Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC

Size: px
Start display at page:

Download "Radiation qualities in carbon-ion radiotherapy at NIRS/HIMAC"

Transcription

1 Radiation qualities in carbon-ion radiotherapy at NIRS/ Shunsuke YONAI Radiological Protection Section Research Center for Charged Particle Therapy National Institute of Radiological Sciences (NIRS)

2 Contents 1. Introduction 2. Beam delivery system at NIRS/ 3. Radiation quality in the treatment field 4. Radiation quality outside the treatment field 5. Summary 2

3 Contents 1. Introduction 2. Beam delivery system at NIRS/ 3. Radiation quality in the treatment field 4. Radiation quality outside the treatment field 5. Summary 3

4 Location of NIRS TOKYO ~40 km ~40 km Narita Airport Chiba Prefecture National Institute of Radiological Sciences 4

5 Surroundings of NIRS and NIRS Hospital 5

6 What is? : Heavy Ion Medical Accelerator in Chiba 1989: Start of the construction 1993: Commissioning were finished. Beams were successfully accelerated. 1994: Clinical trials and research program began. Main purpose : Carbon-ion radiotherapy RFQ LINAC Ion source room 65 m Biological Irradiation room Basic research Maintenance Main accelerator power supply room Alvarez type LINAC Secondary beam irradiation room Physics & general-purpose irradiation room Therapy irradiation room C Therapy irradiation room A Therapy irradiation room B Synchrotron (I) Synchrotron (II) High-energy beam transport room 120 m 6

7 NIRS Annual Number of Patients in Carbon-ion radiotherapy Number Total Number: 5497 (Practice:2761) Practice* Research Fiscal year (June 1994 July 2010) 7 * Highly advanced medical technology approved by the Ministry of Health, Labour and Welfare.

8 Contents 1. Introduction 2. Beam delivery system at NIRS/ 3. Radiation quality in the treatment field 4. Radiation quality outside the treatment field 5. Summary 8

9 Pristine carbon beam Bragg curve Physical property of charged particles Continuously slowing-down in matter The stopping power increases drastically. High dose and high LET at Bragg peak Dose LET H. Suit et al, Radiotherapy and Oncology 95 (2010)

10 Bragg peak Dose Depth distribution Lateral distribution Beam shaping is needed by beam delivery system. Depth 10

11 Beam delivery system Broad beam method (Passive) Wobbler magnet Compensator Collimator RSF RGF Dose monitor Scatterer Lateral distribution Double scattering / Scatter-wobbler Collimator Depth distribution Range modulator (Ridge filter) Range shifter Range compensator Scanning beam 1) method Stable irradiation field in space Lateral and distribution time (Active) 2) Easy dose control Beam scanning RSF Dose monitor Depth distribution Beam efficiency is low; typically 10% and 30 % at a maximum. Range shifter Increase of secondary s neutrons produced in beam delivery or system by primary beam. Stepwise energy change by increase of out of of field field dose the accelerator Scanning magnet 11

12 Contents 1. Introduction 2. Beam delivery system at NIRS/ 3. Radiation quality in the treatment field 4. Radiation quality outside the treatment field 5. Summary 12

13 TEPC studies for estimating radiation quality In-field: Y. Kase et al., Microdosimetric and estimation of human cell survival for heavy-ion beams, Radiat. Res. 166, (2006) Out-of-field: S. Yonai et al., Measurement of absorbed dose, quality factor, and dose equivalent in water phantom outside of the irradiation field in passive carbon-ion and proton radiotherapies, Med. Phys. 37(8), (2010) LET-1/2; Far West Technology Inc. 0.5 inch Tissue equivalent proportional counter (TEPC) 13

14 Tissue equivalent proportional counter The TEPC technique is conventional and established for microdosimetry. (ICRU-36, Microdosimetry, 1983., H. H. Rossi and M. Zaider, Microdosimetry and its Applications (Springer-Verlag, Berlin, 1996). TEPC simulates the micrometer domain using low-pressure gas. Cell Nucleus 1μm Lineal energy, y the quotient of the energy imparted to matter in a given volume by a single event by the mean chord length l. (Stochastic quantity) Specific energy, z Rossi Counter (1960) the quotient of the energy imparted to matter by one or more events by the mass. (Stochastic quantity) The mean values of y and z are microdosimetric analogues of LET and absorbed dose, respectively. 14

15 yd(y) NIRS yd(y) spectra of proton and carbon beams Proton-160 MeV (SOBP 60 mm) Carbon-290 MeV/u (SOBP 60 mm) Proximal of SOBP Entrance y D =4.8keV/μm Entrance y D =4.0 kev/μm Distal of SOBP y D =7.0keV/μm y D =14.7 kev/μm Proximal of SOBP y D =50.4 kev/μm Distal of SOBP y D =255.4 kev/μm y [kev/μm] Carbon > Proton In carbon beam, Advantage of a major increase of dose-averaged lineal energy, y D in the SOBP region compared to the plateau region 15

16 yd(y) spectra of photon and carbon beams X/γ-ray Carbon-290 MeV/u (SOBP 6 cm) Photon Beams y D [kev/μm] 200kV X-ray 4.51± Co γ-ray 2.34± MV X-ray 2.36± mm (Entrance) y D =14.7 kev/μm 89 mm (Proximal of SOBP) y D =50.4 kev/μm 145mm (Distal of SOBP) y D =255.4 kev/μm H. Okamoto, et al, Study on dependence of relative biological effectiveness on photon energy by experimental and microdosimetric methods, Journal of radiation research, to be submitted. 16

17 Microdosimetric approach for RBE calculation RBE 10% (Broad beam method): C with Dose averaged LET He C Ne He_MKM C _MKM Ne_MKM r d =0.26um RBE 10% RBE@ (Scanning( method): Saturation corrected lineal energy; y* H160SOBP6cm He150SOBP6cm C290mono C290SOBP6cm C400SOBP6cm Ne230mono Ne400SOBP Si490mono Fe200&500mono Co60-γ Xray200kV MK model LET [kev/μm] RBE depends on particle species when expressing as a function of LET y* [kev/μm] y* can be a sole physical parameter of RBE when using modified microdosimetric kinetic model (MKM) T. Kanai et al., Int. J. Radiat. Oncol. Biol. Phys. 44(1), (1999) Y. Kase et al., Phys. Med. Biol. 53, (2008) T. Inaniwa et al., Phys. Med. Biol., in press 17

18 Contents 1. Introduction 2. Beam delivery system at NIRS/ 3. Radiation quality in the treatment field 4. Radiation quality outside the treatment field 5. Summary 18

19 Experimental setup Investigations of out-of-field dose and its radiation quality 290 and 400 MeV/u carbon 235 MeV proton NCCHE Phantom: Five water phantoms to simulate a patient (Totally, 40 cm 150 cm 20 cm) (13, 20) Beam TEPC (25, 5) (25, 20) (50, 5) (50, 20) (25, 35) (50, 35) (100, 20) 19

20 Determination of absorbed dose, quality factor and dose equivalent From measured lineal energy distribution, f(y), Absorbed dose, D [Gy]: D( y) = K M gas l ( y f ( y)), D = y 0.2 max D( y)dy Dose-averaged quality factor, Q D : Q D y max = Q( y) D( y)dy 0.2 y 0.2 max D( y)dy Dose equivalent, H [Sv]: H y = max 0.2 Q( y) D( y)dy (Lowest measurable lineal energy: 0.2 kev/μm) y: Lineal energy [kev/μm], K: Conversion factor ( ) M gas : Mass of the TE gas [kg], l: Mean chord length [μm] Q(y): Quality factor as a function of y. (from ICRU40) 20

21 Dose distribution, yd(y) 400 MeV/u carbon beam (50,20) (50,5) (25,20) (25,5) (25,35) (13,20) Lineal energy, y [kev/um] Normalized yd(y) differed only slightly when the position varied. Events below 10 kev/μm were the main component of the dose. Typically electrons and High-energy protons 21

22 Dose distribution, yd(y) MeV/u carbon beam (13, 20) (25, 5) (25, 20) (25, 35) (50, 5) (50, 20) yd(y) A peak between ~1 and ~10 kev/μm increased as the position became closer to the field edge and farther from the phantom surface. The greater contributin to the dose: Lineal energy, y [kev/um] Fragmental protons of the incident carbon beam. Recoil protons by high energy neutrons (E n >20 MeV). 22

23 Comparison of Q D in carbon-ion and proton radiotherapies QD cm depth 400-MeV/u carbon 235-MeV proton 235 MeV (p): MeV/u (C): Off-axis distance, x [cm] Proton > Carbon at all positions Q D decreased as the position became closer to the field edge. Carbon beam: Fragmental protons and high-energy neutrons produced in water phantom. Proton beam: Scattered primary protons 23

24 Comparison of total dose equivalent per a treatment with other modalities Typical prescribed doses for prostate cancer were assumed. Proton:74 GyE (235 MeV, RBE=1.1) Carbon:66 GyE (400 and 290 MeV/u, RBE=2.36 and 2.41 ) (x, d) 290 MeV/u carbon [msv] This study S. Kry et al., IJROBP, 68(4), (2007). 400 MeV/u carbon 235 MeV proton Organ 3D-CRT (18 MV) IMRT (6MV) IMRT (18MV) (13, 20) Colon [891] 1014 (25, 20) Liver [429] 693 (25, 5)* Stomach [414] 687 (50, 20) Esophagus [270] 351 (50, 5)* Thyroid [289] 546 (100, 20) *: Two opposed beams were assumed at a depth of 5 cm. **: Varian Clinac 2100, [ ]: Siemens Primus Total dose equivalents per a treatment for passive carbon and proton beams were comparable to or less than those in 3D-CRT and IMRT. 24

25 Summary Experimental results of radiation qualities in/out of the treatment field were shown. We developed the method of RBE calculation with the microdosimetric y* value. This method will be applied to the scanned carbon-ion radiotherapy at NIRS/. The y D values outside the irradiation field in carbon-ion radiotherapy were lower than proton radiotherapy. The total secondary dose equivalents in passive carbon-ion and proton radiotherapies were comparable to or less than 3D-CRT and IMRT. Our final goal of this study is the assessment of secondary cancer risk in carbon-ion radiotherapy. We are developing the dose assessment system for epidemiological study in carbon-ion radiotherapy at NIRS/. 25

26 Acknowledgements Naruhiro Matsufuji, Ph.D. Akifumi Fukumura, Ph.D. Taku Inaniwa, Ph.D. Yuki Kase, Ph.D. Teiji Nishio, Ph.D. Hiroyuki Okamoto, M.Sc. 26

Nuclear Data for Radiation Therapy

Nuclear Data for Radiation Therapy Symposium on Nuclear Data 2004 Nov. 12, 2004 @ JAERI, Tokai Nuclear Data for Radiation Therapy ~from macroscopic to microscopic~ Naruhiro Matsufuji, Yuki Kase and Tatsuaki Kanai National Institute of Radiological

More information

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy -

Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy - Cancer Treatment by Charged Particles - Carbon Ion Radiotherapy - Takeshi Murakami Research Center of Charged Particle Therapy National Institute of Radiological Sciences 2012.11.21 1. Introduction to

More information

Proton and heavy ion radiotherapy: Effect of LET

Proton and heavy ion radiotherapy: Effect of LET Proton and heavy ion radiotherapy: Effect of LET As a low LET particle traverses a DNA molecule, ionizations are far apart and double strand breaks are rare With high LET particles, ionizations are closer

More information

New Treatment Research Facility Project at HIMAC

New Treatment Research Facility Project at HIMAC New Treatment Research Facility Project at Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences IPAC10, Kyoto, JAPAN, 25th May, 2010 Contents 1. Introduction

More information

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam University of Chicago CDH Proton Center LET study C. Reft 1, H. Ramirez 2 and M. Pankuch

More information

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons.

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons. Measurement of Secondary Radiation for Electron and Proton Accelerators D. Followill, Ph.D. Radiological Physics Center U. T. M. D. Anderson Cancer Center Introduction Patients undergoing radiation therapy

More information

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR.

Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact. Stephen F. Kry, Ph.D., D.ABR. Non-target dose from radiotherapy: Magnitude, Evaluation, and Impact Stephen F. Kry, Ph.D., D.ABR. Goals Compare out-of-field doses from various techniques Methods to reduce out-of-field doses Impact of

More information

Multi-Ion Analysis of RBE using the Microdosimetric Kinetic Model

Multi-Ion Analysis of RBE using the Microdosimetric Kinetic Model Multi-Ion Analysis of RBE using the Microdosimetric Kinetic Model Council of Ionizing Radiation Measurements and Standards (CIRMS) March 28 th, 2017 Michael P. Butkus 1,2 Todd S. Palmer 2 1 Yale School

More information

Progress of Heavy Ion Therapy

Progress of Heavy Ion Therapy Progress of Heavy Ion Therapy Fuminori Soga Division of Accelerator Physics and Engineering, National Institute of Radiological Sciences, 4-9-1 Anagawa. Inage-ku, Chiba 263-8555, Japan 1. Introduction

More information

La ricerca e la terapia in adroterapia-2. R.Orecchia / P. Fossati

La ricerca e la terapia in adroterapia-2. R.Orecchia / P. Fossati La ricerca e la terapia in adroterapia-2 R.Orecchia / P. Fossati Dose (Gy) = energy (joule) / mass (kg) One degree of fever (from 37.5 to 38.5 ) > 4000 Gy RT small dose big damage Photons : Dose Resposne

More information

Review of Heavy Ion Accelerators for Hadrontherapy

Review of Heavy Ion Accelerators for Hadrontherapy Review of Heavy Ion Accelerators for Hadrontherapy Koji Noda Research Center for Charged Particle Therapy National Institute of Radiological Sciences 11 th Int l Conf. on Heavy Ion Accelerator Technology,

More information

Heavy Ion Tumor Therapy

Heavy Ion Tumor Therapy Heavy Ion Tumor Therapy Applications Bence Mitlasoczki 25.06.2018 Heidelberg 1. Source (H 2 /CO 2 ) 2. Linac 3. Synchrotron 4. Guide 5. Treatment rooms 6. X-ray system 7. Gantry 8. Treatment room with

More information

Review of Hadron machines for cancer therapy

Review of Hadron machines for cancer therapy Review of Hadron machines for cancer therapy M. Kanazawa NIRS cancer therapy with hadron (p, C) Clinical studies at New ideas of accelerators Compact facilities (p, C) Depth dose distribution Carbon, proton

More information

arxiv: v1 [physics.med-ph] 31 Oct 2017

arxiv: v1 [physics.med-ph] 31 Oct 2017 Estimation of linear energy transfer distribution for broad-beam carbon-ion radiotherapy at the National Institute of Radiological Sciences, Japan arxiv:7.4v [physics.med-ph] 3 Oct 27 Nobuyuki Kanematsu

More information

Biological Optimization of Hadrontherapy. Uwe Oelfke

Biological Optimization of Hadrontherapy. Uwe Oelfke 4/2/2012 page 1 Biological Optimization of Hadrontherapy Uwe Oelfke DKFZ Heidelberg (E040) Im Neuenheimer Feld 280 69120 Heidelberg, Germany u.oelfke@dkfz.de 4/2/2012 page 2 Contents Introduction and General

More information

Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments

Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments Use of Bubble Detectors to Characterize Neutron Dose Distribution in a Radiotherapy Treatment Room used for IMRT treatments Alana Hudson *1 1 Tom Baker Cancer Centre, Department of Medical Physics, 1331

More information

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante

HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS. Prof. Marco Durante HEALTH RISKS FROM EXPOSURE TO FAST NEUTRONS Prof. Marco Durante Risk from neutrons Risk from exposure to fission spectrum neutrons has been extensively studied in the 60 s at nuclear reactors using animal

More information

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania

Proton Treatment. Keith Brown, Ph.D., CHP. Associate Director, Radiation Safety University of Pennsylvania Proton Treatment Keith Brown, Ph.D., CHP Associate Director, Radiation Safety University of Pennsylvania Proton Dose vs. Depth Wilson,. R.R. Radiological use of fast protons. Radiology 47:487-491, 1946.

More information

International Open Laboratory at NIRS (Second Term)

International Open Laboratory at NIRS (Second Term) Ryuichi Okayasu, Ph.D. Scientific Secretary E-mail: rokayasu@nirs.go.jp The second term NIRS International Open Laboratory (IOL) was started in April 2011 with four new units and its term was completed

More information

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR.

Outline. Outline 3/30/12. Second Cancers from. Radiotherapy Procedures. Stephen F. Kry, Ph.D., D.ABR. Second Cancers from Radiotherapy Procedures Stephen F. Kry, Ph.D., D.ABR. Outline Radiation and cancer induction Medically exposed people Estimating risk of second cancers Minimizing the risk Outline Radiation

More information

Microdosimetric Relative Biological Effectiveness of Therapeutic Proton Beams. Chuan Jong Tung 1,2

Microdosimetric Relative Biological Effectiveness of Therapeutic Proton Beams. Chuan Jong Tung 1,2 Special Edition 399 Microdosimetric Relative Biological Effectiveness of Therapeutic Proton Beams Chuan Jong Tung 1,2 When compared to photon beams, particle beams have distinct spatial distributions on

More information

6/29/2012 WHAT IS IN THIS PRESENTATION? MANAGEMENT OF PRIMARY DEVICES INVESTIGATED MAJOR ISSUES WITH CARDIAC DEVICES AND FROM MED PHYS LISTSERVS

6/29/2012 WHAT IS IN THIS PRESENTATION? MANAGEMENT OF PRIMARY DEVICES INVESTIGATED MAJOR ISSUES WITH CARDIAC DEVICES AND FROM MED PHYS LISTSERVS 6/29/2012 MANAGEMENT OF RADIOTHERAPY PATIENTS WITH IMPLANTED CARDIAC DEVICES Dimitris Mihailidis, PhD., Charleston Radiation Therapy Consultants Charleston, WV 25304 WHAT IS IN THIS PRESENTATION? Types

More information

EQUIVALENT DOSE FROM SECONDARY NEUTRONS AND SCATTER PHOTONS IN ADVANCE RADIATION THERAPY TECHNIQUES WITH 15 MV PHOTON BEAMS

EQUIVALENT DOSE FROM SECONDARY NEUTRONS AND SCATTER PHOTONS IN ADVANCE RADIATION THERAPY TECHNIQUES WITH 15 MV PHOTON BEAMS PAPER EQUIVALENT DOSE FROM SECONDARY NEUTRONS AND SCATTER PHOTONS IN ADVANCE RADIATION THERAPY TECHNIQUES WITH 15 MV PHOTON BEAMS Isra Israngkul Na Ayuthaya *, Sivalee Suriyapee, Phongpheath Pengvanich

More information

Dosimetric Consideration in Diagnostic Radiology

Dosimetric Consideration in Diagnostic Radiology Dosimetric Consideration in Diagnostic Radiology Prof. Ng Kwan-Hoong Department of Biomedical Imaging University of Malaya ngkh@um.edu.my Radiation Dosimetry Workshop, 28-29 March 2014 2 Why do we measure

More information

Out-of-field Radiation Risks in Paediatric Proton Therapy

Out-of-field Radiation Risks in Paediatric Proton Therapy Out-of-field Radiation Risks in Paediatric Proton Therapy Charlot Vandevoorde NRF ithemba LABS Contact: cvandevoorde@tlabs.ac.za Seventh NCS Lustrum Proton Therapy Amsterdam Charlot Vandevoorde 27 October

More information

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Brachytherapy Radioisotopes in contact with the tumor Overview

More information

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning

Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Characterization and implementation of Pencil Beam Scanning proton therapy techniques: from spot scanning to continuous scanning Supervisors Prof. V. Patera PhD R. Van Roermund Candidate Annalisa Patriarca

More information

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center

The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center The Advantages of Particle Therapy and the Status of the Heidelberg Iontherapy Center Thomas Haberer, Scientific Technical Director, Heidelberg Ion Therapy Center Situation / Indications 2/3 patients suffer

More information

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE

COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE COMPARISON OF RADIOBIOLOGICAL EFFECTS OF CARBON IONS TO PROTONS ON A RESISTANT HUMAN MELANOMA CELL LINE I. Petrovi a, A. Risti -Fira a, L. Kori anac a, J. Požega a, F. Di Rosa b, P. Cirrone b and G. Cuttone

More information

*Chien-Yi Yeh, Ji-Hong Hong * 葉健一洪志宏

*Chien-Yi Yeh, Ji-Hong Hong * 葉健一洪志宏 林口 Proton Therapy in Ti Taiwan *Chien-Yi Yeh, Ji-Hong Hong * 葉健一洪志宏 Chang Gung Memorial Hospital at Lin-Kou, Taiwan 林口長庚紀念醫院 OCPA2010 at Beijing, China Aug. 5, 2010 Outline 1. The principle of proton radiotherapy

More information

Assistant Professor Department of Therapeutic Radiology Yale University School of Medicine

Assistant Professor Department of Therapeutic Radiology Yale University School of Medicine A Mechanism-Based Approach to Predict Relative Biological i Effectiveness and the Effects of Tumor Hypoxia in Charged Particle Radiotherapy David J. Carlson, Ph.D. Assistant Professor Department of Therapeutic

More information

PROGRESS IN HADRONTHERAPY

PROGRESS IN HADRONTHERAPY PROGRESS IN HADRONTHERAPY Saverio Braccini TERA Foundation for Oncological Hadrontherapy IPRD06 - Siena - 01.10.06 - SB 1 Outline Introduction Radiation therapy with X rays and hadrontherapy Hadrontherapy

More information

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR.

Radiation Related Second Cancers. Stephen F. Kry, Ph.D., D.ABR. Radiation Related Second Cancers Stephen F. Kry, Ph.D., D.ABR. Objectives Radiation is a well known carcinogen Atomic bomb survivors Accidental exposure Occupational exposure Medically exposed Radiotherapy

More information

III. Proton-therapytherapy. Rome SB - 5/5 1

III. Proton-therapytherapy. Rome SB - 5/5 1 Outline Introduction: an historical review I Applications in medical diagnostics Particle accelerators for medicine Applications in conventional radiation therapy II III IV Hadrontherapy, the frontier

More information

Ion Beam Therapy should we prioritise research on helium beams?

Ion Beam Therapy should we prioritise research on helium beams? Ion Beam Therapy should we prioritise research on helium beams? Stuart Green Medical Physics University Hospital Birmingham NHS Trust Follow-up from the EUCARD2 workshop, ION Beam Therapy: Clinical, Scientific

More information

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015)

PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) PHYS 383: Applications of physics in medicine (offered at the University of Waterloo from Jan 2015) Course Description: This course is an introduction to physics in medicine and is intended to introduce

More information

Proton and helium beams: the present and the future of light ion beam therapy

Proton and helium beams: the present and the future of light ion beam therapy Proton and helium beams: the present and the future of light ion beam therapy Dr. Andrea Mairani Group Leader Biophysics in Particle Therapy Heidelberg Ion Beam Therapy Center HIT Department of Radiation

More information

Figure 1.1 PHITS geometry for PTB irradiations with: broad beam, upper panel; mono energetic beams, lower panel. Pictures of the setups and of the

Figure 1.1 PHITS geometry for PTB irradiations with: broad beam, upper panel; mono energetic beams, lower panel. Pictures of the setups and of the Figure 1.1 PHITS geometry for PTB irradiations with: broad beam, upper panel; mono energetic beams, lower panel. Pictures of the setups and of the PMMA ring holder with 7 containers are also shown. Relative

More information

A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy

A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy International Journal of Radiation Oncology biology physics www.redjournal.org Physics Contribution A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions

More information

What is radiation quality?

What is radiation quality? What is radiation quality? Dudley T Goodhead Medical Research Council, UK DoReMi Radiation Quality workshop Brussels. 9-10 July 2013 What is radiation quality? Let s start at the very beginning. A very

More information

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan)

PTCOG 46. Educational Workshop Session IV. Head & Neck CLINICAL. J. Mizoe (NIRS, Japan) PTCOG 46 Educational Workshop Session IV CLINICAL Head & Neck J. Mizoe (NIRS, Japan) Photon X-Ray γ-ray Fast Neutron Non-Charged Radiation Electron Proton Helium Light Ion Heavy Particle Carbon Neon Argon

More information

Calculated LET spectrum from antiproton beams stopping in water

Calculated LET spectrum from antiproton beams stopping in water Acta Oncologica, 2009; 48: 223226 ORIGINAL ARTICLE Calculated LET spectrum from antiproton beams stopping in water NIELS BASSLER 1,2 & MICHAEL HOLZSCHEITER 3 1 Department of Experimental Clinical Oncology,

More information

Proton Therapy Dosimetry & Clinical Implementation. Baldev Patyal, Ph.D., Chief Medical Physicist Department of Radiation Medicine

Proton Therapy Dosimetry & Clinical Implementation. Baldev Patyal, Ph.D., Chief Medical Physicist Department of Radiation Medicine Proton Therapy Dosimetry & Clinical Implementation Baldev Patyal, Ph.D., Chief Medical Physicist Department of Radiation Medicine Outline» Proton Therapy Basics» Why Proton Therapy? (Dosimetric Superiority)»

More information

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER

ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER ADVANCES IN RADIATION TECHNOLOGIES IN THE TREATMENT OF CANCER Bro. Dr. Collie Miller IARC/WHO Based on trends in the incidence of cancer, the International Agency for Research on Cancer (IARC) and WHO

More information

Scoring of linear energy transfer (LET) for calculation of biological dose in proton therapy

Scoring of linear energy transfer (LET) for calculation of biological dose in proton therapy Scoring of linear energy transfer (LET) for calculation of biological dose in proton therapy And why biological calculation should be done within FLUKA Eivind Rørvik May 11, 216 Eivind Rørvik 4th Fluka

More information

T.Kanai, K. Yusa, M. Tashiro, H. Shimada, K. Torikai, Gunma University, Gunma, Japan

T.Kanai, K. Yusa, M. Tashiro, H. Shimada, K. Torikai, Gunma University, Gunma, Japan The carbon-ion cancer therapy facility at Gunma University T.Kanai, K. Yusa, M. Tashiro, H. Shimada, K. Torikai, J. Koya, T. Ishii, Y. Yoshida, S. Yamada, T. Ohno, T. Nakano Gunma University, Gunma, Japan

More information

Modelling the induction of cell death and chromosome damage by therapeutic protons

Modelling the induction of cell death and chromosome damage by therapeutic protons Modelling the induction of cell death and chromosome damage by therapeutic protons M.P. Carante 1,2 and F. Ballarini 1,2, * 1 University of Pavia, Physics Department, Pavia, Italy 2 INFN, Sezione di Pavia,

More information

Uncertainties in proton therapy: Analysis of the effects of density changes, calibration curve errors and setup errors in proton dose distributions.

Uncertainties in proton therapy: Analysis of the effects of density changes, calibration curve errors and setup errors in proton dose distributions. Uncertainties in proton therapy: Analysis of the effects of density changes, calibration curve errors and setup errors in proton dose distributions. A treatment planning study performed on water phantoms

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

Neutron dose evaluation in radiotherapy

Neutron dose evaluation in radiotherapy Neutron dose evaluation in radiotherapy Francesco d Errico University of Pisa, Italy Yale University, USA Radiation therapy with a linear accelerator (LINAC) Photoneutron production in accelerator head

More information

Study on Microdosimetry for Boron Neutron Capture Therapy

Study on Microdosimetry for Boron Neutron Capture Therapy Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.242-246 (2011) ARTICLE Study on Microdosimetry for Boron Neutron Capture Therapy Tetsuya MUKAWA 1,*, Tetsuo MATSUMOTO 1 and Koji NIITA 2 1 Tokyo City

More information

SUMITOMO Particle Therapy Technologies

SUMITOMO Particle Therapy Technologies 55 th AAPM annual meeting Particle Beam Therapy Symposium SUMITOMO Particle Therapy Technologies August 3, 2013 Yukio Kumata Experience accelerators for science Current Status proton and carbon Future

More information

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy Radiation Dosimetry for Proton Therapy Narayan Sahoo Department of Radiation Physics University of Texas MD Anderson Cancer Center Proton Therapy Center Houston, USA Topics covered Detectors used for to

More information

Hampton University Proton Therapy Institute

Hampton University Proton Therapy Institute Hampton University Proton Therapy Institute Brief introduction to proton therapy technology, its advances and Hampton University Proton Therapy Institute Vahagn Nazaryan, Ph.D. Executive Director, HUPTI

More information

Enhanced radiobiological effects at the distal end of a clinical proton beam: in vitro study

Enhanced radiobiological effects at the distal end of a clinical proton beam: in vitro study Journal of Radiation Research Advance Access published May 13, 2014 Journal of Radiation Research, 2014, pp 1 7 doi: 10.1093/jrr/rrt230 Short Communication Enhanced radiobiological effects at the distal

More information

Out-of-field dosimetry in radiotherapy for input to epidemiological studies. Roger Harrison

Out-of-field dosimetry in radiotherapy for input to epidemiological studies. Roger Harrison MELODI 7th Workshop, 9 11 November 2015 Helmholtz Zentrum München Next Generation Radiation Protection Research Out-of-field dosimetry in radiotherapy for input to epidemiological studies Roger Harrison

More information

HEAVY PARTICLE THERAPY

HEAVY PARTICLE THERAPY HEAVY PARTICLE THERAPY DR. G.V. GIRI KIDWAI MEMORIAL INSTITUTE OF ONCOLOGY ICRO 2012 BHATINDA HEAVY PARTICLES USED IN A EFFORT TO IMPROVE TUMOR CONTROL, THAT DO NOT RESPOND TO PHOTONS OR ELECTRONS BETTER

More information

The ANDANTE project: a multidisciplinary approach to neutron RBE

The ANDANTE project: a multidisciplinary approach to neutron RBE The ANDANTE project: a multidisciplinary approach to neutron RBE Andrea Ottolenghi, Klaus Trott, Giorgio Baiocco, Vere Smyth Università degli Studi di Pavia, Italy On behalf of the ANDANTE project MELODI

More information

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO MP (CLINICAL ONCOLOGY) PART I EXAMINATION - AUGUST Time : p.m p.m.

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO MP (CLINICAL ONCOLOGY) PART I EXAMINATION - AUGUST Time : p.m p.m. POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO MP (CLINICAL ONCOLOGY) PART I EXAMINATION - AUGUST 2015 Date :- 24 th August 2015 PAPER I Time :- 2.00 p.m. - 4.15 p.m. If the examiners cannot

More information

Radiobiological Characterization of Clinical Proton and Carbon-Ion Beams

Radiobiological Characterization of Clinical Proton and Carbon-Ion Beams Proceedings of the CAS-CERN Accelerator School: Accelerators for Medical Applications, Vösendorf, Austria, 26 May 5 June 2015, edited by R. Bailey, CERN Yellow Reports: School Proceedings, Vol. 1/2017,

More information

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017

FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE. Geoffrey S. Ibbott, Ph.D. June 20, 2017 FROM ICARO1 TO ICARO2: THE MEDICAL PHYSICS PERSPECTIVE Geoffrey S. Ibbott, Ph.D. June 20, 2017 1 DISCLOSURES My institution holds Strategic Partnership Research Agreements with Varian, Elekta, and Philips

More information

Radiological Protection in Ion Beam Radiotherapy

Radiological Protection in Ion Beam Radiotherapy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ICRP ref 4851-1931-9834 17 April 2014 Annals of the ICRP ICRP PUBLICATION 1XX Radiological Protection in Ion Beam Radiotherapy 16 17 18 19 20 21 22 23 24 25 26 27 28

More information

Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: a monte carlo study

Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: a monte carlo study Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: a monte carlo study Navid Khledi 1, Azim Arbabi 2, Dariush Sardari 1, Mohammad Mohammadi 3, Ahmad

More information

Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center

Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center Proton Therapy for Prostate Cancer Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center Seungtaek Choi, MD Assistant Professor Department tof fradiation

More information

TFY4315 STRÅLINGSBIOFYSIKK

TFY4315 STRÅLINGSBIOFYSIKK Norges teknisk-naturvitenskaplige universitet Institutt for fysikk EKSAMENSOPPGÅVER med løysingsforslag Examination papers with solution proposals TFY4315 STRÅLINGSBIOFYSIKK Biophysics of Ionizing Radiation

More information

Activities at the Heidelberg Ion Therapy Center (HIT)

Activities at the Heidelberg Ion Therapy Center (HIT) Activities at the Heidelberg Ion Therapy Center (HIT) The people A. Mairani (now INFN), F. Sommerer (Uniklinikum Heidelberg), I. Rinaldi (DKFZ Heidelberg), K. Parodi (HIT and University of Heidelberg)

More information

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients Moyed Miften, PhD Professor and Chief Physicist University of Colorado Chester Reft, PhD Associate Professor University of Chicago

More information

PRESCRIBING RECORDING AND REPORTING PROTON BEAM THERAPY ICRU 78. RAJESH THIYAGARAJAN Senior Medical Physicist & RSO Medanta The Medicity

PRESCRIBING RECORDING AND REPORTING PROTON BEAM THERAPY ICRU 78. RAJESH THIYAGARAJAN Senior Medical Physicist & RSO Medanta The Medicity PRESCRIBING RECORDING AND REPORTING PROTON BEAM THERAPY ICRU 78 RAJESH THIYAGARAJAN Senior Medical Physicist & RSO Medanta The Medicity HISTORY OF PROTON THERAPY Robert Wilson proposed the use of proton

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

Proton Beam Therapy at Mayo Clinic

Proton Beam Therapy at Mayo Clinic Proton Beam Therapy at Mayo Clinic Jon J. Kruse, Ph.D. Mayo Clinic Dept. of Radiation Oncology Rochester, MN History of Proton Therapy at Mayo 2002: Decided to consider particle therapy analysis and education

More information

Skyscan 1076 in vivo scanning: X-ray dosimetry

Skyscan 1076 in vivo scanning: X-ray dosimetry Skyscan 1076 in vivo scanning: X-ray dosimetry DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in

More information

Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy

Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy Dosimetry for Epidemiology Cohorts Who Receive Radiation Therapy Wayne Newhauser, PhD Eurados Winter School, Milan, 2016 Introduction About 1 in 2 men and women born today will be diagnosed with some form

More information

Treatment Planning (Protons vs. Photons)

Treatment Planning (Protons vs. Photons) Treatment Planning Treatment Planning (Protons vs. Photons) Acquisition of imaging data Delineation of regions of interest Selection of beam directions Dose calculation Optimization of the plan Hounsfield

More information

Present status and future of Proton beam therapy

Present status and future of Proton beam therapy Present status and future of Proton beam therapy Description At present, the types of proven treatment for cancer are surgery, radiotherapy, and chemotherapy. Depending on the characteristics of cancer

More information

Overview of Clinical and Research Activities at Georgetown University Hospital

Overview of Clinical and Research Activities at Georgetown University Hospital Overview of Clinical and Research Activities at Georgetown University Hospital Dalong Pang, Ph.D. Department of Radiation Medicine Georgetown University Hospital Clinical Operation Two Varian linear accelerators

More information

Introduction to Ion Beam Cancer Therapy

Introduction to Ion Beam Cancer Therapy Introduction to Ion Beam Cancer Therapy Andrew M. Sessler (with some slides from David Robin) Lawrence Berkeley National Laboratory Berkeley, CA 94720 Cyclotron 10, Lanzhou September 10, 2010 Contents

More information

MICRODOSIMETRY CALCULATION OF THE DOSE CONVERSION COEFFICIENT FOR RADON PROGENY. B.M.F. Lau, D. Nikezic, K.N. Yu

MICRODOSIMETRY CALCULATION OF THE DOSE CONVERSION COEFFICIENT FOR RADON PROGENY. B.M.F. Lau, D. Nikezic, K.N. Yu MICRODOSIMETRY CALCULATION OF THE DOSE CONVERSION COEFFICIENT FOR RADON PROGENY B.M.F. Lau, D. Nikezic, K.N. Yu Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue,

More information

The biological effectiveness of low-energy photons

The biological effectiveness of low-energy photons Onkologisches Zentrum Klinik für Strahlentherapie und Radioonkologie Medizinische Strahlenphysik The biological effectiveness of low-energy photons Elisabetta Gargioni University Medical Center Hamburg-Eppendorf

More information

Quality assurance in external radiotherapy

Quality assurance in external radiotherapy Quality assurance in external radiotherapy dr. Marius Laurikaitis medical physicist Oncological Hospital of Kaunas Medical University Hospital Kaunas, 2010-10-14 Acceptance and Commissioning Acceptance

More information

Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar and Mars Missions with Space Radiation Measurements

Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar and Mars Missions with Space Radiation Measurements Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar and Mars Missions with Space Radiation Measurements Myung-Hee Y. Kim Wyle Laboratories, Houston, Texas, 77058 and Francis A. Cucinotta

More information

SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES

SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES SHIELDING TECHNIQUES FOR CURRENT RADIATION THERAPY MODALITIES MELISSA C. MARTIN, M.S., FACR, FAAPM PRESIDENT AAPM - 2017 PRESIDENT - THERAPY PHYSICS INC., GARDENA, CA MELISSA@THERAPYPHYSICS.COM AAPM Spring

More information

Implementation of advanced RT Techniques

Implementation of advanced RT Techniques Implementation of advanced RT Techniques Tibor Major, PhD National Institute of Oncology Budapest, Hungary 2. Kongres radiološke tehnologije, Vukovar, 23-25. September 2016. Current RT equipments at NIO,

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy

More information

The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology

The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology Robert D. Stewart, Ph.D. Associate Professor of Radiation Oncology University of Washington School of Medicine Department of Radiation

More information

Today, I will present the second of the two lectures on neutron interactions.

Today, I will present the second of the two lectures on neutron interactions. Today, I will present the second of the two lectures on neutron interactions. 1 The main goal of this lecture is to tell you a little about clinical neutron therapy, first with fast neutron beams, and

More information

Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry J. Phys.: Conf. Ser.

Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry J. Phys.: Conf. Ser. Protons Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry T Gorjiara, Z Kuncic, J Adamovics and C Baldock 2013 J. Phys.: Conf. Ser. 444 012090 PRESAGE is a radiochromic

More information

OPERATION AND PATIENT TREATMENTS AT CNAO FACILITY

OPERATION AND PATIENT TREATMENTS AT CNAO FACILITY OPERATION AND PATIENT TREATMENTS AT CNAO FACILITY Abstract The CNAO (National Centre for Oncological Hadrontherapy) has been realized in Pavia. It is a clinical facility created and financed by the Italian

More information

Dosimetry and QA of proton and heavier ion beams

Dosimetry and QA of proton and heavier ion beams Dosimetry and QA of proton and heavier ion beams Stanislav Vatnitskiy EBG MedAustron GmbH Wiener Neustadt, Austria Content Introduction Reference dosimetry Methods, detectors, protocols Dosimetry in non-reference

More information

Dr. Robert R. Wilson, a physicist who had worked on

Dr. Robert R. Wilson, a physicist who had worked on Radiation Therapy With Charged Particles Daniela Schulz-Ertner, MD,* Oliver Jäkel, PhD, and Wolfgang Schlegel, PhD Charged particle beams can offer an improved dose conformation to the target volume as

More information

Protection of the contralateral breast during radiation therapy for breast cancer

Protection of the contralateral breast during radiation therapy for breast cancer Protection of the contralateral breast during radiation therapy for breast cancer Edgardo Garrigó a*, Alejandro Germanier b, Silvia Zunino a a Instituto Privado de Radioterapia, Ob Oro 423 (5000) Córdoba,

More information

Advances in external beam radiotherapy

Advances in external beam radiotherapy International Conference on Modern Radiotherapy: Advances and Challenges in Radiation Protection of Patients Advances in external beam radiotherapy New techniques, new benefits and new risks Michael Brada

More information

AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy

AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy AAPM TG 158: Measurement and calculation of doses outside the treated volume from external-beam radiation therapy Stephen F. Kry a) Department of Radiation Physics, MD Anderson Cancer Center, Houston,

More information

Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system. Dr Craig Moore & Dr Tim Wood

Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system. Dr Craig Moore & Dr Tim Wood Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system Dr Craig Moore & Dr Tim Wood Background With the increasing use of CBCT imaging alongside complex

More information

Two-Dimensional Thermoluminescence Dosimetry System for Proton Beam Quality Assurance

Two-Dimensional Thermoluminescence Dosimetry System for Proton Beam Quality Assurance Two-Dimensional Thermoluminescence Dosimetry System for Proton Beam Quality Assurance Jan Gajewski Institute of Nuclear Physics, Kraków, Poland German Cancer Research Center, Heidelberg, Germany Existing

More information

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy

Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy IL NUOVO CIMENTO 38 C (2015) 179 DOI 10.1393/ncc/i2015-15179-9 Colloquia: UCANS-V Epithermal neutron beams from the 7 Li(p,n) reaction near the threshold for neutron capture therapy I. Porras( 1 ),J.Praena(

More information

Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry

Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry Monte Carlo water-equivalence study of two PRESAGE formulations for proton beam dosimetry T Gorjiara 1, Z Kuncic 1, J Adamovics 2 and C Baldock 1,3 1 Institute of Medical Physics, School of Physics, University

More information

Learning Objectives. Clinically operating proton therapy facilities. Overview of Quality Assurance in Proton Therapy. Omar Zeidan

Learning Objectives. Clinically operating proton therapy facilities. Overview of Quality Assurance in Proton Therapy. Omar Zeidan Overview of Quality Assurance in Proton Therapy Omar Zeidan AAPM 2012 Charlotte, NC July 30 st, 2012 Learning Objectives Understand proton beam dosimetry characteristics and compare them to photon beams

More information

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation.

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. Radiation Therapy Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. One person in three will develop some form of cancer in their lifetime.

More information

Hadrons on Malignant Cells: Recent Activities within Collaboration between LNS INFN and Vinca Institute of Nuclear Sciences

Hadrons on Malignant Cells: Recent Activities within Collaboration between LNS INFN and Vinca Institute of Nuclear Sciences ENSAR2 Midterm Meeting of Networking Activity 5: MediNet March 12 th 14 th, 218 Vinča Institute of Nuclear sciences, University of Belgrade Hadrons on Malignant Cells: Recent Activities within Collaboration

More information

[Setawati et. al., Vol.4 (Iss10): October, 2017] ISSN: DOI: /zenodo

[Setawati et. al., Vol.4 (Iss10): October, 2017] ISSN: DOI: /zenodo EXTERNAL RADIATION SIMULATION OF LINAC TO DETERMINE EFFECTIVE DOSE IN ORGANS USING MONTE CARLO METHOD Evi Setawati *1, Muchammad Azam 1, Ngurah Ayu Ketut Umiati 1, Hammam Oktajianto 1 *1 Physics Department,

More information