IRRADIATORS. September 11, :00 am-5:00 pm Hock Plaza Auditorium Duke University Medical Center, Erwin Road

Size: px
Start display at page:

Download "IRRADIATORS. September 11, :00 am-5:00 pm Hock Plaza Auditorium Duke University Medical Center, Erwin Road"

Transcription

1 IRRADIATORS Terry Yoshizumi,, PhD September 11, :00 am-5:00 pm Hock Plaza Auditorium Duke University Medical Center, Erwin Road Radiation Countermeasures Center of Research Excellence 1

2 Acknowledgements Sam Brady Garrett Muramoto John Chute Giao Nguyen Greta Toncheva Lauren Daigle Dave Jorgensen Greg Egan Netiti Moori Brad Thrasher Beverly Steffey Oana Craciunescu 2

3 X-ray irradiator Production of x-rays x (bremsstrahlung) How the x-ray x machine works Bremsstrahlung X-ray spectrum Factors affecting dosimetry Case study (John Chute) 7

4 Production of x-rays x (bremsstrahlung( bremsstrahlung) Charged particle (e.g., electron) passing near a nucleus may be deflected by the strong electrical forces exerted on it by the nucleus As the projectile electron passes by the nucleus, it slows down, changes its course, and leaves with reduced kinetic energy. This loss in kinetic energy reappears as an x-ray x (called bremsstrahlung x-rays) 8

5 How the x-ray x machine works X-ray tube Removable filter AGFA X-RAD 320 9

6 ANATOMY OF ANODE TUBE Melting point 1083 deg C Z=74, High melting point 3380 deg C 10

7 TUBE VOLTAGE AND TUBE CURRENT Tube voltage (kvp) Tube current 11

8 CATHODE ASSEMBLY Small filament for high-resolution imaging Larger filament for higher intensities (large ma) 12

9 TARGET ANGLE AND DIRECTION OF BREMSSTRAHLUNG Target angle Target angle degrees Direction of bremsstrahlung radiations (approx. perpendicular to the direction of electrons) See next slide 13

10 RELATIVE INTENSITY OF BREMSSTRAHLUNG For low energy electrons, radiated predominantly at right angle to the motion of the particles The probability of bremsstrahlung production varies with Z 2 of the absorbing materials 14

11 Bremsstrahlung x-ray spectrum Max. kvp 15

12 FILTERS, AND BEAM RESTRICTORS # types of filters # 1 # 4 # 8 #1: 1.65 mm Aluminum #4: 0.1 mm Cu mm Al #8: 0.8 mm Tin mm Cu +1.5 mm Al 16

13 Key factors affecting dosimetry X-ray energy (kvp( kvp) Tube current (ma( milliamperes) Beam filtration (filters) Distance Attenuation in mouse Backscatter as a function of field size 17

14 Factors affecting dosimetry X-ray energy (kvp( kvp) Rule of Thumb (dose increases to kvp 2 ) Dose Dose kvp ( ) kvp Dose 2 Dose 1 ( ) kvp1 2 kvp Example: 120 kvp to 140 kvp Dose 140 kvp ~Dose 120kVp * (140/120) 2 = 1.36* Dose 120kVp i.e., Dose increases by 36%. 18

15 19

16 Factors affecting dosimetry Tube current (ma( milliamperes) A change in ma results in a directly proportional change in the amplitude of the x-ray x emission spectrum at all energies. Example: if you double the ma from 200-mA to 400-mA, the area under the curve (x-ray quantity) doubles. 20

17 Factors affecting dosimetry Effects of beam filtration (filters) Available filters #1: 1.65 mm Aluminum #4: 0.1 mm Cu mm Al #8: 0.8 mm Tin mm Cu +1.5 mm Al 21

18 Factors affecting dosimetry Effects of beam filtration (filters) The overall result of added filtration is an increase in the effective energy of the x-ray x beam with an accompanying reduction in x-ray x quantity. Peak energy shift 22

19 #4 filter being used in Sands Building #4 filter #1 filter #8 filter #1: 1.65 mm Aluminum #4: 0.1 mm Cu mm Al #8: 0.8 mm Tin mm Cu +1.5 mm Al 23

20 Factors affecting dosimetry Effect of distance (source-to to-surface distance, SSD, or target (focal spot)-to to surface distance, TSD) Inverse-square square law (dose decreases inversely to the square of the distance) Example: 4Gy *(50cm/100cm) 2 = 4Gy*(1/4)=1 Gy 24

21 X-ray geometry- mouse Hummm I feel more heat! Dose depends on the source-to-mouse (target) distance. The closer to the tube, 25 the higher the dose.

22 Factors affecting dosimetry Attenuation in mouse For 135 kvp expect some attenuation in the mouse Backscatter as a function of field size 26

23 John Chute, PI Objectives CASE STUDY Compare absorbed dose between clinical protocol and direct TLD method Clinical protocol used by Garrette: : Parameters: 135kVP, 100cGy/min, FS (collimated beam): 20 cm x 20 cm 27

24 Mouse Anatomy % Bone Marrow Skull:17.6% Mandible:2.0% Clavicle and Scapula: 1.0% Spine: 33.7% Cervical: 4.2% Thoracic: 7% Lumbar: 9.9% Sacral:8.1% Coccygeal: 2.3% Humerus:2.4% Forearm:0.7% Sternum:3.8% All Ribs:5.0% Femur: 5.8% Tibia: 3.0% Pelvis:11.9% Mus musculus (Common species of Lab mouse): -Avg overall length: 16.9cm (head to tail) -body length: 6-10cm (head to base of tail) -hind foot: 1.8cm -Avg weight adult mouse: 17-25g -Average height: 3-5cm 28

25 TISSUE-EQUIVALENT EQUIVALENT MOUSE PHANTOM A B C TLD 15, 16 TLD 13, 14 TLD 11, 12 1 cm 0.3 cm 0.6 cm 2.0 cm 3.8 cm 2.7 cm 3.8 cm 2.4 cm 3 cm 12 cm A B C TLD chips (3 mm x 3 mm x 1 mm thick) 29

26 Results: x-ray x irradiator Dose rate suspicious LOCATION A (Head) 1 cm deep CLINICAL SETTING 100 cgy/min 500 cgy TLD MEASURED DOSE cgy % DIFF -23% B (Middle) 0.3 cm deep 500 cgy cgy -17% C 0.6 cm deep 500 cgy cgy -13% 30

27 Clinical Setting 500 cgy X-ray Mouse Dose (cgy) Dose (cgy) A (1.0 cm) B (0.3 cm) C (0.6 cm) TLD locations 31

28 New Calibration factors for Garrett geometry Location A Dose Rate (cgy/min) 81.1 SD Dose Rate (cgy/min) 3.1 B C AVERAGE

29 Why mice did not die? Time (min) Clinical DR used (100 cgy/min) New DR (85.0 +/- 2.7 cgy/min) % Diff / % Target 700 cgy was actually 595 +/- 19 cgy. 33

30 50 cm cgy d cm min Desired Dose (cgy) 50 cm cgy d cm min 2 Desired Dose (cgy)=( ) x DR ( ) x T(min) T(min) = 2 ( ) x DR ( ) STD=50 CM d cm B A Dose Rate (DR) in cgy/min 34

31 GEOMETRY STD=50 cm B: 44.2 cm 46.5 cm A: STD=45.5 cm 4.8 cm 1 cm below 2 cm 3 cm 3.5 cm 0.5 cm deep STD=45.5 cm 35

32 Results of mice dosimetry x-ray irradiator LOCATION B: Assume source- to-target target distance =44.2 cm A: Assume source-to to- Target distance =45.5 cm Dose rate being used clinically by Chute group Dose rate 95.0 cgy/min cgy/min 100 cgy/min Dose for 5 min exposure cgy 504 cgy 500 cgy 36

33 Discussions Sources of inaccuracies Look-up table (BSF)- probably minor Geometry changed since originakl calibration (major) Scatter geometry different in mice in the plastic holder (not uniform water phantom) 37

34 Gamma ray irradiator JL Shepherd Mark I 38

35 Gamma ray irradiator Decay scheme (Cs-137) Key differences from X-rayX Case study Quality assurance note 39

36 Decay scheme (Cs-137) Half-life= life= 30 yrs Emits β 1 particles (electrons) Gamma at 662 kev + - n p + e + γ + energy Cs Ba + β + ν + γ Cs Ba + β + ν + γ 40

37 Key differences from X-ray X irradiator Energy: Cs kev X-ray 135 kvp (ave.. energy ~45 kev) (average energy ~135 * 1/3= 45 kev) Need for annual decay correction for Cs yr -λ*t - 30 yr = e = e The dose rates must be decreased 2.3% per year. 41

38 Cs-137 Irradiator Dimension 37 cm high Cs-137 source will be raised Turntable 30 cm diam. 42

39 Cs-137 Irradiator (Chute) 4.8 cm 3 =7.6 cm rotating table 43

40 Factors affecting dosimetry Non-uniform irradiation of mice due to rotating table Dose rate point taken at central point and assume same dose distribution (not true) 44

41 CASE STUDY John Chute, PI Objectives Compare absorbed dose between clinical protocol and direct TLD method Exposure T=0.76 min Target dose =500 cgy 45

42 Geometry issues need to be addressed TLD chips Beam angle and TLD chip angle dependency The beam not always perpendicular to the chips Θ Cs-137 source Goals: Understand angle dependency Minimize angle effects in dosimetry 46

43 8/15/2006 TLD runs:cs-137 geometry TLD chip 3 x 3 x 1 mm #3 #1 Beam direction TLD perpendicular, middle #2 #2 TLD parallel to beam, middle #1 rotation #3 TLD parallel to beam, top, same as x-ray 47

44 CLINICAL PROTOCOL DOSE SET TO 500 cgy Set-up #1 Gold Standard (TLD Cs-137) A B C average A B C 48

45 Geometry #2, target dose =500 cgy #2 TLD parallel to beam, middle Case # dose (cgy) A B C average 49

46 Case #3: x-ray x geometry, Target 500 cgy A B C TLD 15, 16 TLD 13, 14 TLD 11, 12 #3 TLD parallel to beam, top, same as x-ray 1 cm 0.3 cm 0.6 cm 2.0 cm 3.8 cm 2.7 cm 3.8 cm 2.4 cm 3 cm 12 cm Case #3: x-ray geometry Dose (cgy) A B C average 50

47 New calibration factors for Garrett geometry geometry DR (cgy( cgy/min) SD (cgy( cgy/min) #1 (middle, gold standard) #2 (middle) #3 (spine curve)

48 Irradiator Dosimety Quality Assurance Note Whenever set-up changes, consult your physicists (Oana( and Beverly, Rad Onc or Radccore HP group) Geometry specific direct measurements would improve confidence and accuracy Calibration factors for specific geometries may be posted in the web-site Dose validation is important across the Radccore affiliates 52

49 Irradiator safety issues 54

50 Irradiator safety issues Don t t lose your fingers Understand radiation levels in normal operations 55

51 Radiation level under normal operations X-ray beam on Assume 10 min 1 ft, then Cs-137 Source off µ R R 1 hr hr 10 µr 60 min -6 Dose equivalent ( Rem ) = 8 * *10 min * = 1.3 x 10 R (or Rem) 6 Recall WB limit = 5 Rem per yr No radiation risks! 56

52 Cs-137 source up A location A B C D waist level 3-ft high (1 ft away from wall) ur/hr B A D At A, 5 x 10-5 Rem for 10 min exposure (Annual limit = 5 Rem) C 57

53 Safety Summary Watch your fingers! Under normal operating conditions, no radiation risks exist. 58

Dosimetry comparison of orthovoltage x-ray and 137 Cs irradiation of the murine bone marrow compartment Matthew Belley

Dosimetry comparison of orthovoltage x-ray and 137 Cs irradiation of the murine bone marrow compartment Matthew Belley Dosimetry comparison of orthovoltage x-ray and 137 Cs irradiation of the murine bone marrow compartment Matthew Belley NCHPS Fall Meeting October 9, 2015 Duke Medical Physics Disclaimer Financial support

More information

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients

Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients Measurement of Dose to Implanted Cardiac Devices in Radiotherapy Patients Moyed Miften, PhD Professor and Chief Physicist University of Colorado Chester Reft, PhD Associate Professor University of Chicago

More information

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics

Neutron Interactions Part 2. Neutron shielding. Neutron shielding. George Starkschall, Ph.D. Department of Radiation Physics Neutron Interactions Part 2 George Starkschall, Ph.D. Department of Radiation Physics Neutron shielding Fast neutrons Slow down rapidly by scatter in hydrogenous materials, e.g., polyethylene, paraffin,

More information

1 Course Syllabus + Study Guide for Lecture and Laboratory

1 Course Syllabus + Study Guide for Lecture and Laboratory 1 Course Syllabus + Study Guide for Lecture and Laboratory /BERGEN COMMUNITY COLLEGE Division of Health Professions/Radiography Program Fall 2014 A. General Course Information Title: Radiography I Credits:

More information

Course Syllabus + Study Guide for Lecture and Laboratory

Course Syllabus + Study Guide for Lecture and Laboratory 1811 0916BERGEN COMMUNITY COLLEGE Division of Health Professions/Radiography Program Fall 2016 A. General Course Information Title: Radiography I Credits: 5 Semester: Fall (6 hrs. laboratory and 3 hrs.

More information

Using Monte Carlo Method for Evaluation of kvp & mas variation effect on Absorbed Dose in Mammography

Using Monte Carlo Method for Evaluation of kvp & mas variation effect on Absorbed Dose in Mammography Using Monte Carlo Method for Evaluation of kvp & mas variation effect on Absorbed Dose in Mammography Poster No.: C-2078 Congress: ECR 2011 Type: Authors: Keywords: DOI: Scientific Exhibit F. Salmani Rezaei,

More information

GATE MONTE CARLO DOSIMETRY SIMULATION OF MARS SPECTRAL CT

GATE MONTE CARLO DOSIMETRY SIMULATION OF MARS SPECTRAL CT GATE MONTE CARLO DOSIMETRY SIMULATION OF MARS SPECTRAL CT R Aamir, C Lowe, J Damet, P Carbonez, A P H Butler, N Schleich, N G Anderson MARFO, Emmanuel Geant4 User Workshop 2017, Wollongong Overview MARS

More information

DETERMINATION OF ENTRANCE SKIN DOSE FROM DIAGNOSTIC X-RAY OF HUMAN CHEST AT FEDERAL MEDICAL CENTRE KEFFI, NIGERIA

DETERMINATION OF ENTRANCE SKIN DOSE FROM DIAGNOSTIC X-RAY OF HUMAN CHEST AT FEDERAL MEDICAL CENTRE KEFFI, NIGERIA DETERMINATION OF ENTRANCE SKIN DOSE FROM DIAGNOSTIC X-RAY OF HUMAN CHEST AT FEDERAL MEDICAL CENTRE KEFFI, NIGERIA Full Length Research Article 1 Ibrahim, U, 3 Daniel, I.H., 3 Ayaninola, O., 4 Ibrahim,

More information

The impact of SID and collimation on backscatter in radiography

The impact of SID and collimation on backscatter in radiography The impact of SID and collimation on backscatter in radiography Poster No.: C-2931 Congress: ECR 2010 Type: Scientific Exhibit Topic: Physics in Radiology Authors: M. Joyce 1, J. T. Ryan 2, M. F. Mc Entee

More information

Dosimetry in digital mammography

Dosimetry in digital mammography Dosimetry in digital mammography Professor David Dance NCCPM, Royal Surrey County Hospital, Guildford, United kingdom Outline Why do dosimetry? History Essentials of European breast dosimetry protocol

More information

Radiologic Units: What You Need to Know

Radiologic Units: What You Need to Know Radiologic Units: What You Need to Know TODD VAN AUKEN M.ED. RT (R)(MR) Agenda Greys, Sieverts, Coulombs per kg, & Becquerel's Conventional Units Other Concepts (LET, Q-Factor, Effective Dose, NCRP Report

More information

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography IAEA Training Material on Radiation Protection in Diagnostic and Interventional Radiology RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY L19: Optimization of Protection in Mammography

More information

Investigation of the clinical performance of a novel solid-state diagnostic dosimeter

Investigation of the clinical performance of a novel solid-state diagnostic dosimeter JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 4, 2015 Investigation of the clinical performance of a novel solid-state diagnostic dosimeter Jason Tse, a Donald McLean Medical Physics and

More information

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam University of Chicago CDH Proton Center LET study C. Reft 1, H. Ramirez 2 and M. Pankuch

More information

Skyscan 1076 in vivo scanning: X-ray dosimetry

Skyscan 1076 in vivo scanning: X-ray dosimetry Skyscan 1076 in vivo scanning: X-ray dosimetry DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in

More information

Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital

Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital Iran. J. Radiat. Res., 2004; 2 (2): 53-58 Assessment of variation of wedge factor with depth, field size and SSD for Neptun 10PC Linac in Mashhad Imam Reza Hospital M. Hajizadeh Saffar 1*, M.R. Ghavamnasiri

More information

Bone Densitometry Radiation dose: what you need to know

Bone Densitometry Radiation dose: what you need to know Bone Densitometry Radiation dose: what you need to know John Damilakis, PhD Associate Professor and Chairman University of Crete, Iraklion, Crete, GREECE Estimation of bone status using X-rays Assessment

More information

Table of Contents. Introduction 3. Background 4

Table of Contents. Introduction 3. Background 4 Training manual Table of Contents Introduction 3 Background 4 What are X-rays? 4 How are X-rays Generated? 5 Primary and Scatter Radiation 6 Interactions with Matter 6 Biological Effects of Radiation 7

More information

SAXS on lipid structures

SAXS on lipid structures Practical Course in Biophysics, Experiment R2b SAXS on lipid structures Summer term 2015 Room: Advisor: X-ray lab at LS Rädler, NU111 Stefan Fischer Tel: +49-(0)89-2180-1459 Email: stefan.f.fischer@physik.lmu.de

More information

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons.

Introduction. Measurement of Secondary Radiation for Electron and Proton Accelerators. Introduction - Photons. Introduction - Neutrons. Measurement of Secondary Radiation for Electron and Proton Accelerators D. Followill, Ph.D. Radiological Physics Center U. T. M. D. Anderson Cancer Center Introduction Patients undergoing radiation therapy

More information

Radiation Detection and Measurement

Radiation Detection and Measurement Radiation Detection and Measurement Range of charged particles (e.g.,!: µm; ": mm) Range of high energy photons (cm) Two main types of interactions of high energy photons Compton scatter Photoelectric

More information

Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system. Dr Craig Moore & Dr Tim Wood

Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system. Dr Craig Moore & Dr Tim Wood Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system Dr Craig Moore & Dr Tim Wood Background With the increasing use of CBCT imaging alongside complex

More information

Current Status of Electronic Brachytherapy Dosimetry

Current Status of Electronic Brachytherapy Dosimetry Current Status of Electronic Brachytherapy Dosimetry 2014 NCCAAPM Fall Meeting La Crosse, WI Wes Culberson, PhD, DABR University of Wisconsin Madison University of Wisconsin Medical Radiation Research

More information

Standardization of dosimetry practices for small and large animal irradiation in radiobiological studies

Standardization of dosimetry practices for small and large animal irradiation in radiobiological studies Standardization of dosimetry practices for small and large animal irradiation in radiobiological studies Abdul Kazi, Ph.D., DABR Assistant Professor, Department of Radiation Oncology University of Maryland

More information

Radiation Safety Characteristics of the NOMAD Portable X-ray System

Radiation Safety Characteristics of the NOMAD Portable X-ray System Radiation Safety Characteristics of the NOMAD Portable X-ray System D. Clark Turner 1, Donald K. Kloos 1, Robert Morton 2 1 ARIBA X-Ray, Inc., 754 South 400 East, Orem, UT 84097 USA, www.aribaxray.com

More information

Radiology Positioning Practical Test #2 Table (By Jung Park):

Radiology Positioning Practical Test #2 Table (By Jung Park): Radiology Positioning Practical Test #2 Table (By Jung Park): (Lower Extremity): patient is fully gowned / no artifacts / properly shielded (exposure for femur and below : hold still, don t move ) (exposure

More information

X-RAYS INDIVIDUAL DOSE ASSESSMENT USING TLD DOSIMETERS

X-RAYS INDIVIDUAL DOSE ASSESSMENT USING TLD DOSIMETERS X-RAYS INDIVIDUAL DOSE ASSESSMENT USING TLD DOSIMETERS Carlos Salas Nucleoeléctrica Argentina SA - Embalse NPP Environmental Control and Dosimetry Division INTRODUCTION: This paper describes the methodology

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 & ANSI/NCSL Z540-1-1994 UNIVERSITY OF WISCONSIN RADIATION CALIBRATION LABORATORY Room B1002, WIMR 1111 Highland Avenue Madison, WI 53705-2275 Larry A. DeWerd,

More information

RADIATION MONITORING DEVICES R A D I A T I O N P R O T E C T I O N & B I O L O G Y - R H O D E S

RADIATION MONITORING DEVICES R A D I A T I O N P R O T E C T I O N & B I O L O G Y - R H O D E S RADIATION MONITORING DEVICES 10-526- 1 9 7 R A D I A T I O N P R O T E C T I O N & B I O L O G Y - R H O D E S DETECTION AND MEASUREMENT OF IONIZING RADIATION Dosimeter Dose-measuring device Two classifications:

More information

Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy

Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy Simon Duane, Hugo Palmans, Peter Sharpe NPL, UK Stefaan Vynckier UCL, Brussels, Belgium LNE-LNHB / BIPM workshop,

More information

THE RIGAKU JOURNAL VOL. 23 / 2006, A1-A10 CONSIDERATIONS REGARDING THE ALIGNMENT OF DIFFRACTOMETERS FOR RESIDUAL STRESS ANALYSIS

THE RIGAKU JOURNAL VOL. 23 / 2006, A1-A10 CONSIDERATIONS REGARDING THE ALIGNMENT OF DIFFRACTOMETERS FOR RESIDUAL STRESS ANALYSIS THE RIGAKU JOURNAL VOL. 23 / 2006, A1-A10 CONSIDERATIONS REGARDING THE ALIGNMENT OF DIFFRACTOMETERS FOR RESIDUAL STRESS ANALYSIS THOMAS R. WATKINS, O. BURL CAVIN, CAMDEN R. HUBBARD, BETH MATLOCK, AND ROGER

More information

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method Iran. J. Radiat. Res., 2004; 1(4): 187-194 Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method M.R. Ay 1, M. Shahriari 2, S. Sarkar 3, P.

More information

Electron therapy Class 3: Clinical procedures

Electron therapy Class 3: Clinical procedures Electron therapy Class 3: Clinical procedures Laurence Court lecourt@mdanderson.org Reference: Faiz M. Khan, The Physics of Radiation Therapy Slide acknowledgements: Karl Prado, Rebecca Howell, Kent Gifford,

More information

Medical Physics 4 I3 Radiation in Medicine

Medical Physics 4 I3 Radiation in Medicine Name: Date: 1. This question is about radiation dosimetry. Medical Physics 4 I3 Radiation in Medicine Define exposure. A patient is injected with a gamma ray emitter. The radiation from the source creates

More information

Neutron dose evaluation in radiotherapy

Neutron dose evaluation in radiotherapy Neutron dose evaluation in radiotherapy Francesco d Errico University of Pisa, Italy Yale University, USA Radiation therapy with a linear accelerator (LINAC) Photoneutron production in accelerator head

More information

Mammography. Background and Perspective. Mammography Evolution. Background and Perspective. T.R. Nelson, Ph.D. x41433

Mammography. Background and Perspective. Mammography Evolution. Background and Perspective. T.R. Nelson, Ph.D. x41433 - 2015 Background and Perspective 2005 (in US) Women Men Mammography Invasive Breast Cancer Diagnosed 211,240 1,690 Noninvasive Breast Cancer Diagnosed 58,940 Deaths from Breast Cancer 40,410 460 T.R.

More information

Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate)

Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate) Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate) Overview Ga-68 dotatate binds to somatostatin receptors, with highest affinity for subtype 2 receptors (sstr2). It binds to cells that express

More information

Dosimetric Consideration in Diagnostic Radiology

Dosimetric Consideration in Diagnostic Radiology Dosimetric Consideration in Diagnostic Radiology Prof. Ng Kwan-Hoong Department of Biomedical Imaging University of Malaya ngkh@um.edu.my Radiation Dosimetry Workshop, 28-29 March 2014 2 Why do we measure

More information

Dental Intraoral X-ray Systems

Dental Intraoral X-ray Systems Dental Intraoral X-ray Systems PROPOSED REVISIONS TO 4732.XXXX, 2.0 4732.#### DENTAL INTRAORAL X-RAY SYSTEMS; STATIONARY AND MOBILE. Commented [JC(1]: Based on part 4732.0880. Subpart 1. Applicability.

More information

M. J. Maryanski, Three Dimensional BANG Polymer Gel Dosimeters AAPM'99, CE Course

M. J. Maryanski, Three Dimensional BANG Polymer Gel Dosimeters AAPM'99, CE Course Three Dimensional BANG Polymer Gel Dosimeters Marek J. Maryanski MGS Research, Inc. Guilford, CT Educational objectives: Describe the need for high-resolution 3D dosimetry in 3D CRT. Explain the physics

More information

Radiography. 1. Introduction. 2. Documentation of Compliance. 3. Didactic Competency Requirements. 4. Clinical Competency Requirements

Radiography. 1. Introduction. 2. Documentation of Compliance. 3. Didactic Competency Requirements. 4. Clinical Competency Requirements PRIMARY CERTIFICATION AND REGISTRATION Radiography 1. Introduction Candidates for certification and registration are required to meet the Professional Education Requirements specified in the ARRT Rules

More information

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3

GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3 GAFCHROMIC DOSIMETRY MEDIA TYPE MD-V3 WARNING: Store below 25ºC Store away from radiation sources Avoid exposure of film to sunlight Handle film carefully, creasing may cause damage Do not expose to temperatures

More information

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin

THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY. S.V. Akulinichev, A. V. Andreev, V.M. Skorkin THE HIGH-CURRENT DEUTERON ACCELERATOR FOR THE NEUTRON THERAPY S.V. Akulinichev, A. V. Andreev, V.M. Skorkin Institute for Nuclear Research of the RAS, Russia THE PROJECT OF NEUTRON SOURCES FOR THE NEUTRON

More information

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden September 2006 The aim of this text is to explain some of the basic quantities and units

More information

Dose distribution and dosimetry parameters calculation of MED3633 palladium-103 source in water phantom using MCNP

Dose distribution and dosimetry parameters calculation of MED3633 palladium-103 source in water phantom using MCNP Iran. J. Radiat. Res., 2006; 4 (1): 15-19 Dose distribution and dosimetry parameters calculation of MED3633 palladium- source in water phantom using MCNP A.A. Mowlavi 1*,A. Binesh 2, H. Moslehitabar 3

More information

Adult: > 18 Years ALARA: As low as reasonably achievable ALI:

Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Health Physics Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Annual Limit on Intake. The amount of an isotope that if taken into the body over the course of a year would result in in a

More information

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiotherapy. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Brachytherapy Radioisotopes in contact with the tumor Overview

More information

CHARACTERIZATION OF THE ELECTRON BEAM RADIATION FIELD BY CHEMICAL DOSIMETRY

CHARACTERIZATION OF THE ELECTRON BEAM RADIATION FIELD BY CHEMICAL DOSIMETRY CHARACTERIZATION OF THE ELECTRON BEAM RADIATION FIELD BY CHEMICAL DOSIMETRY M. R. NEMTANU, C. OPROIU, M. BRASOVEANU, M. OANE National Institute for Laser, Plasma and Radiation Physics, Electron Accelerator

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. RA202 Rad protection class two True/False Indicate whether the sentence or statement is true or false. 1. Secondary radiation comes from scatter and leakage. 2. Grids are considered a protection device.

More information

TLD as a tool for remote verification of output for radiotherapy beams: 25 years of experience

TLD as a tool for remote verification of output for radiotherapy beams: 25 years of experience IAEA-CN-96-82 TLD as a tool for remote verification of output for radiotherapy beams: 25 years of experience J. Francisco Aguirre, Ramesh C. Tailor, Geoffrey S. Ibbott, Marilyn Stovall and William F. Hanson

More information

Improving personal dosimetry of medical staff wearing radioprotective garments: Design of a new whole-body dosimeter using Monte Carlo simulations

Improving personal dosimetry of medical staff wearing radioprotective garments: Design of a new whole-body dosimeter using Monte Carlo simulations Improving personal dosimetry of medical staff wearing radioprotective garments: Design of a new whole-body dosimeter using Monte Carlo simulations Clarita Saldarriaga Vargas, Corinne Amalberto, Lara Struelens,

More information

Nuclear energy, nuclear technologies, and radiological protection Vocabulary. Part 4: Dosimetry for radiation processing

Nuclear energy, nuclear technologies, and radiological protection Vocabulary. Part 4: Dosimetry for radiation processing Provläsningsexemplar / Preview INTERNATIONAL STANDARD ISO 12749-4 First edition 2015-08-15 Nuclear energy, nuclear technologies, and radiological protection Vocabulary Part 4: Dosimetry for radiation processing

More information

Manik Aima, Larry A. DeWerd, Wesley S. Culberson

Manik Aima, Larry A. DeWerd, Wesley S. Culberson Manik Aima, Larry A. DeWerd, Wesley S. Culberson University of Wisconsin Medical Radiation Research Center, Madison, WI 25 th Annual Meeting of the Council of Ionizing Radiation Measurements and Standards,

More information

Application(s) of Alanine

Application(s) of Alanine Application(s) of Alanine Simon Duane Radiotherapy Standards User Group, 5 June 2007 Outline Alanine/EPR dosimetry characteristics, usage (dis)advantages for reference dosimetry Traceable dosimetry for

More information

Skeletal System Tour Lab. Station Label the bones on your answer sheet.

Skeletal System Tour Lab. Station Label the bones on your answer sheet. Station 1 1. Label the bones on your answer sheet. Station 2 2. Label the joints on your answer sheet. Fixed Pivot Hinge Hinge Gliding Ball and Socket Hinge Swivel Gliding Gliding Ball and Socket Types

More information

Frank: Merrill's Atlas of Radiographic Positioning & Procedures, 12th Edition

Frank: Merrill's Atlas of Radiographic Positioning & Procedures, 12th Edition Frank: Merrill's Atlas of Radiographic Positioning & Procedures, 12th Edition Chapter 01: Preliminary Steps in Radiography Test Bank MULTIPLE CHOICE 1. The primary controlling factor of radiographic contrast

More information

45 Hr PET Registry Review Course

45 Hr PET Registry Review Course 45 HR PET/CT REGISTRY REVIEW COURSE Course Control Document Timothy K. Marshel, MBA, R.T. (R), (N)(CT)(MR)(NCT)(PET)(CNMT) The PET/CT Training Institute, Inc. SNMMI-TS 028600-028632 45hr CEH s Voice Credits

More information

Radiation Safety in the Catheterization Lab

Radiation Safety in the Catheterization Lab SCAI FALL FELLOWS COURSE - 2015 Radiation Safety in the Catheterization Lab V. Vivian Dimas, MD, FSCAI Associate Professor Pediatrics, Cardiology UT Southwestern Medical Center Dallas TX None Disclosures

More information

Application of dose-area product compared with three other dosimetric quantities used to estimate patient effective dose in diagnostic radiology

Application of dose-area product compared with three other dosimetric quantities used to estimate patient effective dose in diagnostic radiology Iran. J. Radiat. Res., 2006; 4 (1): 21-27 Application of dose-area product compared with three other dosimetric quantities used to estimate patient effective dose in diagnostic radiology M.T. Bahreyni

More information

Model 3500 Manual TLD Reader with WinREMS 3500-W-O-0602 Page 5-1 Operator's Manual

Model 3500 Manual TLD Reader with WinREMS 3500-W-O-0602 Page 5-1 Operator's Manual Model 35 Manual TLD Reader with WinREMS 35-W-O-62 Page 5-1 5. Quality Assurance The procedures in this section help you maintain the accuracy and reliability of your Model 35. The main topics covered are:!

More information

CALCULATION OF BACKSCATTER FACTORS FOR LOW ENERGY X-RAYS USING THE TOPAS MONTE CARLO CODE

CALCULATION OF BACKSCATTER FACTORS FOR LOW ENERGY X-RAYS USING THE TOPAS MONTE CARLO CODE CALCULATION OF BACKSCATTER FACTORS FOR LOW ENERGY X-RAYS USING THE TOPAS MONTE CARLO CODE Emily Hewson 1 Martin Butson 1,2 Robin Hill 1,2 1 Institute of Medical Physics, School of Physics, University of

More information

Shielding Calculation: Radiographic Room. Jerry Williams

Shielding Calculation: Radiographic Room. Jerry Williams Shielding Calculation: Radiographic Room Jerry Williams What you need to know Room use and layout DAP workload DAP averaged kv Distance to barrier Construction details Walls Ceilings/ floors Surrounding

More information

ORAU Team Dose Reconstruction Project for NIOSH

ORAU Team Dose Reconstruction Project for NIOSH ORAU Team Dose Reconstruction Project for NIOSH Pinellas Plant - Occupational Medical Dose Subject Expert: Paul J. Demopoulos Document Owner Approval: Signature on File Date: 05/05/2005 Mark D. Notich,

More information

GAFCHROMIC MD-55 RADIOCHROMIC DOSIMETRY FILM FOR HIGH-ENERGY PHOTONS CONFIGURATION, SPECIFICATIONS AND PERFORMANCE DATA

GAFCHROMIC MD-55 RADIOCHROMIC DOSIMETRY FILM FOR HIGH-ENERGY PHOTONS CONFIGURATION, SPECIFICATIONS AND PERFORMANCE DATA GAFCHROMIC MD-55 RADIOCHROMIC DOSIMETRY FILM FOR HIGH-ENERGY PHOTONS CONFIGURATION, SPECIFICATIONS AND PERFORMANCE DATA DESCRIPTION GAFCHROMIC MD-55 radiochromic dosimetry film is designed for the measurement

More information

Diode calibration for dose determination in total body irradiation

Diode calibration for dose determination in total body irradiation Iran. J. Radiat. Res., 2008; 6 (1): 43-50 Diode calibration for dose determination in total body irradiation M.Allahverdi 1*, Gh. Geraily 1, M. Esfehani 3,A. Sharafi 2,A. Shirazi 1 1 Department of Medical

More information

Basic radiation protection & radiobiology

Basic radiation protection & radiobiology Basic radiation protection & radiobiology By Dr. Mohsen Dashti Patient care & management 202 Wednesday, October 13, 2010 Ionizing radiation. Discussion issues Protecting the patient. Protecting the radiographer.

More information

STRUCTURED EDUCATION REQUIREMENTS IMPLEMENTATION DATE: JULY 1, 2017

STRUCTURED EDUCATION REQUIREMENTS IMPLEMENTATION DATE: JULY 1, 2017 STRUCTURED EDUCATION REQUIREMENTS Bone Densitometry The purpose of structured education is to provide the opportunity for individuals to develop mastery of discipline-specific knowledge that, when coupled

More information

Computed tomography Acceptance testing and dose measurements

Computed tomography Acceptance testing and dose measurements Computed tomography Acceptance testing and dose measurements Jonas Andersson Medical Physicist, Ph.D. Department of Radiation Sciences University Hospital of Norrland, Umeå Sweden Contents The Computed

More information

Intensity Modulated Radiation Therapy: Dosimetric Aspects & Commissioning Strategies

Intensity Modulated Radiation Therapy: Dosimetric Aspects & Commissioning Strategies Intensity Modulated Radiation Therapy: Dosimetric Aspects & Commissioning Strategies ICPT School on Medical Physics for Radiation Therapy Justus Adamson PhD Assistant Professor Department of Radiation

More information

Reduction of Radiation Exposure during Radiography for S coliosis

Reduction of Radiation Exposure during Radiography for S coliosis Cnpynght 983 by TItu Jsiurnal of Bunt and Join: Surgers-. Ineorpisrati-d Reduction of Radiation Exposure during Radiography for S coliosis BY JOEL E. GRAY, PH.D.a., ALAN D. HOFFMAN, M.D.*, AND HAMLET A.

More information

Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia

Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia Abstract Calibration of Radiation Instruments Used in Radiation Protection and Radiotherapy in Malaysia Taiman Bin Kadni (taiman@mint.gov.my) Secondary Standard Dosimetry Laboratory (SSDL) Malaysian Institute

More information

Radiochromic film dosimetry in water phantoms

Radiochromic film dosimetry in water phantoms INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY Phys. Med. Biol. 46 (2001) N27 N31 www.iop.org/journals/pb PII: S0031-9155(01)16858-2 NOTE Radiochromic film dosimetry in water phantoms

More information

IMRT QUESTIONNAIRE. Address: Physicist: Research Associate: Dosimetrist: Responsible Radiation Oncologist(s)

IMRT QUESTIONNAIRE. Address: Physicist:   Research Associate:   Dosimetrist:   Responsible Radiation Oncologist(s) IMRT QUESTIONNAIRE Institution: Date: / / Address: Physicist: e-mail: Telephone: Fax: Research Associate: email: Telephone: Fax: Dosimetrist: email: Telephone: Fax: Responsible Radiation Oncologist(s)

More information

Radiation Dosimetry in Digital Breast Tomosynthesis. March, 2015 William J. O Connel, Dr. Ph, Senior Medical Physicist

Radiation Dosimetry in Digital Breast Tomosynthesis. March, 2015 William J. O Connel, Dr. Ph, Senior Medical Physicist Radiation Dosimetry in Digital Breast Tomosynthesis March, 2015 William J. O Connel, Dr. Ph, Senior Medical Physicist Imagination at work. Syllabus 1. Introduction 2. Dosimetry in Mammography 3. Dosimetry

More information

Radiation Safety for New Medical Physics Graduate Students

Radiation Safety for New Medical Physics Graduate Students Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training This is intended as

More information

Routine Guide EXAMINATION PROJECTION CASSETTE SIZE NOTES PRINT ORIENTATION. 14x17 CW* 14x17LW 14x17LW. 14x17LW 14x17LW 14x17LW

Routine Guide EXAMINATION PROJECTION CASSETTE SIZE NOTES PRINT ORIENTATION. 14x17 CW* 14x17LW 14x17LW. 14x17LW 14x17LW 14x17LW EXAMINATION PROJECTION CASSETTE SIZE NOTES PRINT ORIENTATION A-C Joints without weights with weights 14x17 CW* One 14x17 divided; both shoulders on one exposure. *If part does not fit, do 10x12s CW. Both

More information

RADIATION SAFETY. Junior Radiology Course

RADIATION SAFETY. Junior Radiology Course RADIATION SAFETY Junior Radiology Course Expectations for the Junior Radiology Course Medical School wants students to learn basic principles, factual knowledge, safety info, etc. Medical Students want

More information

Medica Health Plans. Minnesota Fee Schedule Revised 5/1/2016 NEW PATIENT EXAMS: MN Medicaid. Medicare

Medica Health Plans. Minnesota Fee Schedule Revised 5/1/2016 NEW PATIENT EXAMS: MN Medicaid. Medicare Medica Health Plans Minnesota Fee Schedule Revised 5/1/2016 NEW PATIENT EXAMS: 99201 Problem focused history and examination --straightforward $23.48 100% of CMS $29.53 99201.25 Problem focused history

More information

LECTURE 13. Dr. Teresa D. Golden University of North Texas Department of Chemistry

LECTURE 13. Dr. Teresa D. Golden University of North Texas Department of Chemistry LECTURE 13 Dr. Teresa D. Golden University of North Texas Department of Chemistry Goniometer circle - centered at the sample, with the x-ray source and detector on the circumference of the circle. Focusing

More information

ARRT Specifications Radiation Exposure & Monitoring

ARRT Specifications Radiation Exposure & Monitoring Radiation Protection Review 15% (30) 11% (22) Gina Tice, MSRS, RT(R) Gadsden State Community College ARRT Specifications Radiation Exposure & Monitoring Radiation Protection (45) Biological Aspects of

More information

THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL

THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL THERMOLUMINESCENT (TL) DOSIMETRY OF SLOW-NEUTRON FIELDS AT RADIOTHERAPY DOSE LEVEL G. Gambarini Dipartimento di Fisica dell Università, Milano, Italy e-mail grazia.gambarini http://users.unimi.it/~frixy/

More information

Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation.

Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation. Monte Carlo simulation of 192 Ir radioactive source in a phantom designed for brachytherapy dosimetry and source position evaluation Samuel Chiquita 1 1 University of Porto, Porto, Portugal Abstract In

More information

Commissioning and Radiobiology of the INTRABEAM System

Commissioning and Radiobiology of the INTRABEAM System Commissioning and Radiobiology of the INTRABEAM System Susha Pillai and Junan Zhang Scheme INTRABEAM System. Physics Commissioning, QA, and Radiation Protection Radiobiology 1 Disclosure OHSU is an INTRABEAM

More information

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy

Topics covered 7/21/2014. Radiation Dosimetry for Proton Therapy Radiation Dosimetry for Proton Therapy Narayan Sahoo Department of Radiation Physics University of Texas MD Anderson Cancer Center Proton Therapy Center Houston, USA Topics covered Detectors used for to

More information

Radiation Safety Characteristics of the NOMAD Portable X-ray System

Radiation Safety Characteristics of the NOMAD Portable X-ray System Radiation Safety Characteristics of the NOMAD Portable X-ray System D. Clark Turner1, Donald K. Kloos1, Robert Morton2 1Aribex, Inc., 754 South 400 East, Orem, UT 84097 USA, www.aribex.com 2Quality and

More information

Patient Management Image Selection Radiation Biology, Dosimetry & Protection

Patient Management Image Selection Radiation Biology, Dosimetry & Protection Patient Management Image Selection Radiation Biology, Dosimetry & Protection Objectives: Following this course, the participants will have the information necessary to: 1. Identify the techniques used

More information

Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science

Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science PATIENT DOSIMETRY IN DIAGNOSTIC RADIOLOGY MODALITIES Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science Ankara University Institute of Nuclear Science USE OF RADIATION! INCREASING? Natural

More information

DENTAL RADIOLOGY Identify basic facts and terms of radiology, to include fundamentals. with 70% accuracy.

DENTAL RADIOLOGY Identify basic facts and terms of radiology, to include fundamentals. with 70% accuracy. DENTAL RADIOLOGY Identify basic facts and terms of radiology, to include fundamentals of chemistry relating to radiology, with 70% accuracy. Radiation Physics Radiation Health and Safety Components of

More information

X-Ray & CT Physics / Clinical CT

X-Ray & CT Physics / Clinical CT Computed Tomography-Basic Principles and Good Practice X-Ray & CT Physics / Clinical CT INSTRUCTORS: Dane Franklin, MBA, RT (R) (CT) Office hours will be Tuesdays from 5pm to 6pm CLASSROOM: TIME: REQUIRED

More information

Douglas J. Simpkin, Ph.D. Aurora St. Luke s Medical Center Milwaukee, Wisconsin. www.

Douglas J. Simpkin, Ph.D. Aurora St. Luke s Medical Center Milwaukee, Wisconsin. www. PET/CT Shielding Design Examples Douglas J. Simpkin, Ph.D. Aurora St. Luke s Medical Center Milwaukee, Wisconsin dsimpkin@wi.rr.com www. http://geocities.com/djsimpkin 1 Sources of Exposure: F-18 in Patients

More information

EXAMINATION CONTENT SPECIFICATIONS ARRT BOARD APPROVED: JANUARY 2017 IMPLEMENTATION DATE: JULY 1, 2017

EXAMINATION CONTENT SPECIFICATIONS ARRT BOARD APPROVED: JANUARY 2017 IMPLEMENTATION DATE: JULY 1, 2017 EXAMINATION CONTENT SPECIFICATIONS Bone Densitometry The purpose of the bone densitometry examination is to assess the knowledge and cognitive skills underlying the intelligent performance of the tasks

More information

Theragnostics for bone metastases. Glenn Flux Royal Marsden Hospital & Institute of Cancer Research Sutton UK

Theragnostics for bone metastases. Glenn Flux Royal Marsden Hospital & Institute of Cancer Research Sutton UK Theragnostics for bone metastases Glenn Flux Royal Marsden Hospital & Institute of Cancer Research Sutton UK NPL 2015 Ra-223 Biodistribution & dosimetry Ra-223: 11.4 days half-life, range of 100 µm Six

More information

Module Rhodes

Module Rhodes Module 6 10-526-197 Rhodes Health Physicist Concerned with providing occupation radiation protection and minimizing radiation dose to the public. Diagnostic Imaging has changed our world Live longer Work

More information

Radiation Safety For Anesthesiologists. R2 Pinyada Pisutchareonpong R2 Nawaporn Sateantantikul Supervised by Aj Chaowanan Khamtuicrua

Radiation Safety For Anesthesiologists. R2 Pinyada Pisutchareonpong R2 Nawaporn Sateantantikul Supervised by Aj Chaowanan Khamtuicrua Radiation Safety For Anesthesiologists R2 Pinyada Pisutchareonpong R2 Nawaporn Sateantantikul Supervised by Aj Chaowanan Khamtuicrua Modern World Non Ionizing VS Ionizing Non Ionizing Harmless Ex. visible

More information

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom Iran. J. Radiat. Res., 2003; 1(3): 143-149 Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom A. Mostaar 1, M. Allahverdi 1,2, M. Shahriari 3 1 Medical Physics Department,

More information

Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use?

Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use? Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use? Eva Godske Friberg * Norwegian Radiation Protection Authority, P.O. Box, Østerås, Norway Abstract.

More information

Country Health SA Medical Imaging

Country Health SA Medical Imaging Country Health SA Medical Imaging REMOTE OPERATORS POSITIONING GUIDE Contents Image Evaluation Page 4 Positioning Guides Section 1 - THORAX 1.1 Chest Page 5 1.2 Bedside Chest Page 7 1.3 Ribs Page 8 Section

More information

PATIENT ENTRANCE SKIN DOSES AT MINNA AND IBADAN FOR COMMON DIAGNOSTIC RADIOLOGICAL EXAMINATIONS

PATIENT ENTRANCE SKIN DOSES AT MINNA AND IBADAN FOR COMMON DIAGNOSTIC RADIOLOGICAL EXAMINATIONS Bayero Journal of Pure and Applied Sciences, 2(1): 1-5 Received: October, 2008 Accepted: February, 2009 PATIENT ENTRANCE SKIN DOSES AT MINNA AND IBADAN FOR COMMON DIAGNOSTIC RADIOLOGICAL EXAMINATIONS *Sharifat,

More information

Why is CT Dose of Interest?

Why is CT Dose of Interest? Why is CT Dose of Interest? CT usage has increased rapidly in the past decade Compared to other medical imaging CT produces a larger radiation dose. There is direct epidemiological evidence for a an increase

More information

Y FILMS DOSIMETR Nederland België / Belgique

Y FILMS DOSIMETR Nederland België / Belgique DOSIMETRY FILMS GAFCHROMIC Dosimetry Films The Self-developing Dosimetry Films that Allow You to Go Filmless Do away with the cost and headache of calibrating and maintaining a processor Do away with hazardous

More information