Tumor Tracking Current & Future Developments. Josh Evans, Ph.D. Virginia Commonwealth University Richmond, VA

Size: px
Start display at page:

Download "Tumor Tracking Current & Future Developments. Josh Evans, Ph.D. Virginia Commonwealth University Richmond, VA"

Transcription

1 Tumor Tracking Current & Future Developments Josh Evans, Ph.D. Virginia Commonwealth University Richmond, VA

2 None. Disclosures

3 To understand: Learning Objectives the physiological characteristics of tumor motion in different treatment sites. the basics of existing technology for tumor tracking and their limitations. the background and concept of future technologies for tumor tracking.

4 Outline Tumor motion characteristics Lung, prostate, brain Requirements for successful tumor tracking Identify, anticipate, reposition, adapt dosimetry Current and Future Systems CyberKnife, Robotic couch, Vero, integrated MRI-Treatment

5 What organs move? Breathing Kidneys Lungs Pancreas Esophagus Liver Breast Peristalsis Gyn GU

6 Lung motion Periodic, but can be irregular Hysteresis Location of tumor in lung can be important P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang et al., The management of respiratory motion in radiation oncology report of AAPM Task Group 76, Med Phys 33 (10), (2006).

7 Breathing motion Surface monitoring illustrates baseline breathing amplitude changes over time P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang et al., The management of respiratory motion in radiation oncology report of AAPM Task Group 76, Med Phys 33 (10), (2006).

8 Prostate Calypso EM motion traces (9 10 mins) Prostate motion can be irregular and unpredictable P. Kupelian, T. Willoughby, A. Mahadevan, T. Djemil, G. Weinstein, S. Jani et al., Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy, Int J Radiat Oncol Biol Phys 67 (4), (2007).

9 Brain CyberKnife tracking experience of brain SRS patient Baseline drift of skull postion over 30 min Emphasizes need for treatment efficiency and intra-fraction position monintoring 8 M. J. Murphy, Tracking moving organs in real time, Semin Radiat Oncol 14 (1), (2004).

10 Motion management approaches Motion-encompassing methods Respiratory-gating Breath-hold Forced shallow breathing (compression) Respiration-synchronized techniques P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang et al., The management of respiratory motion in radiation oncology report of AAPM Task Group 76, Med Phys 33 (10), (2006).

11 Outline Tumor motion characteristics Lung, prostate, brain Requirements for successful tumor tracking Identify, anticipate, reposition, adapt dosimetry Current and Future Systems CyberKnife, Robotic couch, Vero, integrated MRI-Treatment

12 Successful tumor tracking 1. Identify tumor position in real time 2. Anticipate tumor motion (compensate for system lag) 3. Reposition beam in real time 4. Adapt dosimetry for changing target and critical structure locations.

13 Successful tumor tracking 1. How am I going to locate the target? 2. How far ahead do I need to know where the target is? 3. How am I re-aligning the beam & target? 4. Could this affect my target coverage or OAR sparing?

14 Successful tumor tracking 1. How am I going to locate the target? What are you locating? Visualize target directly Implanted fiducials Target position surrogates Imaging modality Ionizing: 2d, 3d, x-ray Non-ionizing: EM transponders, MRI, ultrasound Imaging frequency If ionizing; cumulative dose considerations

15 Calypso 1. How am I going to locate the target? EM transponder fiducial tracking FDA approved for prostate; under consideration for lung tracking Urology Nevada

16 Successful tumor tracking 2. How far ahead do I need to know where the target is? What is the total system lag time? Image acquisition, data processing, target/beam realignment Predictive motion models Residual uncertainty: add to target margin

17 Motion prediction 2. How far ahead do I need to know where the target is? System latency Prediction algorithm accuracy Most work done for breathing motion Krauss compare 4 motion prediction models for breathing motion RMSE prediction errors ~ 1 mm (0.2 s latency) to 2 mm (0.6 s latency) TG-76 recommends total system latency < 0.5 sec A. Krauss, S. Nill, and U. Oelfke, The comparative performance of four respiratory motion predictors for real-time tumour tracking, Phys Med Biol 56 (16), (2011).

18 Successful tumor tracking 3. How am I re-aligning the beam and target? Move the beam MLC tracking Gimbaled linac head Robot-mounted linac Move the patient Re-position couch

19 Dynamic MLC tracking 3. How am I re-aligning the beam & target? Move the MLC to align with the moving target Sawant 2008 Good tracking accuracy < 1 mm for in plane motion Lower efficiency for high freqency motion perpendicular to leaf direction. A. Sawant, et al., Management of three-dimensional intrafraction motion through real-time DMLC tracking, Med Phys 35 (5), (2008).

20 Successful tumor tracking 4. Could this affect my target coverage or OAR sparing? Will I miss my target? Am I moving my beam in to normal tissues? Are target and normal tissues moving rigidly or deformably? What s the dosimetric effect of not tracking? How much improvement with tracking?

21 4. Could this affect my target coverage or OAR sparing? Time-resolved dosimetry Poulsen 2012 TPS calculation of timeresolved dosimetry Validated in dynamic thorax phantom with film dosimetry (simple 1D motion) Limitations: Rigid shift of whole patient: no rotations, no deformations P. R. Poulsen, et al., A method of dose reconstruction for moving targets compatible with dynamic treatments, Med Phys 39 (10), (2012).

22 Dynamic Prostate Tracking Keall 2014 recent technical note on dynamic tracking for prostate patient 1. Calypso EM transponder fiducials used for target tracking 2. No prediction used since prostate motion typically slow and non-periodic 3. Dynamic MLC repositioning 4. Dose perturbation Fractional rectum V60Gy: + 5% (with tracking) + 30% (no tracking) P. J. Keall, E. Colvill, R. O'Brien, J. A. Ng, P. R. Poulsen, T. Eade et al., The first clinical implementation of electromagnetic transponder-guided MLC tracking, Med Phys 41 (2), (2014).

23 Very active research topic Relevant articles in June 2014 issue of Medical Physics: S. Yip, J. Rottman, and R. Berbeco, The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking, Medical Physics 41, (2014). Y. Ge, R. O'Brien, C. Shieh, J. T. Booth, and P. Keall, Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator, Medical Physics 41, (2014). B. Nelms, D. Opp, G. Zhang, E. Moros, and V. Feygelman, Motion as perturbation II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT, Medical Physics 41, (2014).

24 Outline Tumor motion characteristics Lung, prostate, brain Requirements for successful tumor tracking Identify, anticipate, reposition, adapt dosimetry Current and Future Systems CyberKnife, Robotic couch, Vero, integrated MRI-Treatment

25 CyberKnife First clinical system designed to detect and compensate for intrafx motion. Hybrid tumor monitoring Surface imaging for continuous breathing monitoring Fiducial based tracking of tumor on stereoscopic x-ray system Build correspondence model Move entire linac mounted on robot. Image from Wikipedia

26 Cyberknife lung tumor tracking Seppenwoolde 2007 Simulation to test the CyberKnife correspondence model 8 patients with external and internal lung tumor tracking data 95 th percentile of 3D errors ~ 2-4 mm Good discussion on model update frequency Y. Seppenwoolde, et al. Accuracy of tumor motion compensation algorithm from a robotic respiratory tracking system: a simulation study, Med Phys 34 (7), (2007).

27 Robotic couch re-positioning 3. How am I moving my beam? Move the patient to align with the statically positioned beam Translate and rotate around a virtual pivot point set to isocenter Images courtesy of Civco

28 3. How am I moving my beam? Move the patient to align with the statically positioned beam McNamara patient breathing traces: 2 10 mins each Program phantom: record motion with IR cameras Average over 3 breathing cycles to estimate baseline drift Lower frequency couch correction scheme: 10 sec delivery bins Overall mean RMSD from 4.9 mm (no correction) to 1.7 mm (couch correction) J. E. McNamara, et al., Toward correcting drift in target position during radiotherapy via computercontrolled couch adjustments on a programmable Linac, Med Phys 40 (5), (2013).

29 Vero Ring gantry for stability MV EPID imaging Orthogonal kv imaging Gimbaled MV linac with MLC Improve isocenter accuracy Tumor tracking Images courtesy of Vero

30 Vero tumor tracking 3. How am I moving my beam? Use gimbaled linac Depuydt 2011 Assess gimbals tracking with moving beam s light field and digital camera 2d Lego robot reproduce lung tumor trajectories System lag = 47.7 ms for both directions (total ~ 200 ms for real-time flouroscopic tracking) 2d tumor tracking errors: 0.54 mm ± 0.21mm T. Depuydt, et al., Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system, Radiother Oncol 98 (3), (2011).

31 Depuydt 2013 Vero tumor tracking Simulate dynamic tumor tracking process to assess workflow with Vero (5 patients) Continuous surface imaging and fiducial based x-ray imaging Visicoil placed in tumor for tracking 3.2 mins to build correspondence model Average of ~ 9 mins from entering room to first beam on. Tracking errors of ~ 0.5 mm to 1.0 mm Image dose: average = 1.8 mgy/min for 1 Hz x-ray monitoring T. Depuydt, K. Poels, D. Verellen, B. Engels, C. Collen, C. Haverbeke et al., Initial assessment of tumor tracking with a gimbaled linac system in clinical circumstances: a patient simulation study, Radiother Oncol 106 (2), (2013).

32 Integrated MRI-MV treatment MRI Vs. x-ray: machines Improved soft tissue contrast No need to implant fiducials Non-ionizing No imaging frequency / imaging dose tradeoff Integrating MRI scanner with MV treatment machine is technically challenging Magnet strength: Tesla MV source: Co-60 Vs. Linac MRI-MV orientation: in-line, perpendicular, rotating

33 MRI-MV configurations Orientation of magnetic field and treatment beam has important implications Engineering challenges Linac output Patient dosimetry C. Kirkby, et al. Lung dosimetry in a linac-mri radiotherapy unit with a longitudinal magnetic field, Med Phys 37 (9), (2010). D. E. Constantin, et al. A study of the effect of in-line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators, Med Phys 38 (7), (2011).

34 First clinically available: ViewRay Fixed cylindrical configuration 0.35 T super-conducting magnet 3x Co-60 sources Images courtesy of ViewRay

35 ViewRay imaging Can image either 1 4 frames / second OR 3 2 frames / second Images courtesy of ViewRay

36 Successful tumor tracking 1. Identify tumor position 2. Anticipate tumor motion (system lag) 3. Reposition beam 4. Adapt dosimetry

37 What was the first clinical system to employ realtime motion correction? 94% 1. CyberKnife 2. GammaKnife 3. Calypso 4. ViewRay 5. Vero 2% 3% 0% 0%

38 What was the first clinical system to employ realtime motion correction? 1. CyberKnife 2. GammaKnife 3. Calypso 4. ViewRay 5. Vero M. J. Murphy, Tracking moving organs in real time, Semin Radiat Oncol 14 (1), (2004). 9 A. Schweikard, G. Glosser, M. Bodduluri, M. J. Murphy, and J. R. Adler, Robotic motion compensation for respiratory movement during radiosurgery, Comput Aided Surg 5 (4), (2000). ANSWER = 1: ref = Murphy 2004 seminars in RO & Schwiekard 2000

39 The Vero system uses to compensate for tumor motion and has been shown in phantom studies to achieve a mean tracking accuracy of ~ mm: 5% 1. Dynamic couch movement / ~ 2 mm 2. Gimbaled linac motion / ~ 0.5 mm 3. Dynamic MLC motion / ~ 0.8 mm 4. Gimbaled linac motion / ~ 3 mm 5. Dynamic MLC motion / ~ 1 mm 77% 0% 14% 5%

40 The Vero system uses to compensate for tumor motion and has been shown in phantom studies to achieve a mean tracking accuracy of ~ mm: 1. Dynamic couch movement / ~ 2 mm 2. Gimbaled linac motion / ~ 0.5 mm 3. Dynamic MLC motion / ~ 0.8 mm 4. Gimbaled linac motion / ~ 3 mm 5. Dynamic MLC motion / ~ 1 mm ANSWER = 2: ref = Depuydt 2011 T. Depuydt, D. Verellen, O. Haas, T. Gevaert, N. Linthout, M. Duchateau et al., Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system, Radiother Oncol 98 (3), (2011).

41 The ViewRay system has a configuration and can image a single plane up to times / second 10% 1. Parallel / 2 times per sec 2. Perpendicular / 8 times per sec 3. Oblique / 2 times per sec 4. Parallel / 4 times per sec 5. Perpendicular / 4 times per sec 11% 5% 18% 56%

42 The ViewRay system has a configuration and can image a single plane up to times / second 1. Parallel / 2 times per sec 2. Perpendicular / 8 times per sec 3. Oblique / 2 times per sec 4. Parallel / 4 times per sec 5. Perpendicular / 4 times per sec ANSWER = 5: ref = Dempsey 2005 J. Dempsey, D. Benoit, J. Fitzsimmons, A. Haghighat, J. Li, D. Low et al., A device for realtime 3D image-guided IMRT, Int J Radiat Oncol Biol Phys 63 (2), S202 (2005).

43 To minimize the impact of breathing irregularity on lung target prediction algorithms, TG-76 recommends that overall system lag for real-time tumor tracking should not exceed : 9% ms 88% ms 1% 2% 2% ms ms ms

44 To minimize the impact of breathing irregularity on lung target prediction algorithms, TG-76 recommends that overall system lag for real-time tumor tracking should not exceed : ms ms ms ms ms P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang et al., The management of respiratory motion in radiation oncology report of AAPM Task Group 76, Med Phys 33 (10), (2006). ANSWER = 2: ref = Keall 2006 (TG-76)

45 Tumor Tracking Current & Future Developments Josh Evans, Ph.D. Virginia Commonwealth University Richmond, VA

Motion gating and tracking techniques: overview and recent developments

Motion gating and tracking techniques: overview and recent developments Motion gating and tracking techniques: overview and recent developments Gig S Mageras, PhD, FAAPM Department of Medical Physics Memorial Sloan Kettering Cancer Center, New York MSK/gsm 15-Jun-2018 1 Disclosure

More information

Lung tumor motion prediction using data learned offline and during treatment

Lung tumor motion prediction using data learned offline and during treatment GA1 Lung tumor motion prediction using data learned offline and during treatment Troy Teo, K. Guo, B. Ahmed, P. Kawalec, N. Alayoubi & S. Pistorius Medical Physics, CancerCare Manitoba, Winnipeg. Physics

More information

slide courtesy of Daniel Low Motion management Sofie Ceberg PhD, Medical Physicist Skåne University Hospital, Lund

slide courtesy of Daniel Low Motion management Sofie Ceberg PhD, Medical Physicist Skåne University Hospital, Lund slide courtesy of Daniel Low Motion management Sofie Ceberg PhD, Medical Physicist Skåne University Hospital, Lund Motion management - in radiotherapy Motion Management What? How to handle the patient/tumor

More information

Potential conflicts-of-interest. Respiratory Gated and Four-Dimensional Tumor Tracking Radiotherapy. Educational objectives. Overview.

Potential conflicts-of-interest. Respiratory Gated and Four-Dimensional Tumor Tracking Radiotherapy. Educational objectives. Overview. Respiratory Gated and Four-Dimensional Tumor Tracking Radiotherapy Potential conflicts-of-interest I am PI of a sponsored research agreement between Stanford University and Varian Medical Systems P Keall

More information

IGRT Protocol Design and Informed Margins. Conflict of Interest. Outline 7/7/2017. DJ Vile, PhD. I have no conflict of interest to disclose

IGRT Protocol Design and Informed Margins. Conflict of Interest. Outline 7/7/2017. DJ Vile, PhD. I have no conflict of interest to disclose IGRT Protocol Design and Informed Margins DJ Vile, PhD Conflict of Interest I have no conflict of interest to disclose Outline Overview and definitions Quantification of motion Influences on margin selection

More information

Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy*

Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy* Impact of sampling interval in training data acquisition on intrafractional predictive accuracy of indirect dynamic tumor-tracking radiotherapy* Nobutaka Mukumoto a), Mitsuhiro Nakamura, Mami Akimoto,

More information

Subject: Image-Guided Radiation Therapy

Subject: Image-Guided Radiation Therapy 04-77260-19 Original Effective Date: 02/15/10 Reviewed: 01/25/18 Revised: 01/01/19 Subject: Image-Guided Radiation Therapy THIS MEDICAL COVERAGE GUIDELINE IS NOT AN AUTHORIZATION, CERTIFICATION, EXPLANATION

More information

SRS Uncertainty: Linac and CyberKnife Uncertainties

SRS Uncertainty: Linac and CyberKnife Uncertainties SRS Uncertainty: Linac and CyberKnife Uncertainties Sonja Dieterich, PhD Linac/CyberKnife Technological Uncertainties 1 Linac Mechanical/Radiation Isocenters Depuydt, Tom, et al. "Computer aided analysis

More information

8/3/2016. Outline. Site Specific IGRT Considerations for Clinical Imaging Protocols. Krishni Wijesooriya, PhD University of Virginia

8/3/2016. Outline. Site Specific IGRT Considerations for Clinical Imaging Protocols. Krishni Wijesooriya, PhD University of Virginia Site Specific IGRT Considerations for Clinical Imaging Protocols Krishni Wijesooriya, PhD University of Virginia Outline Image registration accuracies for different modalities What imaging modality best

More information

EORTC Member Facility Questionnaire

EORTC Member Facility Questionnaire Page 1 of 9 EORTC Member Facility Questionnaire I. Administrative Data Name of person submitting this questionnaire Email address Function Phone Institution Address City Post code Country EORTC No Enter

More information

CyberKnife Technology in Ablative Radiation Therapy. Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017

CyberKnife Technology in Ablative Radiation Therapy. Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017 CyberKnife Technology in Ablative Radiation Therapy Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017 Objectives Components and work flow of CyberKnife Motion management of CyberKnife

More information

8/2/2018. Disclosure. Online MR-IG-ART Dosimetry and Dose Accumulation

8/2/2018. Disclosure. Online MR-IG-ART Dosimetry and Dose Accumulation Online MR-IG-ART Dosimetry and Dose Accumulation Deshan Yang, PhD, Associate Professor Department of Radiation Oncology, School of Medicine Washington University in Saint Louis 1 Disclosure Received research

More information

Image Guided Stereotactic Radiotherapy of the Lung

Image Guided Stereotactic Radiotherapy of the Lung Image Guided Stereotactic Radiotherapy of the Lung Jamie Marie Harris, MS DABR Avera McKennan Radiation Oncology September 25, 2015 Stereotactic Body Radiotherapy - Clinical Dose/Fractionation - Normal

More information

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA Indra J. Das,

More information

I. Equipments for external beam radiotherapy

I. Equipments for external beam radiotherapy I. Equipments for external beam radiotherapy 5 linear accelerators (LINACs): Varian TrueBeam 6, 10 & 18 MV photons, 6-18 MeV electrons, image-guided (IGRT) and intensity modulated radiotherapy (IMRT),

More information

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017 FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE Geoffrey S. Ibbott, Ph.D. June 20, 2017 1 DISCLOSURES My institution holds Strategic Partnership Research Agreements with Varian, Elekta, and Philips

More information

Intensity-Modulated and Image- Guided Radiation Treatment. Outline. Conformal Radiation Treatment

Intensity-Modulated and Image- Guided Radiation Treatment. Outline. Conformal Radiation Treatment Intensity-Modulated and Image- Guided Radiation Treatment J. Daniel Bourland, PhD Professor Departments of Radiation Oncology, Physics, and Biomedical Engineering Wake Forest University School of Medicine

More information

Performance Evaluation of Calypso (R) 4D Localization and Kilovoltage Image Guidance Systems for Interfraction Motion Management of Prostate Patients

Performance Evaluation of Calypso (R) 4D Localization and Kilovoltage Image Guidance Systems for Interfraction Motion Management of Prostate Patients Performance Evaluation of Calypso (R) 4D Localization and Kilovoltage Image Guidance Systems for Interfraction Motion Management of Prostate Patients Tomi Ogunleye, Emory University Peter J Rossi, Emory

More information

X-Ray Guided Robotic Radiosurgery for Solid Tumors

X-Ray Guided Robotic Radiosurgery for Solid Tumors X-Ray Guided Robotic Radiosurgery for Solid Tumors Mohan Bodduluri Accuray Incorporated 570 Del Rey Avenue Sunnyvale, CA 94085 USA and J. M. McCarthy Department of Mechanical and Aerospace Engineering

More information

Adaptive filtering to predict lung tumor motion during free breathing

Adaptive filtering to predict lung tumor motion during free breathing CARS 2002 - H.U Lemke, M W. Vannier; K. Inamura. A.G. Farman, K. Doi & J.H.c. Reiber (Editors) "CARS/Springer. All rights reserved. Adaptive filtering to predict lung tumor motion during free breathing

More information

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Implementation of radiosurgery and SBRT requires a fundamentally sound approach Errors don t blur out

More information

Normal tissue doses from MV image-guided radiation therapy (IGRT) using orthogonal MV and MV-CBCT

Normal tissue doses from MV image-guided radiation therapy (IGRT) using orthogonal MV and MV-CBCT Received: 28 September 2017 Revised: 17 November 2017 Accepted: 28 December 2017 DOI: 10.1002/acm2.12276 RADIATION ONCOLOGY PHYSICS Normal tissue doses from MV image-guided radiation therapy (IGRT) using

More information

Stereotaxy. Outlines. Establishing SBRT Program: Physics & Dosimetry. SBRT - Simulation. Body Localizer. Sim. Sim. Sim. Stereotaxy?

Stereotaxy. Outlines. Establishing SBRT Program: Physics & Dosimetry. SBRT - Simulation. Body Localizer. Sim. Sim. Sim. Stereotaxy? Establishing SBRT Program: Physics & Dosimetry Lu Wang, Ph.D. Radiation Oncology Department Fox Chase Cancer Center Outlines Illustrate the difference between SBRT vs. CRT Introduce the major procedures

More information

Overview of Advanced Techniques in Radiation Therapy

Overview of Advanced Techniques in Radiation Therapy Overview of Advanced Techniques in Radiation Therapy Jacob (Jake) Van Dyk Manager, Physics & Engineering, LRCP Professor, UWO University of Western Ontario Acknowledgements Glenn Bauman Jerry Battista

More information

Credentialing for the Use of IGRT in Clinical Trials

Credentialing for the Use of IGRT in Clinical Trials Credentialing for the Use of IGRT in Clinical Trials James M. Galvin, DSc Thomas Jefferson University Hospital Jefferson Medical College Philadelphia, PA and The Radiation Therapy Oncology Group RADIATION

More information

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM *

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 394 400, 2014 A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM * D. ADAM 1,2,

More information

4 Essentials of CK Physics 8/2/2012. SRS using the CyberKnife. Disclaimer/Conflict of Interest

4 Essentials of CK Physics 8/2/2012. SRS using the CyberKnife. Disclaimer/Conflict of Interest SRS using the CyberKnife Sonja Dieterich, PhD, DABR Associate Professor University of California Davis Disclaimer/Conflict of Interest Consulting agreements with Broncus Medical and CyberHeart, Inc. Scientific

More information

Stereotactic Radiosurgery. Extracranial Stereotactic Radiosurgery. Linear accelerators. Basic technique. Indications of SRS

Stereotactic Radiosurgery. Extracranial Stereotactic Radiosurgery. Linear accelerators. Basic technique. Indications of SRS Stereotactic Radiosurgery Extracranial Stereotactic Radiosurgery Annette Quinn, MSN, RN Program Manager, University of Pittsburgh Medical Center Using stereotactic techniques, give a lethal dose of ionizing

More information

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments R.A. Price Jr., Ph.D., J. Li, Ph.D., A. Pollack, M.D., Ph.D.*, L. Jin, Ph.D., E. Horwitz, M.D., M. Buyyounouski,

More information

Can we hit the target? Can we put the dose where we want it? Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy

Can we hit the target? Can we put the dose where we want it? Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy David Shepard, Ph.D. Swedish Cancer Institute Seattle, WA Timothy D. Solberg, Ph.D. University of Texas Southwestern

More information

IGRT/Adaptive Gating

IGRT/Adaptive Gating IGRT/Adaptive Gating unlocking possibilities exceeding limits with confidence PIONEERING IGRT BrainLAB is committed to providing the best radiotherapy solutions for better treatment and patient care. BrainLAB

More information

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy Original Article PROGRESS in MEDICAL PHYSICS Vol. 26, No. 3, September, 2015 http://dx.doi.org/10.14316/pmp.2015.26.3.119 Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical

More information

Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation. Research and development to advance radiotherapy

Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation. Research and development to advance radiotherapy Trajectory Modulated Arc Therapy: Application to Partial Breast Irradiation Dimitre Hristov Radiation Oncology Stanford University Research and development to advance radiotherapy New imaging platforms:

More information

Varian Edge Experience. Jinkoo Kim, Ph.D Henry Ford Health System

Varian Edge Experience. Jinkoo Kim, Ph.D Henry Ford Health System Varian Edge Experience Jinkoo Kim, Ph.D Henry Ford Health System Disclosures I participate in research funded by Varian Medical Systems. Outline of Presentation Review advanced imaging in Varian Edge Linear

More information

USE OF THE BRAINLAB EXACTRAC X-RAY 6D SYSTEM IN IMAGE-GUIDED RADIOTHERAPY

USE OF THE BRAINLAB EXACTRAC X-RAY 6D SYSTEM IN IMAGE-GUIDED RADIOTHERAPY Medical Dosimetry, Vol. 33, No. 2, pp. 124-134, 2008 Copyright 2008 American Association of Medical Dosimetrists Printed in the USA. All rights reserved 0958-3947/08/$ see front matter doi:10.1016/j.meddos.2008.02.005

More information

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor IMRT/IGRT Patient Treatment: A Community Hospital Experience Charles M. Able, Assistant Professor Disclosures I have no research support or financial interest to disclose. Learning Objectives 1. Review

More information

8/2/2017. Objectives. Disclosures. Clinical Implementation of an MR-Guided Treatment Unit

8/2/2017. Objectives. Disclosures. Clinical Implementation of an MR-Guided Treatment Unit MR-Linac is a research programme. It is not available for sale and its future availability cannot be guaranteed 8/2/2017 Clinical Implementation of an MR-Guided Treatment Unit Geoffrey S. Ibbott, Ph.D.

More information

doi: /j.ijrobp

doi: /j.ijrobp doi:10.1016/j.ijrobp.2008.07.037 Int. J. Radiation Oncology Biol. Phys., Vol. 72, No. 5, pp. 1587 1596, 2008 Copyright Ó 2008 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/08/$ see front

More information

Managing the imaging dose during image-guided radiation therapy

Managing the imaging dose during image-guided radiation therapy Managing the imaging dose during image-guided radiation therapy Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Richmond VA Imaging during radiotherapy Radiographic

More information

Pitfalls in SBRT Treatment Planning for a Moving Target

Pitfalls in SBRT Treatment Planning for a Moving Target Pitfalls in SBRT Treatment Planning for a Moving Target Cynthia F. Chuang, Ph.D. Department of Radiation Oncology University of California-San Francisco I have no conflicts of interests to disclose In

More information

Learning objective. Outline. Acknowledgements. KV CBCT Imaging Part I. R Hammoud AAPM 2008 CE-Therapy (SAM) 1

Learning objective. Outline. Acknowledgements. KV CBCT Imaging Part I. R Hammoud AAPM 2008 CE-Therapy (SAM) 1 1 2 KV CBCT Imaging Part I Rabih Hammoud, MS, DABR Henry Ford Health System Detroit, Michigan Acknowledgements Indrin Chetty, PhD Teamour Nurushev, PhD Harrison Guan, PhD Jinkoo Kim, PhD JianYue Jin, PhD

More information

Radiosurgery. Most Important! 8/2/2012. Stereotactic Radiosurgery: State of the Art Technology and Implementation Linear Accelerator Radiosurgery

Radiosurgery. Most Important! 8/2/2012. Stereotactic Radiosurgery: State of the Art Technology and Implementation Linear Accelerator Radiosurgery Therapy SAM Symposium: WE-A-BRCD-1 Stereotactic Radiosurgery: State of the Art Technology and Implementation Linear Accelerator Radiosurgery Kamil M. Yenice, PhD Associate Professor Chief of Clinical Physics

More information

Which Planning CT Should be Used for Lung SBRT? Ping Xia, Ph.D. Head of Medical Physics in Radiation Oncology Cleveland Clinic

Which Planning CT Should be Used for Lung SBRT? Ping Xia, Ph.D. Head of Medical Physics in Radiation Oncology Cleveland Clinic Which Planning CT Should be Used for Lung SBRT? Ping Xia, Ph.D. Head of Medical Physics in Radiation Oncology Cleveland Clinic Outline Image quality and image dose Free breathing CT, 4DCT, and synthetic

More information

Disclosure. Outline. Machine Overview. I have received honoraria from Accuray in the past. I have had travel expenses paid by Accuray in the past.

Disclosure. Outline. Machine Overview. I have received honoraria from Accuray in the past. I have had travel expenses paid by Accuray in the past. Clinical Implementation of the CyberKnife Disclosure I have received honoraria from Accuray in the past. I have had travel expenses paid by Accuray in the past. Mary Ellen Masterson-McGary McGary CyberKnife

More information

PRECISE, ROBOTIC TREATMENT AS INDIVIDUAL AS EVERY PATIENT

PRECISE, ROBOTIC TREATMENT AS INDIVIDUAL AS EVERY PATIENT PRECISE, ROBOTIC TREATMENT AS INDIVIDUAL AS EVERY PATIENT BENEFITS OF THE CYBERKNIFE TREATMENT DELIVERY SYSTEM True robotic precision: Enable high definition radiotherapy anywhere in the body with the

More information

Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014)

Mitsubishi Heavy Industries Technical Review Vol. 51 No. 1 (March 2014) The Challenge of Innovative Cancer Treatments Enabled by Vero4DRT -Development of High-precision Dose Delivery Features for Reducing Radiation Exposure of Healthy Tissue- 76 YASUNOBU SUZUKI *1 KUNIO TAKAHASHI

More information

Image-guided Radiotherapy

Image-guided Radiotherapy Radiotherapy & Imaging Image-guided Radiotherapy a report by Dirk Verellen Director, Medical Physics Group, Department of Radiotherapy, Academic Hospital, Vrije Universiteit Brussel DOI: 10.17925/EOH.2007.0.1.90

More information

Learning Objectives. New Developments in Radiation Therapy Targeting. Respiration-Induced Motion. Targeting Uncertainty in RT

Learning Objectives. New Developments in Radiation Therapy Targeting. Respiration-Induced Motion. Targeting Uncertainty in RT New Developments in Radiation Therapy Targeting D.A. Jaffray, Ph.D. Radiation Therapy Physics Princess Margaret Hospital/Ontario Cancer Institute Associate Professor Departments of Radiation Oncology and

More information

Arguably, the best way to accommodate intrafraction

Arguably, the best way to accommodate intrafraction Tracking Moving Organs in Real Time Martin J. Murphy In an ideal radiotherapy procedure, the treatment system would continuously adapt the radiation beam delivery to changes in the tumor position. The

More information

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Resident s Name: RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Rotation: PHYS 703: Clinical Rotation 2 Inclusive dates of rotation: Feb. 26, 2016 Aug. 25, 2016 Director or Associate

More information

Inter-fractional Positioning Study for Breast Cancer with Proton Therapy using a 3D Surface Imaging System

Inter-fractional Positioning Study for Breast Cancer with Proton Therapy using a 3D Surface Imaging System Inter-fractional Positioning Study for Breast Cancer with Proton Therapy using a 3D Surface Imaging System Li Zhao, PhD, DABR Procure Proton Therapy Center in Oklahoma City Abstract #: O63 PTCOG 53rd meeting,

More information

Clinical Implementation of a New Ultrasound Guidance System. Vikren Sarkar Bill Salter Martin Szegedi

Clinical Implementation of a New Ultrasound Guidance System. Vikren Sarkar Bill Salter Martin Szegedi Clinical Implementation of a New Ultrasound Guidance System Vikren Sarkar Bill Salter Martin Szegedi Disclosure The University of Utah has research agreements with Elekta Agenda Historical Review Trans-Abdominal

More information

Real-time tumor tracking during VMAT radiotherapy treatments based on 2D/3D registration using CBCT projections

Real-time tumor tracking during VMAT radiotherapy treatments based on 2D/3D registration using CBCT projections Real-time tumor tracking during VMAT radiotherapy treatments based on 2D/3D registration using CBCT projections Hugo Furtado 13, Yvette Seppenwoolde 23, Dietmar Georg 23, and Wolfgang Birkfellner 13 1

More information

typical IMRT fraction time and expand high definition radiotherapy anywhere in the body with the widest range of motion of the

typical IMRT fraction time and expand high definition radiotherapy anywhere in the body with the widest range of motion of the Precisely maximize dose, Versatile, efficient and effective for the BENEFITS OFandTHE CYBERKNIFE TREATMENT minimize side effects range of radiation oncology patients maximize patient comfort DELIVERY SYSTEM

More information

Original Date: April 2016 Page 1 of 7 FOR CMS (MEDICARE) MEMBERS ONLY

Original Date: April 2016 Page 1 of 7 FOR CMS (MEDICARE) MEMBERS ONLY National Imaging Associates, Inc. Clinical guidelines STEREOTACTIC RADIATION THERAPY: STEREO RADIOSURGERY (SRS) AND STEREOTACTIC BODY RADIATION THERAPY (SBRT) CPT4 Codes: Please refer to pages 5-6 LCD

More information

S Y N C H R O N Y R E S P I R A T O R Y T R A C K I N G S Y S T E M

S Y N C H R O N Y R E S P I R A T O R Y T R A C K I N G S Y S T E M s y n c h r o n y r e s p i r a t o r y t r a c k i n g s y s t e m S Y N C H R O N Y R E S P I R A T O R Y T R A C K I N G S Y S T E M The Synchrony System tracks respiration in real time and automatically

More information

Imaging Rotation. University of Michigan Department of Radiation Oncology Division of Radiation Physics. Resident:

Imaging Rotation. University of Michigan Department of Radiation Oncology Division of Radiation Physics. Resident: University of Michigan Department of Radiation Oncology Division of Radiation Physics Imaging Rotation Resident: Rotation staff mentor/ advisor: James Balter, supplemental mentors: Dale Litzenberg, Don

More information

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS ICTP SCHOOL ON MEDICAL PHYSICS FOR RADIATION THERAPY DOSIMETRY AND TREATMENT PLANNING FOR BASIC AND ADVANCED APPLICATIONS March

More information

Nano-X A Smarter and Smaller Cancer Radiotherapy System

Nano-X A Smarter and Smaller Cancer Radiotherapy System Nano-X A Smarter and Smaller Cancer Radiotherapy System Paul Keall, Ilana Feain, Chun-Chien Shieh, Brendan Whelan, Peter Bennett, Paul Liu, Jeff Barber, Michael Barton, Simon Downes, Michael Jackson, +++

More information

SBRT I: Overview of Simulation, Planning, and Delivery

SBRT I: Overview of Simulation, Planning, and Delivery Disclosure SBRT I: Overview of Simulation, Planning, and Delivery I have received research funding from NIH, the Golfers Against Cancer (GAC) foundation, and Philips Health System. Jing Cai, PhD Duke University

More information

Clinical Precision for Best Cancer Care. Dee Mathieson Senior Vice President Oncology Business Line Management

Clinical Precision for Best Cancer Care. Dee Mathieson Senior Vice President Oncology Business Line Management Clinical Precision for Best Cancer Care Dee Mathieson Senior Vice President Oncology Business Line Management Optimizing clinical results Key drivers in modern Radiation Therapy Clinical precision Continuous

More information

Cyberknife Stereotactic Treatment

Cyberknife Stereotactic Treatment Cyberknife Stereotactic Treatment Eugene Lief, Ph.D. Christ Hospital Jersey City, New Jersey USA DISCLAIMER: I am not affiliated with any vendor and did not receive any financial support from any vendor.

More information

Stereotactic Body Radiotherapy for Lung Lesions using the CyberKnife of-the-art and New Innovations

Stereotactic Body Radiotherapy for Lung Lesions using the CyberKnife of-the-art and New Innovations Stereotactic Body Radiotherapy for Lung Lesions using the CyberKnife State-of of-the-art and New Innovations Chad Lee, PhD CK Solutions, Inc. and CyberKnife Centers of San Diego Outline Basic overview

More information

8/1/2017. Clinical Indications and Applications of Realtime MRI-Guided Radiotherapy

8/1/2017. Clinical Indications and Applications of Realtime MRI-Guided Radiotherapy Clinical Indications and Applications of Realtime MRI-Guided Radiotherapy Michael F Bassetti MD PhD Assistant Professor, Department of Human Oncology University of Wisconsin, Madison. Carbone Cancer Center

More information

Asynchronization. (aka MLC interplay effect with tumor motion)

Asynchronization. (aka MLC interplay effect with tumor motion) Asynchronization (aka MLC interplay effect with tumor motion) Asynchronization is what happens when two moving parts do not align as planned. Like when my mother wants a photograph of her five young grandchildren.

More information

A feasibility study of intrafractional tumor motion estimation based on 4D CBCT using diaphragm as surrogate

A feasibility study of intrafractional tumor motion estimation based on 4D CBCT using diaphragm as surrogate Received: 18 October 2017 Revised: 14 March 2018 Accepted: 12 June 2018 DOI: 10.1002/acm2.12410 RADIATION ONCOLOGY PHYSICS A feasibility study of intrafractional tumor motion estimation based on 4D CBCT

More information

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC)

Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf Collimator (DMLC) Original Article PROGRESS in MEDICAL PHYSICS Vol. 26, No. 4, December, 2015 http://dx.doi.org/10.14316/pmp.2015.26.4.223 Evaluation of Dosimetric Characteristics of a Double-focused Dynamic Micro-Multileaf

More information

SBRT REQUIRES: STEREOTACTIC BODY RADIOTHERAPY STEREOTACTIC BODY RADIOTHERAPY (SBRT) (SBRT) What s s in a name? Stereotactic Body Radiotherapy

SBRT REQUIRES: STEREOTACTIC BODY RADIOTHERAPY STEREOTACTIC BODY RADIOTHERAPY (SBRT) (SBRT) What s s in a name? Stereotactic Body Radiotherapy INTRODUCTION TO STEREOTACTIC BODY RADIOTHERAPY: (I) Physics and Technology (II) Clinical Experience & (III) Radiobiological Considerations and Future Directions Stanley H. Benedict, Ph.D., Danny Song,

More information

3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients G Asuni *1, T vanbeek 1, E VanUtyven 1, P McCowan 1,2, and B.M.C. McCurdy 1,2,3 1 Medical Physics Department, CancerCare

More information

Feasibility of using the Vero SBRT system for intracranial SRS

Feasibility of using the Vero SBRT system for intracranial SRS JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 1, 2014 Feasibility of using the Vero SBRT system for intracranial SRS Manuela Burghelea, 1,2a Dirk Verellen, 1 Thierry Gevaert, 1 Tom Depuydt,

More information

Unrivaled, End-to-End

Unrivaled, End-to-End PHANTOMS Unrivaled, End-to-End Stereotactic QA Industry-leading 0.1mm accuracy minimizes errors at each link in the stereotactic quality assurance chain. Stereotactic radiosurgery (SRS) is governed by

More information

Leksell Gamma Knife Icon A New User s Perspective

Leksell Gamma Knife Icon A New User s Perspective Leksell Gamma Knife Icon A New User s Perspective Steve Herchko, DMP 2017 MFMER slide-1 Disclosures None 2017 MFMER slide-2 Outline Icon Overview Mayo Clinic Experience Frame-Based System Mask-Based System

More information

Integrating the Radixact into a Highly Comprehensive Center

Integrating the Radixact into a Highly Comprehensive Center Integrating the Radixact into a Highly Comprehensive Center Alonso N. Gutiérrez, PhD, MBA ASTRO Meeting 2018 Disclosures An honorarium is provided by Accuray for this presentation (donated) Accuray and

More information

Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system

Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 2, 2015 Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system Xu Tong, 1 Xiaoming

More information

Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT Jing Cai, PhD Duke University Medical Center

Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT Jing Cai, PhD Duke University Medical Center Uncertainties and Quality Assurance of Localization and Treatment in Lung SBRT Jing Cai, PhD Duke University Medical Center 2013 AAPM 55 th Annual Meeting, Educational Course, Therapy Track, MOC SAM Program

More information

IGRT1 technologies. Paweł Kukołowicz Warsaw, Poland

IGRT1 technologies. Paweł Kukołowicz Warsaw, Poland IGRT1 technologies Paweł Kukołowicz Warsaw, Poland Minimal prerequisite for good, efficient radiotherapy ICTP 2015 Paweł Kukołowicz 2/29 Minimal prerequisite for good, efficient radiotherapy Well trained

More information

Eric E. Klein, Ph.D. Chair of TG-142

Eric E. Klein, Ph.D. Chair of TG-142 Eric E. Klein, Ph.D. Chair of TG-142 Professor of Radiation Oncology Washington University St. Louis, MO 2010 AAPM Annual Meeting Med. Phys. 21(4) 1994 Performance-based, comprehensive guidelines for preventing

More information

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction Parham Alaei, Ph.D. Department of Radiation Oncology University of Minnesota NCCAAPM Fall

More information

4D Radiotherapy in early ca Lung. Prof. Manoj Gupta Dept of Radiotherapy & oncology I.G.Medical College Shimla

4D Radiotherapy in early ca Lung. Prof. Manoj Gupta Dept of Radiotherapy & oncology I.G.Medical College Shimla 4D Radiotherapy in early ca Lung Prof. Manoj Gupta Dept of Radiotherapy & oncology I.G.Medical College Shimla Presentation focus on ---- Limitation of Conventional RT Why Interest in early lung cancer

More information

Herlev radiation oncology team explains what MRI can bring

Herlev radiation oncology team explains what MRI can bring Publication for the Philips MRI Community Issue 46 2012/2 Herlev radiation oncology team explains what MRI can bring The radiotherapy unit at Herlev University Hospital investigates use of MRI for radiotherapy

More information

Imaging of Scattered Radiation for Real Time Tracking of Tumor Motion During Lung SBRT

Imaging of Scattered Radiation for Real Time Tracking of Tumor Motion During Lung SBRT Imaging of Scattered Radiation for Real Time Tracking of Tumor Motion During Lung SBRT April 25 nd, 2015 Lung Cancer Lung cancer is the most lethal cancer: Over 224,000 new diagnoses in the U.S. predicted

More information

Small field diode dosimetry

Small field diode dosimetry Small field diode dosimetry Parham Alaei, Ph.D. Department of Radiation Oncology University of Minnesota NCCAAPM Symposium-October 10, 2013 1 Diodes as beam data collection detectors Diodes as in vivo

More information

ART for Cervical Cancer: Dosimetry and Technical Aspects

ART for Cervical Cancer: Dosimetry and Technical Aspects ART for Cervical Cancer: Dosimetry and Technical Aspects D.A. Jaffray, Ph.D. Radiation Therapy Physics Princess Margaret Cancer Centre/Techna/Ontario Cancer Institute Professor Departments of Radiation

More information

02 CyberKnife: Treatment Delivery

02 CyberKnife: Treatment Delivery TREATMENT DELIVERY CyberKnife Treatment Delivery System The CyberKnife System is the first and only robotic radiosurgery system to offer highly precise and customizable, non-surgical treatment options

More information

Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis

Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis Received: 15 December 2016 Revised: 18 May 2017 Accepted: 19 May 2017 DOI: 10.1002/acm2.12121 RADIATION ONCOLOGY PHYSICS Estimation of lung tumor position from multiple anatomical features on 4D-CT using

More information

Rotating Bi-Planar linac MR Cross Cancer Institute 6 MV medical linear accelerator (linac). Low-field (0.56 T) biplanar MR imager.

Rotating Bi-Planar linac MR Cross Cancer Institute 6 MV medical linear accelerator (linac). Low-field (0.56 T) biplanar MR imager. Cross Cancer Institute MR-Linac: Rotating the Magnet-linac Combo Real-time MR Guided RT B.Gino Fallone Dept. of Medical Physics, Cross Cancer Institute & University of Alberta, Edmonton, AB Canada Linac-MR.ca

More information

IMRT vs Tomoterapia - Le nuove sfide

IMRT vs Tomoterapia - Le nuove sfide IMRT vs Tomoterapia - Le nuove sfide Cinzia Iotti Radioterapia Oncologica Ospedale S. Maria Nuova - Reggio Emilia Nov 2007 Varian claims that RapidArc delivers uncompromised treatments in "two minutes

More information

Quality Assurance of Ultrasound Imaging in Radiation Therapy. Zuofeng Li, D.Sc. Murty S. Goddu, Ph.D. Washington University St.

Quality Assurance of Ultrasound Imaging in Radiation Therapy. Zuofeng Li, D.Sc. Murty S. Goddu, Ph.D. Washington University St. Quality Assurance of Ultrasound Imaging in Radiation Therapy Zuofeng Li, D.Sc. Murty S. Goddu, Ph.D. Washington University St. Louis, Missouri Typical Applications of Ultrasound Imaging in Radiation Therapy

More information

Assessment of the Margin Simulations of Random and Systematic Errors in Radiotherapy

Assessment of the Margin Simulations of Random and Systematic Errors in Radiotherapy IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 7, Issue 3 Ver. IV (May. - Jun. 2015), PP 34-38 www.iosrjournals.org Assessment of the Margin Simulations of Random and Systematic Errors

More information

Patient-specific quality assurance for intracranial cases in robotic radiosurgery system

Patient-specific quality assurance for intracranial cases in robotic radiosurgery system JBUON 2018; 23(1): 179-184 ISSN: 1107-0625, online ISSN: 2241-6293 www.jbuon.com E-mail: editorial_office@jbuon.com ORIGINAL ARTICLE Patient-specific quality assurance for intracranial cases in robotic

More information

Impact of temporal probability in 4D dose calculation for lung tumors

Impact of temporal probability in 4D dose calculation for lung tumors JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Impact of temporal probability in 4D dose calculation for lung tumors Ouided Rouabhi, 1 Mingyu Ma, 2 John Bayouth, 3,4 Junyi Xia 4a

More information

Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments

Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 1, 2016 Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments Madelaine K. Tyler

More information

A novel platform simulating irregular motion to enhance assessment of respiration-correlated radiation therapy procedures

A novel platform simulating irregular motion to enhance assessment of respiration-correlated radiation therapy procedures JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 1, WINTER 2005 A novel platform simulating irregular motion to enhance assessment of respiration-correlated radiation therapy procedures Mathew

More information

Introduction of RapidArc TM : an example of commissioning and implementing a QA programme for a new technology

Introduction of RapidArc TM : an example of commissioning and implementing a QA programme for a new technology Introduction of RapidArc TM : an example of commissioning and implementing a QA programme for a new technology Philip Mayles Clatterbridge Centre for Oncology, Wirral, UK 1 What is RapidArc (or VMAT)?

More information

Evaluation of Dynamic Delivery Quality Assurance Process for Internal Target Volume Based RapidArc

Evaluation of Dynamic Delivery Quality Assurance Process for Internal Target Volume Based RapidArc Original Article PMP Progress in Medical Physics 28(4), December 217 https://doi.org/1.14316/pmp.217.28.4.181 pissn 258-4445, eissn 258-4453 Evaluation of Dynamic Delivery Quality Assurance Process for

More information

NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning

NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed

More information

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film E.B.Rajmohan¹, Pratik Kumar¹, Bhudatt Paliwal,² David Westerly², N.Gopishankar³, R.K.Bisht³, D.Tewatia²,

More information

Application of Implanted Markers in Proton Therapy. Course Outline. McLaren Proton Therapy Center Karmanos Cancer Institute McLaren - Flint

Application of Implanted Markers in Proton Therapy. Course Outline. McLaren Proton Therapy Center Karmanos Cancer Institute McLaren - Flint Application of Implanted Markers in Proton Therapy Sung Yong Park, Ph.D. McLaren Proton Therapy Center Karmanos Cancer Institute McLaren - Flint AAPM 2016, SAM Therapy Educational Course, 2016.08.04. Course

More information

7/31/2012. Volumetric modulated arc therapy. UAB Department of Radiation Oncology. Richard Popple, Ph.D.

7/31/2012. Volumetric modulated arc therapy. UAB Department of Radiation Oncology. Richard Popple, Ph.D. UAB Department of Radiation Oncology Volumetric modulated arc therapy Richard Popple, Ph.D. Disclosures UAB has research agreements with Varian Medical Systems Speaking honoraria from Varian Medical Systems

More information

UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies

UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies A SINGLE INSTITUTION S EXPERIENCE IN DEVELOPING A PURPOSEFUL AND EFFICIENT OFF-LINE TECHNIQUE FOR ADAPTIVE RADIOTHERAPY IN A CLINICAL ENVIRONMENT A Research

More information