Cognitive Impairment in Amyotrophic Lateral Sclerosis

ORIGINAL CONTRIBUTION. An Observational Study of Cognitive Impairment in Amyotrophic Lateral Sclerosis ORIGINAL CONTRIBUTION An Observational Study of Cognitive Impairment in Amyotrophic Lateral Sclerosis Gregory A. Rippon, MD, MS; Nikolaos Scarmeas, MD; Paul H. Gordon, MD; Peregrine L. Murphy, PhD; Steven

More information

Frontotemporal Dementia and Related Disorders: Deciphering the Enigma

Frontotemporal Dementia and Related Disorders: Deciphering the Enigma NEUROLOGICAL PROGRESS Frontotemporal Dementia and Related Disorders: Deciphering the Enigma Keith A. Josephs, MST, MD In the past century, particularly the last decade, there has been enormous progress

More information

Confronting the Clinical Challenges of Frontotemporal Dementia

Confronting the Clinical Challenges of Frontotemporal Dementia Confronting the Clinical Challenges of Frontotemporal Dementia A look at FTD s symptoms, pathophysiology, subtypes, as well as the latest from imaging studies. By Zac Haughn, Senior Associate Editor Ask

More information

Visual Rating Scale Reference Material. Lorna Harper Dementia Research Centre University College London

Visual Rating Scale Reference Material. Lorna Harper Dementia Research Centre University College London Visual Rating Scale Reference Material Lorna Harper Dementia Research Centre University College London Background The reference materials included in this document were compiled and used in relation to

More information

CELIAC DISEASE (CD) IS A

CELIAC DISEASE (CD) IS A ORIGINAL CONTRIBUTION Cognitive Impairment and Celiac Disease William T. Hu, MD, PhD; Joseph A. Murray, MD; Melanie C. Greenaway, PhD; Joseph E. Parisi, MD; Keith A. Josephs, MST, MD Objective: To characterize

More information

Mild Cognitive Impairment

Mild Cognitive Impairment Mild Cognitive Impairment Victor W. Henderson, MD, MS Departments of Health Research & Policy (Epidemiology) and of Neurology & Neurological Sciences Stanford University Director, Stanford Alzheimer s

More information

HIV Neurology Persistence of Cognitive Impairment Despite cart

HIV Neurology Persistence of Cognitive Impairment Despite cart HIV Neurology Persistence of Cognitive Impairment Despite cart Victor Valcour MD PhD Professor of Medicine Memory and Aging Center, Dept. of Neurology University of California San Francisco, USA 8 th International

More information

Parts of the Brain. Hindbrain. Controls autonomic functions Breathing, Heartbeat, Blood pressure, Swallowing, Vomiting, etc. Upper part of hindbrain

Parts of the Brain. Hindbrain. Controls autonomic functions Breathing, Heartbeat, Blood pressure, Swallowing, Vomiting, etc. Upper part of hindbrain Parts of the Brain The human brain is made up of three main parts: 1) Hindbrain (or brainstem) Which is made up of: Myelencephalon Metencephalon 2) Midbrain Which is made up of: Mesencephalon 3) Forebrain

More information

Explain the laboratory diagnosis of Rabies?

Explain the laboratory diagnosis of Rabies? Explain the laboratory diagnosis of Rabies? The standard test for rabies testing is dfa. This test has been thoroughly evaluated for more than 40 years, and is recognized as the most rapid and reliable

More information

DISORDERS OF THE MOTOR SYSTEM. Jeanette J. Norden, Ph.D. Professor Emerita Vanderbilt University School of Medicine

DISORDERS OF THE MOTOR SYSTEM. Jeanette J. Norden, Ph.D. Professor Emerita Vanderbilt University School of Medicine DISORDERS OF THE MOTOR SYSTEM Jeanette J. Norden, Ph.D. Professor Emerita Vanderbilt University School of Medicine THE MOTOR SYSTEM To understand disorders of the motor system, we need to review how a

More information

Piano playing skills in a patient with frontotemporal dementia: A longitudinal case study

Piano playing skills in a patient with frontotemporal dementia: A longitudinal case study International Symposium on Performance Science ISBN 978-94-90306-01-4 The Author 2009, Published by the AEC All rights reserved Piano playing skills in a patient with frontotemporal dementia: A longitudinal

More information

United Council for Neurologic Subspecialties Geriatric Neurology Written Examination Content Outline

United Council for Neurologic Subspecialties Geriatric Neurology Written Examination Content Outline United Council for Neurologic Subspecialties Geriatric Neurology Written Examination Content Outline REV 3/24/09 The UCNS Geriatric Neurology examination was established to determine the level of competence

More information

Assessing and Managing the Patient with Cognitive Decline

Assessing and Managing the Patient with Cognitive Decline Assessing and Managing the Patient with Cognitive Decline Center of Excellence For Alzheimer s Disease for State of NY Capital Region Alzheimer s Center of Albany Medical Center Earl A. Zimmerman, MD Professor

More information

Original Article Perivascular Neuritic Dystrophy Associated with Cerebral Amyloid Angiopathy in Alzheimer s Disease

Original Article Perivascular Neuritic Dystrophy Associated with Cerebral Amyloid Angiopathy in Alzheimer s Disease www.ijcep.com/ijcep711002 Original Article Perivascular Neuritic Dystrophy Associated with Cerebral Amyloid Angiopathy in Alzheimer s Disease Kenichi Oshima, Hirotake Uchikado and Dennis W. Dickson Department

More information

ORIGINAL CONTRIBUTION. Cerebrospinal Fluid -Amyloid 42 and Tau Proteins as Biomarkers of Alzheimer-Type Pathologic

ORIGINAL CONTRIBUTION. Cerebrospinal Fluid -Amyloid 42 and Tau Proteins as Biomarkers of Alzheimer-Type Pathologic ORIGINAL CONTRIBUTION Cerebrospinal Fluid -Amyloid 42 and Tau Proteins as Biomarkers of Alzheimer-Type Pathologic Changes in the Brain Tero Tapiola, MD, PhD; Irina Alafuzoff, MD, PhD; Sanna-Kaisa Herukka,

More information

MCI and Dementia. Gerontechnology, Normal Cognitive Aging Process. Aging does not equate to loss of all cognitive abilities

MCI and Dementia. Gerontechnology, Normal Cognitive Aging Process. Aging does not equate to loss of all cognitive abilities MCI and Dementia Gerontechnology, 2016 Normal Cognitive Aging Process Aging does not equate to loss of all cognitive abilities Commonly Certain held misconception cognitive domains normally decline with

More information

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 I. Introduction A. Appearance 1. physical 2. weight 3. relative weight B. Major parts of the brain 1. cerebrum 2.

More information

ORIGINAL CONTRIBUTION. Clinical and Pathological Continuum of Multisystem TDP-43 Proteinopathies

ORIGINAL CONTRIBUTION. Clinical and Pathological Continuum of Multisystem TDP-43 Proteinopathies ORIGINAL CONTRIBUTION Clinical and Pathological Continuum of Multisystem TDP-4 Proteinopathies Felix Geser, MD, PhD; Maria Martinez-Lage, MD; John Robinson, BS; Kunihiro Uryu, PhD; Manuela Neumann, MD;

More information

Subject Index. Band of Giacomini 22 Benton Visual Retention Test 66 68

Subject Index. Band of Giacomini 22 Benton Visual Retention Test 66 68 Subject Index Adams, R.D. 4 Addenbrooke s Cognitive Examination 101 Alzheimer s disease clinical assessment histological imaging 104 neuroimaging 101 104 neuropsychological assessment 101 clinical presentation

More information

3.02 Understand the functions and disorders of the nervous system Understand the functions and disorders of the nervous system

3.02 Understand the functions and disorders of the nervous system Understand the functions and disorders of the nervous system 3.02 Understand the functions and disorders of the nervous system 1 3.02 Essential Questions What are the functions of the nervous system? What are some disorders of the nervous system? How are nervous

More information

The Neuroscience of Music in Therapy

The Neuroscience of Music in Therapy Course Objectives The Neuroscience of Music in Therapy Unit I. Learn Basic Brain Information Unit II. Music in the Brain; Why Music Works Unit III. Considerations for Populations a. Rehabilitation b. Habilitation

More information

The Neurology of HIV Infection. Carolyn Barley Britton, MD, MS Associate Professor of Clinical Neurology Columbia University

The Neurology of HIV Infection. Carolyn Barley Britton, MD, MS Associate Professor of Clinical Neurology Columbia University The Neurology of HIV Infection Carolyn Barley Britton, MD, MS Associate Professor of Clinical Neurology Columbia University HIV/AIDS Epidemiology World-wide pandemic, 40 million affected U.S.- Disproportionate

More information

Duus' Topical Diagnosis in Neurology

Duus' Topical Diagnosis in Neurology Duus' Topical Diagnosis in Neurology Anatomy - Physiology - Signs - Symptoms Bearbeitet von Michael Frotscher 1. Auflage 2005. Taschenbuch. 532 S. Paperback ISBN 978 3 13 612804 6 Format (B x L): 19 x

More information

MRI images of the cerebellum:

MRI images of the cerebellum: In this lecture we will talk about: MRI images of the cerebellum The cerebellum function Anatomy of the cerebellum Connection mass between cerebullum & cerebral cortex Cells and fiber of the cerebellum

More information

Introduction to the Central Nervous System: Internal Structure

Introduction to the Central Nervous System: Internal Structure Introduction to the Central Nervous System: Internal Structure Objective To understand, in general terms, the internal organization of the brain and spinal cord. To understand the 3-dimensional organization

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

ORIGINAL CONTRIBUTION. Clinical, Genetic, and Pathologic Characteristics of Patients With Frontotemporal Dementia and Progranulin Mutations

ORIGINAL CONTRIBUTION. Clinical, Genetic, and Pathologic Characteristics of Patients With Frontotemporal Dementia and Progranulin Mutations ORIGINAL CONTRIBUTION Clinical, Genetic, and Pathologic Characteristics of Frontotemporal Dementia and Progranulin Mutations Vivianna M. Van Deerlin, MD, PhD; Elisabeth McCarty Wood, MS; Peachie Moore,

More information

Nervous Systems. Chapter 49. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Nervous Systems. Chapter 49. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 49 Nervous Systems PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Concept

More information

Ruolo dei biomarcatori come criterio di supporto nella diagnostica delle demenze ad esordio precoce

Ruolo dei biomarcatori come criterio di supporto nella diagnostica delle demenze ad esordio precoce Ruolo dei biomarcatori come criterio di supporto nella diagnostica delle demenze ad esordio precoce ALESSANDRO MARTORANA UOC NEUROLOGIA-CENTRO ALZHEIMER POLICLINICO TOR VERGATA-UNIVERSITÀ DI ROMA TOR VERGATA

More information

Biology 3201 Nervous System #2- Anatomy. Components of a Nervous System

Biology 3201 Nervous System #2- Anatomy. Components of a Nervous System Biology 3201 Nervous System #2- Anatomy Components of a Nervous System In any nervous system, there are 4 main components: (1) sensors: gather information from the external environment (sense organs) (2)

More information

ORIGINAL CONTRIBUTION. Distinct Antemortem Profiles in Patients With Pathologically Defined Frontotemporal Dementia

ORIGINAL CONTRIBUTION. Distinct Antemortem Profiles in Patients With Pathologically Defined Frontotemporal Dementia ORIGINAL CONTRIBUTION Distinct Antemortem Profiles in Patients With Pathologically Defined Frontotemporal Dementia Murray Grossman, MD; David J. Libon, PhD; Mark S. Forman, MD, PhD; Lauren Massimo, LPN;

More information

Frontotemporal Dementia and Motor Neuron Disease: Report of 3 Cases in Taiwan and Literature Review

Frontotemporal Dementia and Motor Neuron Disease: Report of 3 Cases in Taiwan and Literature Review 202 Frontotemporal Dementia and Motor Neuron Disease: Report of 3 Cases in Taiwan and Literature Review Kai-Hsiang Chen, Ming-Jang Chiu, Ting-Wen Cheng, Jen-Jen Su Abstract- Purpose: Case reports and a

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Lecture - Chapter 13: Central Nervous System

Lecture - Chapter 13: Central Nervous System Lecture - Chapter 13: Central Nervous System 1. Describe the following structures of the brain, what is the general function of each: a. Cerebrum b. Diencephalon c. Brain Stem d. Cerebellum 2. What structures

More information

Chapter 12b. Overview

Chapter 12b. Overview Chapter 12b Spinal Cord Overview Spinal cord gross anatomy Spinal meninges Sectional anatomy Sensory pathways Motor pathways Spinal cord pathologies 1 The Adult Spinal Cord About 18 inches (45 cm) long

More information

Clement T. Loy, Jillian J. Kril, Julian N. Trollor, Matthew C. Kiernan, John B. J. Kwok, Steve Vucic, Glenda M. Halliday and John R.

Clement T. Loy, Jillian J. Kril, Julian N. Trollor, Matthew C. Kiernan, John B. J. Kwok, Steve Vucic, Glenda M. Halliday and John R. The case of a 48 year-old woman with bizarre and complex delusions Clement T. Loy, Jillian J. Kril, Julian N. Trollor, Matthew C. Kiernan, John B. J. Kwok, Steve Vucic, Glenda M. Halliday and John R. Hodges

More information

Behavioural variant frontotemporal dementia with dominant gait disturbances case report

Behavioural variant frontotemporal dementia with dominant gait disturbances case report Psychiatr. Pol. 2016; 50(2): 329 336 PL ISSN 0033-2674 (PRINT), ISSN 2391-5854 (ONLINE) www.psychiatriapolska.pl DOI: http://dx.doi.org/10.12740/pp/58937 Behavioural variant frontotemporal dementia with

More information

Clinical Differences Among Four Common Dementia Syndromes. a program of Morningside Ministries

Clinical Differences Among Four Common Dementia Syndromes. a program of Morningside Ministries Clinical Differences Among Four Common Dementia Syndromes a program of Morningside Ministries Introduction Four clinical dementia syndromes account for 90% of all cases after excluding reversible causes

More information

WHAT IS DEMENTIA? An acquired syndrome of decline in memory and other cognitive functions sufficient to affect daily life in an alert patient

WHAT IS DEMENTIA? An acquired syndrome of decline in memory and other cognitive functions sufficient to affect daily life in an alert patient DEMENTIA WHAT IS DEMENTIA? An acquired syndrome of decline in memory and other cognitive functions sufficient to affect daily life in an alert patient Progressive and disabling Not an inherent aspect of

More information

Differential diagnosis of Frontotemporal Dementia FTLD using visual rating scales

Differential diagnosis of Frontotemporal Dementia FTLD using visual rating scales Differential diagnosis of Frontotemporal Dementia FTLD using visual rating scales Poster No.: C-0491 Congress: ECR 2016 Type: Scientific Exhibit Authors: S. Manouvelou 1, G. ANYFANTAKIS 2, V. Koutoulidis

More information

CONSENSUS PAPER. Acta Neuropathol (2007) 114:5 22 DOI /s

CONSENSUS PAPER. Acta Neuropathol (2007) 114:5 22 DOI /s Acta Neuropathol (2007) 114:5 22 DOI 10.1007/s00401-007-0237-2 CONSENSUS PAPER Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal

More information

ORIGINAL CONTRIBUTION. Differentiation Between Primary Lateral Sclerosis and Amyotrophic Lateral Sclerosis

ORIGINAL CONTRIBUTION. Differentiation Between Primary Lateral Sclerosis and Amyotrophic Lateral Sclerosis ORIGINAL CONTRIBUTION Differentiation Between rimary Lateral Sclerosis and Amyotrophic Lateral Sclerosis Examination of Symptoms and Signs at Disease Onset and During Follow-up Maria Carmela Tartaglia,

More information

Palliative Approach to the Person with Advanced Dementia

Palliative Approach to the Person with Advanced Dementia Mid North Coast Rural Palliative Care Project Link Nurse Education 2004 Palliative Approach to the Person with Advanced Dementia Anne Sneesby CNC - ACAT To care for the dying is a very human opportunity

More information

The Nervous System. Overall Function

The Nervous System. Overall Function The Nervous System The Nervous System Overall Function COMMUNICATION Works with the endocrine system in regulating body functioning, but the nervous system is specialized for SPEED Neurons A neuron is

More information

Stroke School for Internists Part 1

Stroke School for Internists Part 1 Stroke School for Internists Part 1 November 4, 2017 Dr. Albert Jin Dr. Gurpreet Jaswal Disclosures I receive a stipend for my role as Medical Director of the Stroke Network of SEO I have no commercial

More information

The CNS and PNS: How is our Nervous System Organized?

The CNS and PNS: How is our Nervous System Organized? Honors Biology Guided Notes Chapter 28 Nervous System Name 28.10 28.19 The CNS and PNS: How is our Nervous System Organized? ANIMAL NERVOUS SYSTEMS Define Cephalization and Centralization. What type of

More information

The Brain and Cranial Nerves Pg Three Main Regions of the Brain. Forebrain

The Brain and Cranial Nerves Pg Three Main Regions of the Brain. Forebrain The Brain and Cranial Nerves Pg. 129 Three Main Regions of the Brain Forebrain Cerbral hemispheres Diencephalon Midbrain Brain stem Hindbrain Pons Cerebellum Medulla oblongata Interprets sensory inputs

More information

The Brain and Cranial Nerves Pg. 129

The Brain and Cranial Nerves Pg. 129 The Brain and Cranial Nerves Pg. 129 Three Main Regions of the Brain Forebrain Cerbral hemispheres Diencephalon Midbrain Brain stem Hindbrain Pons Cerebellum Medulla oblongata Forebrain Interprets sensory

More information

GENERAL PRINCIPLES OF NEUROLOGY- John W. Day, M.D., Ph.D.

GENERAL PRINCIPLES OF NEUROLOGY- John W. Day, M.D., Ph.D. I. TAKE HOME POINTS FOR THIS LECTURE A. Localizing the disease is the first step in diagnosing a neurological disorder. B. Time course of the disease (acute, subacute, or chronic) indicates the pathophysiological

More information

Biomarkers for Alzheimer s disease

Biomarkers for Alzheimer s disease Biomarkers for Alzheimer s Disease Henrik Zetterberg, MD, PhD Professor of Neurochemistry The Sahlgrenska Academy, University of Gothenburg 1 Alzheimer s disease 2 Neuropathological criteria for Alzheimer

More information

Cognitive and motor assessment in autopsy-proven corticobasal degeneration

Cognitive and motor assessment in autopsy-proven corticobasal degeneration Cognitive and motor assessment in autopsy-proven corticobasal degeneration R. Murray, BS; M. Neumann, MD; M.S. Forman, MD, PhD; J. Farmer, MSc; L. Massimo, LPN; A. Rice, BS; B.L. Miller, MD; J.K. Johnson,

More information

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific

More information

Nervous System- Chapters 7, 8

Nervous System- Chapters 7, 8 Nervous System- Chapters 7, 8 1 Surgical Papyrus Egyptian hieroglyphics. 17 th Century B.C. Oldest known surgical treatise. 48 case histories are outlined. 2 Organization of the Nervous System Consists

More information

ALZHEIMER S DISEASE. Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey

ALZHEIMER S DISEASE. Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey ALZHEIMER S DISEASE Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey Topics Covered Demography Clinical manifestations Pathophysiology Diagnosis Treatment Future trends Prevalence and Impact

More information

By Mr. Danilo Villar Rogayan Jr.

By Mr. Danilo Villar Rogayan Jr. The Nervous System By Mr. Danilo Villar Rogayan Jr. Instructor I, Department of Natural Sciences College of Agriculture & Veterinary Medicine RMTU San Marcelino Introduction Highly complex system of two

More information

Unit VIII Problem 3 Neuroanatomy: Brain Stem, Cranial Nerves and Scalp

Unit VIII Problem 3 Neuroanatomy: Brain Stem, Cranial Nerves and Scalp Unit VIII Problem 3 Neuroanatomy: Brain Stem, Cranial Nerves and Scalp - Brain stem: It is connected to the cerebellum and cerebral hemispheres. Rostral end of brain stem: diencephalon is the area which

More information

Neuropsychiatric Manifestations in Vascular Cognitive Impairment Patients with and without Dementia

Neuropsychiatric Manifestations in Vascular Cognitive Impairment Patients with and without Dementia 86 Neuropsychiatric Manifestations in Vascular Cognitive Impairment Patients with and without Dementia Pai-Yi Chiu 1,3, Chung-Hsiang Liu 2, and Chon-Haw Tsai 2 Abstract- Background: Neuropsychiatric profile

More information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information NERVOUS SYSTEM Monitor changes External / internal Integrate input Primary Functions Process, interpret, make decisions, store information Initiate a response E.g., movement, hormone release, stimulate/inhibit

More information

Guide to Draw It to Know It Neuroanatomy (relative to Medical Neuro, UI-COM Urbana)

Guide to Draw It to Know It Neuroanatomy (relative to Medical Neuro, UI-COM Urbana) Guide to Draw It to Know It Neuroanatomy (relative to Medical Neuro, UI-COM Urbana) Note: Sometimes DITKI goes into far more detail than is necessary for the course, and in other cases not enough. As helpful

More information

Dementia. Assessing Brain Damage. Mental Status Examination

Dementia. Assessing Brain Damage. Mental Status Examination Dementia Assessing Brain Damage Mental status examination Information about current behavior and thought including orientation to reality, memory, and ability to follow instructions Neuropsychological

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

Spinal Cord Organization. January 12, 2011

Spinal Cord Organization. January 12, 2011 Spinal Cord Organization January 12, 2011 Spinal Cord 31 segments terminates at L1-L2 special components - conus medullaris - cauda equina no input from the face Spinal Cord, Roots & Nerves Dorsal root

More information

Section Objectives. Module 4: Introduction to ID and Dementia. What is the difference between ID and dementia? 12/13/2017

Section Objectives. Module 4: Introduction to ID and Dementia. What is the difference between ID and dementia? 12/13/2017 Module 4: Introduction to ID and Dementia Matthew P. Janicki, Ph.D. mjanicki@uic.edu 1 Section Objectives Participants will be able to: Identify how dementia may appear different in adults with ID. Apply

More information

Nervous System The Brain and Spinal Cord Unit 7b

Nervous System The Brain and Spinal Cord Unit 7b Nervous System The Brain and Spinal Cord Unit 7b Chetek High School Mrs. Michaelsen 9.12 Meninges A. Meninges 1. The organs of the CNS are covered by membranes a. The meninges are divided into 3 layers:

More information