Brain metastasis is the most common malignant

Size: px
Start display at page:

Download "Brain metastasis is the most common malignant"

Transcription

1 CLINICAL ARTICLE J Neurosurg 126: , 2017 Impact of the radiosurgery prescription dose on the local control of small (2 cm or smaller) brain metastases Alireza M. Mohammadi, MD, 1,2 Jason L. Schroeder, MD, 5 Lilyana Angelov, MD, 1,2 Samuel T. Chao, MD, 3 Erin S. Murphy, MD, 3 Jennifer S. Yu, MD, PhD, 3 Gennady Neyman, PhD, 3 Xuefei Jia, MS, 4 John H. Suh, MD, 3 Gene H. Barnett, MD, 1,2 and Michael A. Vogelbaum, MD, PhD 1,2 1 The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Departments of 2 Neurosurgery and 3 Radiation Oncology, and 4 Quantitative Health Science, Neurological Institute and Taussig Cancer Institute, Cleveland Clinic, Cleveland; and 5 Department of Neurosurgery, University of Toledo Medical Center, Toledo, Ohio OBJECTIVE The impact of the stereotactic radiosurgery (SRS) prescription dose (PD) on local progression and radiation necrosis for small ( 2 cm) brain metastases was evaluated. METHODS An institutional review board approved retrospective review was performed on 896 patients with brain metastases 2 cm (3034 tumors) who were treated with 1229 SRS procedures between 2000 and Local progression and/or radiation necrosis were the primary end points. Each tumor was followed from the date of radiosurgery until one of the end points was reached or the last MRI follow-up. Various criteria were used to differentiate tumor progression and radiation necrosis, including the evaluation of serial MRIs, cerebral blood volume on perfusion MR, FDG-PET scans, and, in some cases, surgical pathology. The median radiographic follow-up per lesion was 6.2 months. RESULTS The median patient age was 56 years, and 56% of the patients were female. The most common primary pathology was non small cell lung cancer (44%), followed by breast cancer (19%), renal cell carcinoma (14%), melanoma (11%), and small cell lung cancer (5%). The median tumor volume and median largest diameter were 0.16 cm 3 and 0.8 cm, respectively. In total, 1018 lesions (34%) were larger than 1 cm in maximum diameter. The PD for 2410 tumors (80%) was 24 Gy, for 408 tumors (13%) it was 19 to 23 Gy, and for 216 tumors (7%) it was 15 to 18 Gy. In total, 87 patients (10%) had local progression of 104 tumors (3%), and 148 patients (17%) had at least radiographic evidence of radiation necrosis involving 199 tumors (7%; 4% were symptomatic). Univariate and multivariate analyses were performed for local progression and radiation necrosis. For local progression, tumors less than 1 cm (subhazard ratio [SHR] 2.32; p < 0.001), PD of 24 Gy (SHR 1.84; p = 0.01), and additional whole-brain radiation therapy (SHR 2.53; p = 0.001) were independently associated with better outcome. For the development of radiographic radiation necrosis, independent prognostic factors included size greater than 1 cm (SHR 2.13; p < 0.001), location in the corpus callosum (SHR 5.72; p < 0.001), and uncommon pathologies (SHR 1.65; p = 0.05). Size (SHR 4.78; p < 0.001) and location (SHR 7.62; p < 0.001) but not uncommon pathologies were independent prognostic factors for the subgroup with symptomatic radiation necrosis. CONCLUSIONS A PD of 24 Gy results in significantly better local control of metastases measuring < 2 cm than lower doses. In addition, tumor size is an independent prognostic factor for both local progression and radiation necrosis. Some tumor pathologies and locations may also contribute to an increased risk of radiation necrosis. KEY WORDS brain metastases; Gamma Knife; radiation necrosis; local progression; predictive factors; tumor volume; oncology; stereotactic radiosurgery Brain metastasis is the most common malignant brain tumor and occurs in up to one-third of patients with systemic cancer. 17,30,33,38 Multiple sources of high-quality evidence have shown the effectiveness of stereotactic radiosurgery (SRS) for the treatment of brain metastases. 3,4,10,40 As a result, SRS alone or in combination with other treatment modalities, such as surgery or whole-brain radiation therapy (WBRT), has become the mainstay of treatment for patients with brain metastases, particularly for the treatment of smaller tumors. 5,7,14,20,25 ABBREVIATIONS KPS = Karnofsky Performance Scale; MTD = maximum tolerated dose; PD = prescription dose; RTOG = Radiation Therapy Oncology Group; SHR = subhazard ratio; SRS = stereotactic radiosurgery; WBRT = whole-brain radiation therapy. SUBMITTED December 24, ACCEPTED March 8, INCLUDE WHEN CITING Published online May 27, 2016; DOI: / JNS AANS, 2017 J Neurosurg Volume 126 March

2 A. M. Mohammadi et al. To determine the relationship between SRS dose and toxicity, Radiation Therapy Oncology Group (RTOG 90-05) was designed as a dose-escalation study and included separate arms based on the size of the target tumor. 36 The maximum tolerated dose (MTD) for lesions with a maximum linear diameter between 3 and 4 cm was found to be 15 Gy to the tumor margin, while for tumors between 2 and 3 cm it was 18 Gy. However, for tumors smaller than 2 cm in maximum diameter, MTD was not reached even at a dose of 24 Gy to the tumor margin. The RTOG investigators were reluctant to increase the treatment dose beyond 24 Gy, and hence this dose became the de facto MTD. Despite the fact that the actual MTD was not reached for tumors smaller than 2 cm in maximum diameter, not all SRS centers use 24 Gy as their preferred dose for these tumors. Various dosing schedules are being used in practice, especially for lesions smaller than 2 cm, in part because of the lack of high-quality evidence that examines the treatment efficacy versus risk of radiation necrosis associated with a marginal tumor dose of 24 Gy. 23,31,47 Furthermore, it should be noted that the RTOG study included patients who had received prior fractionated radiotherapy; many patients today are being treated with SRS as the primary treatment and hence have not had prior cranial exposure to therapeutic radiation. 3 To further understand the relationship of the risks to benefits associated with a prescription dose (PD) of 24 Gy, we analyzed our large, institutional review board approved clinical database that includes patients with brain metastases that were treated with SRS. Our goal was to identify prognostic factors, including the impact of radiosurgery PD, on the rates of local tumor control, and radiation necrosis when SRS is used to treat brain metastases smaller than or equal to 2 cm. This is the largest series ever reported, with longitudinal follow-up of more than 3000 brain metastases, on the response to treatment of small brain metastases. Methods Between 2000 and 2012, more than 1450 patients were treated with Gamma Knife radiosurgery at the Cleveland Clinic for more than 4700 brain metastases. The inclusion criteria for our study consisted of adult patients with brain metastases treated with Gamma Knife radiosurgery during the study period (4700 tumors). Exclusion criteria were 1) maximum dimension (based on the largest diameter on T1-weighted postcontrast MRI or CT if no MRI was performed as part of the Gamma Knife planning scans) greater than 2 cm (900 tumors), 2) treatment with PD less than 15 Gy (30 tumors), and 3) lack of posttreatment MR images available for review (696 tumors). Therefore, the final study cohort included 896 patients who underwent 1229 radiosurgery treatments for 3034 brain metastases. Of note, among the 900 lesions that were larger than 2 cm and were excluded from the study, approximately 320 patients exclusively had lesions measuring larger than 2 cm. However, more than 550 lesions larger than 2 cm were found in approximately 330 patients with multiple brain metastases who had some lesions 2 cm or smaller and some larger than 2 cm. For the purposes of this study, only 2 cm or smaller lesions were considered for the analysis and included. Most patients (680 cases; 73%) underwent 1 radiosurgery procedure, while 216 patients (24%) had 2 (16%) or more (8%) procedures (maximum 6 SRS sessions). This study was approved by the institutional review board of Cleveland Clinic. The primary end points were local progression and onset of at least radiographic evidence of radiation necrosis after SRS. The subgroup of patients with symptomatic radiation necrosis was evaluated independently as well. We followed every individual lesion on every postoperative MRI study and comparisons were made based on the unior bidimensional measurements per the neuroradiology reports and comparisons with the Gamma Knife or prior scan measurements. In cases in which these factors were not reported clearly or there was conflicting information, additional measurement was performed by one of the authors (A.M.M.). We used a variety of techniques to differentiate between local progression and radiation necrosis, which can often appear similar on conventional contrastenhanced MRI. These techniques included any of the following: repeat imaging at intervals ranging from 1 to 3 months; MR perfusion studies to evaluate relative cerebral blood volume in the area of the lesion; FDG avidity on PET imaging; and, in select cases, surgical pathology. Ultimately, the behavior of the tumor on serial radiographic evaluation was the most reliable method for distinguishing radiographic radiation necrosis from tumor progression. 11 In complicated situations for example, when various imaging modalities produced conflicting results we used the consensus of our multidisciplinary brain tumor board to render a diagnosis. Despite utilizing this multimodality approach, we were not able to reliably differentiate between local progression and radiation necrosis in 72 lesions (e.g., in some cases, the patient died after the first posttreatment MRI study due to progressive systemic disease without having later follow-up scans or a perfusion study), and the lesions were excluded from further analysis. All lesions that met the inclusion and exclusion criteria were followed after SRS. Tumor response (enlargement, stable, shrinkage, resolution) was assessed for all lesions on the first post-srs MRI study (4 8 weeks after SRS), and thereafter all lesions were just followed for possible enlargement (i.e., one of the end points) or until the last available radiographic follow-up. Overall, the median radiographic follow-up of the lesions was 6.2 months. We evaluated various patient and tumor characteristics as prognostic factors for either local control or the development of at least radiographic radiation necrosis, including primary pathology, prior treatment with either or both SRS and WBRT to the same lesion, location of the tumor, and the patient s clinical status at the time of treatment. Additionally, treatment data, including PD, prescription isodose line, tumor volume, maximum diameter, and the conformality ratio, were evaluated. SRS was performed using Gamma Knife models B, C, 4C, and Perfexion (Elek ta AB) during the study period based on our institutional protocol. 25 Records associated with the treatment of 896 patients were reviewed. Table 1 summarizes the patient and treatment characteristics. Demographically, 502 patients (56%) 736 J Neurosurg Volume 126 March 2017

3 Radiosurgery dose and local control of small brain metastases TABLE 1. Patient and first SRS characteristics Factor n (%) Sex Male 394 (44) Female 502 (56) Primary site Non small cell lung cancer 393 (44) Breast 166 (19) Renal cell 123 (14) Melanoma 98 (11) Small cell lung cancer 46 (5) Uncommon pathologies 70 (8) Other systemic metastases No 208 (23) Yes (single metastases) 348 (39) Yes (multiple metastases) 340 (38) Controlled systemic disease at SRS 326 (36) KPS score (52) (43) (5) Recursive partitioning analysis class (16) (79) 3 49 (5) Graded prognostic assessment class (23) (64) 3 89 (10) (4) Neurological function status Asymptomatic 336 (37) Mild symptoms 437 (49) Moderate/severe symptoms 123 (14) Chemotherapy in the month prior to SRS 475 (53) Additional WBRT before or after index SRS 338 (38) No. of targets (48) (40) (14) No. of SRS treatments (76) (16) 3 42 (5) 4 17 (2) 5 12 (1) were female. The median age at primary cancer diagnosis was 56 years (range 7 88 years), and the median age at neurological involvement was 59 years (range years). The median interval from primary diagnosis to neurological involvement with brain metastasis was 12 months (range years), and the median interval from the diagnosis of brain metastasis to the initial radiosurgery was 2.1 months (range years). The distribution of the primary cancer histologies was non small cell lung cancer in 393 patients (44%), breast cancer in 166 patients (19%), renal cell carcinoma in 123 patients (14%), melanoma in 98 patients (11%), and small cell lung cancer in 46 patients (5%). The remaining patients (70 patients; 8%) had other less common types of cancer that were grouped as uncommon pathologies, including colon cancer (21 patients; 34 lesions), esophageal cancer (7 patients; 17 lesions), gynecological cancer (15 patients; 27 lesions), urothelial cancer (7 patients; 15 lesions), sarcoma (4 patients; 9 lesions), cancer of the salivary glands (3 patients; 10 lesions), unknown primary (7 patients; 17 lesions), and other (6 patients; 18 lesions). Statistical Considerations The primary end points of the study were the time to local progression and time to radiographic or symptomatic radiation necrosis, which were measured from the date of SRS. Overall survival, which was also measured from the date of SRS, was calculated. There is a fairly high risk of death from systemic disease without central nervous system local progression or radiation necrosis in this population, and therefore the competing risks methods as described by Fine and Gray were used for both the univariate and multivariate analyses. 15 Stepwise variable selection with p = 0.05 as the criterion for both entry and retention in a model was used to identify independent prognostic factors. All analyses took into account possible correlations resulting from some patients having more than 1 lesion and/or more than 1 SRS procedure. The results from these analyses were summarized by the subhazard ratio (SHR) for the outcome of interest (local control or radiation necrosis). The categorical data were summarized as frequency counts and percentages; the Kaplan-Meier method was used to summarize overall survival; and other measured factors were summarized as medians and ranges. For convenience, measured factors such as maximum tumor diameter and volume were dichotomized using a recursive partitioning algorithm. All data analyses were performed using SAS (version 9.2, SAS Institute, Inc.) and Stata (version 12.1, StataCorp LP). Results Descriptive Data The brain was the only site of metastases in 208 patients (23%). The other 688 patients (77%) harbored extracranial metastases at the time of SRS. These were distributed as metastases to a single extracranial organ in 348 patients (39%) and to multiple organs in 340 patients (38%). Five hundred seventy patients (64%) had systemic disease progression at the time of SRS. Most patients (475 cases; 53%) had received chemotherapy within the month prior to their initial radiosurgery procedure for the treatment of systemic disease. At the initial SRS treatment, patients tended to show good Karnofsky Performance Scale (KPS) scores. A KPS score of 90 to 100 was documented for 466 patients J Neurosurg Volume 126 March

4 A. M. Mohammadi et al. (52%) and 265 patients (30%) had a KPS score of 80. Additionally, 708 patients (79%) were classified as recursive partitioning analysis Class II and 571 patients (64%) in graded prognostic assessment Group 1.5 to 2.5. Overall, there were 1229 radiosurgery procedures for the treatment of 3034 lesions. Most of the 896 patients (641 patients; 81%) had 1 to 2 tumors treated; however, 11% of the cohort (111 of 896) had treatment for 5 or more tumors (range 1 16). Tumors were located primarily within the supratentorial compartment (2373; 78%) with 17 lesions occurring within the corpus callosum (0.5%). Most of the infratentorial lesions were located in the cerebellum (589 lesions; 19%), with an additional 74 lesions located within the brainstem (2%). The median tumor volume was 0.16 cm 3 (range cm 3 ), and the median of the maximum linear diameter was 0.8 cm (range cm). A maximum diameter larger than 1 cm was observed in 1019 lesions (34%). The PD at the tumor margin ranged from 15 to 24 Gy with the following distribution: 216 lesions (7%) received 15 to 18 Gy, 408 lesions (13%) received 19 to 23 Gy, and 2410 lesions (80%) received 24 Gy. The median treatment isodose line was 56%. For purpose of definition within this study, boost radiation was considered to have been used when a particular lesion received both WBRT and SRS with no local progression having occurred between the 2 treatments (regardless of any potential distant intracranial failure). Using this definition, 1041 lesions (34%) were treated with boost radiation. Outcome The estimated median overall survival was 14.9 months after SRS, and 748 patients (83%) died during follow-up. In 338 patients (45%), death was caused by systemic progression with radiographically stable intracranial disease. Intracranial disease progression caused death in 134 patients (18%) with stable systemic disease and another 166 patients (22%) with concurrent systemic progression. In 110 patients (15%), the cause of death was indeterminate. The median radiographic follow-up of the entire cohort was 6.2 months. New intracranial lesions were observed in 445 patients (45%) after a median of 10.2 months. In more than half of these cases (246 patients; 55%), intracranial progression was accompanied by concurrent systemic cancer progression. Overall, 87 patients (10%) experienced local progression of a total of 104 lesions (3%) at some point in the course of their disease. The diagnosis of local progression was made based on continuous lesion enlargement on multiple, serial follow-up MRI scans (60 lesions; 59%), positive MR perfusion studies (i.e., elevated cerebral blood volume) (11 lesions; 10%), or positive FDG-PET scans (5 lesions; 5%), in addition to continuous enlargement on follow-up scans or the pathological evaluation of surgical specimens in 28 lesions (27%). In 148 patients, 17% had radiographic radiation necrosis observed at some point during the course of their disease in a total of 199 lesions (7%). One hundred six lesions (53% of lesions with radiographic radiation necrosis and 4% of all lesions) in 83 patients with radiation necrosis (56% of radiographic radiation necrosis patients and 9% of all patients) were symptomatic, and the other 93 lesions (47% of lesions with radiographic radiation necrosis and 3% of all lesions) in 65 patients (44% of radiographic radiation necrosis patients and 8% of all patients) were asymptomatic. The primary criterion for the diagnosis of radiographic radiation necrosis was the spontaneous stabilization or shrinkage of the evolving lesion on follow-up MRI (155 lesions; 77% of cases of radiographic radiation necrosis); 66 of these lesions (33% of cases of radiographic radiation necrosis) had relevant negative FDG-PET or MR perfusion results as well. Seventeen lesions (9%) were pathologically shown to be cases of radiation necrosis. The diagnosis of radiation necrosis was more complicated for 29 lesions (14%), as the information provided by multiple imaging modalities was contradictory. The consensus of our multidisciplinary tumor board was used to make the diagnosis of radiographic radiation necrosis for 16 lesions (8%) that had progressive shrinkage on follow-up MRI scans but positive FDG-PET or MR perfusion results. Similarly, tumor board consensus was used for the diagnosis of radiation necrosis in 13 lesions (6%), which showed continuous enlargement over multiple MRI scans but simultaneously had multiple negative FDG-PET and/ or MR perfusion scans. Statistical Analysis Univariate analysis was performed and revealed that the tumor diameter (Fig. 1) is a prognostic factor for all 3 end points, which consisted of local progression (> 1 vs 1 cm; SHR 2.32; p < 0.001), radiographic radiation necrosis (SHR 2.13; p < 0.001), and also the subgroup with symptomatic radiation necrosis (SHR 4.87; p < 0.001). Tumor volume and the conformality index also had similar results for all 3 end points. Several different locations of the brain, including the brainstem, were evaluated and compared with other locations according to our end points, with no statistically significant difference except for 1 location (the corpus callosum). Tumors located in the corpus callosum, compared with other locations of the brain, were shown to have more radiographic (SHR 4.90; p < 0.001) and symptomatic (SHR 7.70; p < 0.001) radiation necrosis with no impact on tumor progression. In addition, a PD (Fig. 1) of 24 Gy (SHR 2.03; p = 0.004) and additional WBRT before or after SRS (SHR 2.46; p = 0.001) were prognostic factors for tumor progression with no impact on radiation necrosis (Table 2). Multivariate analysis revealed that maximum tumor diameter (> 1 vs 1 cm; SHR 2.32; p < 0.001), PD ( 24 vs 24 Gy; SHR 1.84; p = 0.01), and boost radiation treatment (no vs yes; SHR 2.53; p = 0.001) were independent prognostic factors for local progression (Table 3). Independent predictors for radiographic radiation necrosis were (again) maximum tumor diameter (SHR 2.13; p < 0.001) as well as lesion location within the corpus callosum (yes vs no; SHR 5.72; p < 0.001) and uncommon pathologies (yes vs no; SHR 1.65; p = 0.05) (Table 3). For symptomatic radiation necrosis, the maximum tumor diameter (SHR 4.78; p < 0.001) as well as lesion location within the corpus callosum (SHR 7.62; p < 0.001) were independent prognostic factors (Table 3). Discussion Recommendations for the PD for treating brain metas- 738 J Neurosurg Volume 126 March 2017

5 Radiosurgery dose and local control of small brain metastases FIG. 1. Cumulative hazards of tumor diameter and PD (24 Gy) on different outcomes after SRS: local progression (A and D), radiographic radiation necrosis (B and E), and symptomatic radiation necrosis (C and F). RT = radiation therapy. tases with SRS have taken into account target tumor size. RTOG was a dose-escalation study for SRS, which stratified patients into 3 arms based on the size of each target tumor at the time of treatment. For lesions larger than 2 cm, the MTDs for SRS were clearly defined as the doselimiting toxicities that were encountered when higher doses were used. On the other hand, the maximum tolerated SRS dose was not reached for tumors smaller than 2 cm in diameter. The investigators nonetheless stopped the study for this cohort at a PD of 24 Gy. 36 Subsequently, Vogelbaum et al. retrospectively evaluated more than 200 patients who were treated with SRS according to the RTOG criteria and showed that the group of lesions treated with 24 Gy had better local control compared with those treated with 18 and 15 Gy. 45 That study did not directly address the risk of radiation necrosis in those patients. Additionally, the tumors treated with 18 and 15 Gy were larger lesions, and the relationship between treatment dose and lesion size makes it unclear if radiation dose alone accounts for better control of smaller lesions. 8 Despite the fact that an SRS treatment dose of 24 Gy has been shown to produce better local control of brain metastases and the lack of evidence demonstrating an increased risk radiation necrosis associated with this PD, many centers have been reluctant to use 24 Gy for lesions smaller than 2 cm and as a result doses between 18 and 24 Gy are being used for such lesions. 9,22,26,37,42 We now report on the largest series to date of patients with brain metastases treated with SRS. We performed a lesion-by-lesion analysis for tumors 2 cm or smaller to evaluate the complex relationships between treatment dose, tumor size, risk of local tumor progression, and risk of developing radiation necrosis. Our results showed strong and independent relationships between tumor size and both the risk of tumor progression and the risk of developing radiation necrosis (radiographic or symptomatic) at a cutoff point of 1 cm (p < 0.001). Tumor location within the corpus callosum (p < 0.001) and SRS treatment for uncommon pathologies (p = 0.05) were additional independent prognostic factors for the development of radiation necrosis, while planned boost SRS before or after WBRT was prognostic of better local control (p = 0.001). In evaluating the impact of radiation dose, a PD of 24 Gy compared with lower PDs was found to be an independent prognostic factor for improved local control (p = 0.01), but not for radiation necrosis. Chang et al. reviewed 135 patients with 153 lesions (2 cm or less in maximum diameter) who were treated with PD of at least 20 Gy and observed that tumors smaller than 1 cm had a significantly better control rate than tumors measuring 1 to 2 cm (p = 0.001). 8 This relationship between tumor size and the local control rate has been supported by other studies as well. 6,23,32 The relationship between PD and local control also has been evaluated in a number of studies. In addition to Vogelbaum et al. s study, which showed superior results from treatment at 24 Gy compared with lower doses, multiple studies provide evidence for better local control after higher radiosurgery doses. 8,31,32,45,46 Wiggenraad et al., in a systemic review of the literature published between 1990 and 2009, and Rodrigues et al. in a recursive partitioning analysis, concluded that SRS PDs of 21 Gy or higher are associated with better local control. 31,46 Finally, there is Level 1 evidence showing that boost Gamma Knife following WBRT leads to better local control compared with Gamma Knife or WBRT alone. 3,4 J Neurosurg Volume 126 March

6 A. M. Mohammadi et al. TABLE 2. Statistically significant results from the univariate analysis Factor Local Progression Radiographic Radiation Necrosis Symptomatic Radiation Necrosis SHR (95% CI)* p Value SHR (95% CI)* p Value SHR (95% CI)* p Value Maximum tumor diameter >1 cm vs <1 cm 2.32 ( ) < ( ) < ( ) <0.001 Tumor volume >0.1 ml vs <0.1 ml 2.76 ( ) ( ) ( ) <0.001 Isodose line <55% vs >55% 1.37 ( ) ( ) ( ) Conformality index <2.0 vs > ( ) ( ) ( ) <0.001 PD <24 Gy vs 24 Gy 2.03 ( ) ( ) ( ) 0.90 Additional radiation No vs yes 2.46 ( ) ( ) ( ) 0.95 Tumor location Corpus callosum vs other 3.19 ( ) ( ) < ( ) <0.001 Pathology Uncommon vs other 0.46 ( ) ( ) ( ) 0.03 * SHR is the hazard ratio for local progression (or radiation necrosis) when death from any cause is considered a competing risk. Values > 1.0 indicate that the first level of a factor is associated with an increased risk of progression (radiation necrosis) relative to the second level. Values < 1.0 indicate that the first level is associated with a lower risk. Several previous studies have shown that radiation necrosis occurs more frequently after the treatment of larger brain metastases. 1,6,16,27 However, an association between the risk of radiation necrosis and the treatment of tumors in specific locations or uncommon pathologies has not been identified previously in large series. While our observations that lesion location in the corpus callosum and a specific group of pathologies are an interesting addition TABLE 3. Results of the multivariate analysis Factor SHR (95% CI)* p Value Local progression Maximum tumor diameter (>1 cm vs 2.32 ( ) < cm) PD (<24 Gy vs 24 Gy) 1.84 ( ) 0.01 Additional radiation (no vs yes) 2.53 ( ) Radiographic radiation necrosis Maximum tumor diameter (>1 cm vs 2.13 ( ) < cm) Tumor location (corpus callosum vs 5.72 ( ) <0.001 other) Pathology (uncommon vs other) 1.65 ( ) 0.05 Symptomatic radiation necrosis Maximum tumor diameter (>1 cm vs 4.78 ( ) < cm) Tumor location (corpus callosum vs other) 7.62 ( ) <0.001 * Values > 1.0 indicate that the first level of a factor is associated with an increased risk of progression to radiation necrosis. to the literature, these specific results must be interpreted cautiously because they were not the common features of brain metastases in our series. Indeed, there were only 17 tumors (of a total of 3034 tumors) located in the corpus callosum. Our observation that 5 of these tumors developed radiation necrosis (30%) is remarkable because this is a much higher percentage than for any other location, and it was significant on the multivariate analysis (p < 0.001). Our observation of an association between uncommon pathology and the risk of radiation necrosis similarly needs to be viewed cautiously as it does not prove that all tumors with uncommon pathologies have a higher chance of developing radiation necrosis after SRS treatment. For example, there were no cases of radiation necrosis after treating 34 metastases from colon cancer or 9 sarcomas. However, radiation necrosis did occur more frequently following the treatment of 3 esophageal metastases (18%), 7 gynecological metastases (26%), and 3 urothelial metastases (20%). Of note, despite the very large size of the series, we did not observe an increased risk of radiation necrosis with increased radiation dose according to either the univariate or multivariate analysis. Overall, only 7% of the more than 3000 lesions reviewed in our study exhibited radiographic radiation necrosis, which is a reasonably small percentage of lesions given the doses that were used and the very high rate of local control observed. A review of the literature reveals that only 1 study has shown an increased risk of radiation toxicity with a PD of 25 Gy. 28 To the best of our knowledge, therefore, for tumors of 2 cm or smaller in maximal diameter, there is no evidence that shows an increased risk of developing radiation necrosis with a PD of 24 Gy or lower, and our study provides compelling evi- 740 J Neurosurg Volume 126 March 2017

7 Radiosurgery dose and local control of small brain metastases dence that a PD of 24 Gy provides the optimal balance of local control and risk of radiation injury. 33,36,42 There are important limitations to this study. First, this is a retrospective study and hence there is the possibility for treatment bias. However, as a group, we have largely followed the RTOG dosing scheme, which has helped to bring uniformity to our SRS practice. Having said that, more than 20% of the lesions were treated with radiation doses less than 24 Gy. Many of the decisions were made for the individual patients per the discretion of the radiation oncologist and surgeon. Circumstances that may have led to reduced PD in some patients included a large number of tumors, multiple prior sessions of radiosurgery, the close proximity of 2 tumors to each other, the prior use of whole-brain radiotherapy, and proximity to the optic apparatus. The only consistently used dose-reduction regimen is in patients with tumors located in the brainstem (of note, no differences in outcome were observed in tumor progression or radiation necrosis in the brainstem lesions compared with other locations). Because this was a retrospective analysis, we do not have records of the thought processes that went into the dose reduction for each case. Probably, the most important limitation of this study relates to the difficulty of differentiating between tumor progression and radiation necrosis, which affects all of the subsequent analysis. Unfortunately, there is no single radiological diagnostic imaging modality for differentiating between tumor progression and radiation necrosis after radiosurgery. 11,29,41 A variety of MRI sequences (including perfusion, diffusion-weighted imaging, and spectroscopy) as well as metabolic imaging modalities (FDG-PET and SPECT) have been suggested to provide modest accuracy. 2,12,13,18,19,21,24,34,35,41,43,44 Despite significant improvements in imaging modalities over time, this diagnostic dilemma often still remains when trying to differentiate between tumor progression and radiation necrosis. 18,19,29,39,43,46 Surgical pathology is the most reliable method for distinguishing between progression and radiation necrosis; however, there are the attendant surgical risks and its use is influenced by selection bias. 43 In our series, 375 lesions showed enlargement on any posttreatment MRI. For 104 of these lesions (28%), there was adequate radiographic and clinical evidence to confirm tumor progression. An additional 175 tumors (45%) demonstrated clinical and radiographic behavior typical of radiation necrosis, or this diagnosis was confirmed by biopsy. The remaining lesions showed conflicting results on imaging studies or had inadequate follow-up. Of these, we were able to classify 29 more lesions (8%) as progression or radiation necrosis based on the consensus of our multidisciplinary tumor board. However, for 72 lesions (19% of enlarging lesions), a definitive classification as either progression or radiation necrosis could not be made, and as a result we had to exclude these lesions from further analysis. However, even if we had classified all of these 72 cases as radiation necrosis, our overall rate of 7% would have increased to only 9%. Particularly in light of the fact that our local control rate was 97%, and most of these cases of radiation necrosis were only detected on radiography and did not produce clinical symptoms, this rate of radiographic radiation necrosis would support a clinically acceptable risk-benefit ratio. Conclusions Based on our study which, to the best of our knowledge, is the largest reported series on small brain metastases with lesion follow-up for brain metastases with a maximum diameter of 2 cm or less the use of a PD of 24 Gy for SRS produces exemplary local control with a less than 10% risk of radiographic radiation necrosis per lesion. The risk of radiation necrosis is less dependent on PD than on lesion size, pathology, and the location of the tumor. Based on these results and our longstanding experience with use of the RTOG dosing regimen, we recommend administering a PD of 24 Gy to the tumor margin for all lesions smaller than 2 cm in maximum diameter, unless contraindicated by proximity to the hypothalamus or optic apparatus or location in the brainstem. References 1. Alexander E III, Moriarty TM, Davis RB, Wen PY, Fine HA, Black PM, et al: Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J Natl Cancer Inst 87:34 40, Alexiou GA, Tsiouris S, Kyritsis AP, Polyzoidis KS, Fotopoulos AD: Brain SPECT by 99m Tc-tetrofosmin for the differentiation of tumor recurrence from radiation injury. J Nucl Med 49: , 2008 (Letter) 3. Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, et al: Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet 363: , Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al: Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295: , Asher AL, Burri SH, Wiggins WF, Kelly RP, Boltes MO, Mehrlich M, et al: A new treatment paradigm: neoadjuvant radiosurgery before surgical resection of brain metastases with analysis of local tumor recurrence. Int J Radiat Oncol Biol Phys 88: , Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC: Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 77: , Brennan C, Yang TJ, Hilden P, Zhang Z, Chan K, Yamada Y, et al: A phase 2 trial of stereotactic radiosurgery boost after surgical resection for brain metastases. Int J Radiat Oncol Biol Phys 88: , Chang EL, Hassenbusch SJ III, Shiu AS, Lang FF, Allen PK, Sawaya R, et al: The role of tumor size in the radiosurgical management of patients with ambiguous brain metastases. Neurosurgery 53: , Chang EL, Selek U, Hassenbusch SJ III, Maor MH, Allen PK, Mahajan A, et al: Outcome variation among radioresistant brain metastases treated with stereotactic radiosurgery. Neurosurgery 56: , Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al: Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10: , Chao ST, Ahluwalia MS, Barnett GH, Stevens GH, Murphy ES, Stockham AL, et al: Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87: , 2013 J Neurosurg Volume 126 March

8 A. M. Mohammadi et al. 12. Chernov MF, Hayashi M, Izawa M, Usukura M, Yoshida S, Ono Y, et al: Multivoxel proton MRS for differentiation of radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases. Brain Tumor Pathol 23:19 27, Dequesada IM, Quisling RG, Yachnis A, Friedman WA: Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 63: , Ellis TL, Neal MT, Chan MD: The role of surgery, radiosurgery and whole brain radiation therapy in the management of patients with metastatic brain tumors. Int J Surg Oncol 2012:952345, Fine JP, Gray RJ: A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94: , Flickinger JC, Lunsford LD, Kondziolka D, Maitz AH, Epstein AH, Simons SR, et al: Radiosurgery and brain tolerance: an analysis of neurodiagnostic imaging changes after gamma knife radiosurgery for arteriovenous malformations. Int J Radiat Oncol Biol Phys 23:19 26, Khuntia D, Brown P, Li J, Mehta MP: Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol 24: , Kickingereder P, Dorn F, Blau T, Schmidt M, Kocher M, Galldiks N, et al: Differentiation of local tumor recurrence from radiation-induced changes after stereotactic radiosurgery for treatment of brain metastasis: case report and review of the literature. Radiat Oncol 8:52, Kim YZ, Kim DY, Yoo H, Yang HS, Shin SH, Hong EK, et al: Radiation-induced necrosis deteriorating neurological symptoms and mimicking progression of brain metastasis after stereotactic-guided radiotherapy. Cancer Res Treat 39:16 21, Kondziolka D, Flickinger JC, Lunsford LD: Radiosurgery for brain metastases. Prog Neurol Surg 25: , Larsen VA, Simonsen HJ, Law I, Larsson HB, Hansen AE: Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology 55: , Lutterbach J, Cyron D, Henne K, Ostertag CB: Radiosurgery followed by planned observation in patients with one to three brain metastases. Neurosurgery 52: , Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al: Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48, Mitsuya K, Nakasu Y, Horiguchi S, Harada H, Nishimura T, Bando E, et al: Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99:81 88, Mohammadi AM, Recinos PF, Barnett GH, Weil RJ, Vogelbaum MA, Chao ST, et al: Role of Gamma Knife surgery in patients with 5 or more brain metastases. J Neurosurg 117 (Suppl):5 12, Molenaar R, Wiggenraad R, Verbeek-de Kanter A, Walchenbach R, Vecht C: Relationship between volume, dose and local control in stereotactic radiosurgery of brain metastasis. Br J Neurosurg 23: , Nakamura JL, Verhey LJ, Smith V, Petti PL, Lamborn KR, Larson DA, et al: Dose conformity of Gamma Knife radiosurgery and risk factors for complications. Int J Radiat Oncol Biol Phys 51: , Nedzi LA, Kooy H, Alexander E III, Gelman RS, Loeffler JS: Variables associated with the development of complications from radiosurgery of intracranial tumors. Int J Radiat Oncol Biol Phys 21: , Parvez K, Parvez A, Zadeh G: The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15: , Patchell RA: The management of brain metastases. Cancer Treat Rev 29: , Rodrigues G, Zindler J, Warner A, Lagerwaard F: Recursive partitioning analysis for the prediction of stereotactic radiosurgery brain metastases lesion control. Oncologist 18: , Schomas DA, Roeske JC, MacDonald RL, Sweeney PJ, Mehta N, Mundt AJ: Predictors of tumor control in patients treated with linac-based stereotactic radiosurgery for metastatic disease to the brain. Am J Clin Oncol 28: , Schüttrumpf LH, Niyazi M, Nachbichler SB, Manapov F, Jansen N, Siefert A, et al: Prognostic factors for survival and radiation necrosis after stereotactic radiosurgery alone or in combination with whole brain radiation therapy for 1 3 cerebral metastases. Radiat Oncol 9:105, Serizawa T, Saeki N, Higuchi Y, Ono J, Matsuda S, Sato M, et al: Diagnostic value of thallium-201 chloride singlephoton emission computerized tomography in differentiating tumor recurrence from radiation injury after Gamma Knife surgery for metastatic brain tumors. J Neurosurg 102 Suppl: , Shah R, Vattoth S, Jacob R, Manzil FF, O Malley JP, Borghei P, et al: Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32: , Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, et al: Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol Int J Radiat Oncol Biol Phys 47: , Shehata MK, Young B, Reid B, Patchell RA, St Clair W, Sims J, et al: Stereotactic radiosurgery of 468 brain metastases < or = 2 cm: implications for SRS dose and whole brain radiation therapy. Int J Radiat Oncol Biol Phys 59:87 93, Soffietti R, Rudā R, Mutani R: Management of brain metastases. J Neurol 249: , Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY: CNS complications of radiotherapy and chemotherapy. Lancet 374: , Stafinski T, Jhangri GS, Yan E, Menon D: Effectiveness of stereotactic radiosurgery alone or in combination with whole brain radiotherapy compared to conventional surgery and/ or whole brain radiotherapy for the treatment of one or more brain metastases: a systematic review and meta-analysis. Cancer Treat Rev 32: , Stockham AL, Tievsky AL, Koyfman SA, Reddy CA, Suh JH, Vogelbaum MA, et al: Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol 109: , Valéry CA, Cornu P, Noël G, Duyme M, Boisserie G, Sakka LJ, et al: Predictive factors of radiation necrosis after radiosurgery for cerebral metastases. Stereotact Funct Neurosurg 81: , Verma N, Cowperthwaite MC, Burnett MG, Markey MK: Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 15: , Vidiri A, Guerrisi A, Pinzi V, Fabi A, Mirri MA, Pompili A, et al: Perfusion computed tomography (PCT) adopting different perfusion metrics: recurrence of brain metastasis or radiation necrosis? Eur J Radiol 81: , Vogelbaum MA, Angelov L, Lee SY, Li L, Barnett GH, Suh JH: Local control of brain metastases by stereotactic 742 J Neurosurg Volume 126 March 2017

9 Radiosurgery dose and local control of small brain metastases radiosurgery in relation to dose to the tumor margin. J Neurosurg 104: , Wiggenraad R, Verbeek-de Kanter A, Kal HB, Taphoorn M, Vissers T, Struikmans H: Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol 98: , Yu JB, Schulder M, Knisely J: Radiosurgical dose selection for brain metastasis. Prog Neurol Surg 25: , 2012 Disclosures The authors report the following. Dr. Chao has received honoraria from Varian. Dr. Neyman is a consultant for Elekta AB. Dr. Suh receives travel and lodging reimbursements from Elekta. Author Contributions Conception and design: Vogelbaum, Mohammadi, Schroeder, Angelov, Chao, Murphy, Yu, Neyman, Suh, Barnett. Acquisition of data: Mohammadi, Schroeder. Analysis and interpretation of data: Vogelbaum, Mohammadi, Jia. Drafting the article: Vogelbaum, Mohammadi, Schroeder. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Vogelbaum. Statistical analysis: Jia. Administrative/technical/material support: Vogelbaum, Mohammadi. Study supervision: Vogelbaum, Angelov, Chao, Murphy, Yu, Suh, Barnett. Supplemental Information Previous Presentations This manuscript was presented as a platform presentation at the 82nd Annual Scientific Meeting of the American Association for Neurological Surgeons in San Francisco, Correspondence Michael A. Vogelbaum, Cleveland Clinic Foundation, Neurological Institute, 9500 Euclid Ave., ND40, Cleveland, OH vogelbm@ccf.org. J Neurosurg Volume 126 March

We have previously reported good clinical results

We have previously reported good clinical results J Neurosurg 113:48 52, 2010 Gamma Knife surgery as sole treatment for multiple brain metastases: 2-center retrospective review of 1508 cases meeting the inclusion criteria of the JLGK0901 multi-institutional

More information

Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery

Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery ORIGINAL ARTICLE Survival and Intracranial Control of Patients With 5 or More Brain Metastases Treated With Gamma Knife Stereotactic Radiosurgery Ann C. Raldow, BS,* Veronica L. Chiang, MD,w Jonathan P.

More information

Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin

Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin J Neurosurg 104:907 912, 2006 Local control of brain metastases by stereotactic radiosurgery in relation to dose to the tumor margin MICHAEL A. VOGELBAUM, M.D., PH.D., LILYANA ANGELOV, M.D., SHIH-YUAN

More information

Laboratory data from the 1970s first showed that malignant melanoma

Laboratory data from the 1970s first showed that malignant melanoma 2265 Survival by Radiation Therapy Oncology Group Recursive Partitioning Analysis Class and Treatment Modality in Patients with Brain Metastases from Malignant Melanoma A Retrospective Study Jeffrey C.

More information

Stereotactic Radiosurgery for Brain Metastasis: Changing Treatment Paradigms. Overall Clinical Significance 8/3/13

Stereotactic Radiosurgery for Brain Metastasis: Changing Treatment Paradigms. Overall Clinical Significance 8/3/13 Stereotactic Radiosurgery for Brain Metastasis: Changing Treatment Paradigms Jason Sheehan, MD, PhD Departments of Neurosurgery and Radiation Oncology University of Virginia, Charlottesville, VA USA Overall

More information

Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex

Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex ORIGINAL ARTICLE Brain Tumor Res Treat 2016;4(2):111-115 / pissn 2288-2405 / eissn 2288-2413 http://dx.doi.org/10.14791/btrt.2016.4.2.111 Neurological Change after Gamma Knife Radiosurgery for Brain Metastases

More information

SUCCESSFUL TREATMENT OF METASTATIC BRAIN TUMOR BY CYBERKNIFE: A CASE REPORT

SUCCESSFUL TREATMENT OF METASTATIC BRAIN TUMOR BY CYBERKNIFE: A CASE REPORT SUCCESSFUL TREATMENT OF METASTATIC BRAIN TUMOR BY CYBERKNIFE: A CASE REPORT Cheng-Ta Hsieh, 1 Cheng-Fu Chang, 1 Ming-Ying Liu, 1 Li-Ping Chang, 2 Dueng-Yuan Hueng, 3 Steven D. Chang, 4 and Da-Tong Ju 1

More information

Br a i n metastases occur in 20 40% of all patients. The results of resection after stereotactic radiosurgery for brain metastases.

Br a i n metastases occur in 20 40% of all patients. The results of resection after stereotactic radiosurgery for brain metastases. J Neurosurg 111:825 831, 2009 The results of resection after stereotactic radiosurgery for brain metastases Clinical article Hi d e y u k i Ka n o, M.D., Ph.D., 1,3 Do u g l a s Ko n d z i o l k a, M.D.,

More information

Brain metastases are common brain malignant neoplasms

Brain metastases are common brain malignant neoplasms J Neurosurg (Suppl) 117:49 56, 2012 Hypofractionated stereotactic radiotherapy with or without whole-brain radiotherapy for patients with newly diagnosed brain metastases from non small cell lung cancer

More information

A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia

A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia A Population-Based Study on the Uptake and Utilization of Stereotactic Radiosurgery (SRS) for Brain Metastasis in Nova Scotia Gaurav Bahl, Karl Tennessen, Ashraf Mahmoud-Ahmed, Dorianne Rheaume, Ian Fleetwood,

More information

Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis

Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis 1998 Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis Chaosu Hu, M.D. 1 Eric L. Chang, M.D. 2 Samuel J. Hassenbusch III, M.D., Ph.D. 3 Pamela K. Allen, Ph.D. 2 Shiao Y. Woo,

More information

Management of single brain metastasis: a practice guideline

Management of single brain metastasis: a practice guideline PRACTICE GUIDELINE SERIES Management of single brain metastasis: a practice guideline A. Mintz MD,* J. Perry MD, K. Spithoff BHSc, A. Chambers MA, and N. Laperriere MD on behalf of the Neuro-oncology Disease

More information

Prognostic Factors for Survival in Patients Treated With Stereotactic Radiosurgery for Recurrent Brain Metastases After Prior Whole Brain Radiotherapy

Prognostic Factors for Survival in Patients Treated With Stereotactic Radiosurgery for Recurrent Brain Metastases After Prior Whole Brain Radiotherapy International Journal of Radiation Oncology biology physics www.redjournal.org Clinical Investigation: Metastases Prognostic Factors for Survival in Patients Treated With Stereotactic Radiosurgery for

More information

Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases Leeman et al. Radiation Oncology 2012, 7:107 RESEARCH Open Access Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases Jonathan E Leeman

More information

Optimal Management of Isolated HER2+ve Brain Metastases

Optimal Management of Isolated HER2+ve Brain Metastases Optimal Management of Isolated HER2+ve Brain Metastases Eliot Sims November 2013 Background Her2+ve patients 15% of all breast cancer Even with adjuvant trastuzumab 10-15% relapse Trastuzumab does not

More information

RESEARCH HUMAN CLINICAL STUDIES

RESEARCH HUMAN CLINICAL STUDIES TOPIC RESEARCH HUMAN CLINICAL STUDIES RESEARCH HUMAN CLINICAL STUDIES Radiosurgery to the Surgical Cavity as Adjuvant Therapy for Resected Brain Metastasis Jared R. Robbins, MD* Samuel Ryu, MD* Steven

More information

Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases

Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases ONCOLOGY REPORTS 29: 407-412, 2013 Stereotactic radiosurgery for the treatment of melanoma and renal cell carcinoma brain metastases SHELLY LWU 1, PABLO GOETZ 1, ERIC MONSALVES 1, MANDANA ARYAEE 1, JULIUS

More information

Evidence Based Medicine for Gamma Knife Radiosurgery. Metastatic Disease GAMMA KNIFE SURGERY

Evidence Based Medicine for Gamma Knife Radiosurgery. Metastatic Disease GAMMA KNIFE SURGERY GAMMA KNIFE SURGERY Metastatic Disease Evidence Based Medicine for Gamma Knife Radiosurgery Photos courtesy of Jean Régis, Timone University Hospital, Marseille, France Brain Metastases The first report

More information

The Role of Radiation Therapy in the Treatment of Brain Metastases. Matthew Cavey, M.D.

The Role of Radiation Therapy in the Treatment of Brain Metastases. Matthew Cavey, M.D. The Role of Radiation Therapy in the Treatment of Brain Metastases Matthew Cavey, M.D. Objectives Provide information about the prospective trials that are driving the treatment of patients with brain

More information

ARROCase Brain Metastases

ARROCase Brain Metastases ARROCase Brain Metastases Colin Hill*, Daniel M. Trifiletti*, Timothy N. Showalter*, Jason P. Sheehan Radiation Oncology* and Neurosurgery University of Virginia Charlottesville, VA Case: HPI 64 year old

More information

Cerebral metastases occur in 20% 40% of cancer

Cerebral metastases occur in 20% 40% of cancer See the corresponding editorial, DOI: 10.3171/2012.1.JNS12103. DOI: 10.3171/2012.4.JNS11870 Stereotactic radiosurgery using the Leksell Gamma Knife Perfexion unit in the management of patients with 10

More information

Additional radiation boost to whole brain radiation therapy may improve the survival of patients with brain metastases in small cell lung cancer

Additional radiation boost to whole brain radiation therapy may improve the survival of patients with brain metastases in small cell lung cancer Sun et al. Radiation Oncology (2018) 13:250 https://doi.org/10.1186/s13014-018-1198-4 RESEARCH Open Access Additional radiation boost to whole brain radiation therapy may improve the survival of patients

More information

Mehmet Ufuk ABACIOĞLU Neolife Medical Center, İstanbul, Turkey

Mehmet Ufuk ABACIOĞLU Neolife Medical Center, İstanbul, Turkey Updated Oncology 2015: State of the Art News & Challenging Topics CURRENT STATUS OF STEREOTACTIC RADIOSURGERY IN BRAIN METASTASES Mehmet Ufuk ABACIOĞLU Neolife Medical Center, İstanbul, Turkey Bucharest,

More information

Minesh Mehta, Northwestern University. Chicago, IL

Minesh Mehta, Northwestern University. Chicago, IL * Minesh Mehta, Northwestern University Chicago, IL Consultant: Adnexus, Bayer, Merck, Tomotherapy Stock Options: Colby, Pharmacyclics, Procertus, Stemina, Tomotherapy Board of Directors: Pharmacyclics

More information

KEY WORDS gamma knife surgery metastatic brain tumor radiation injury tumor recurrence thallium-201 single-photon emission computerized tomography

KEY WORDS gamma knife surgery metastatic brain tumor radiation injury tumor recurrence thallium-201 single-photon emission computerized tomography J Neurosurg (Suppl) 102:266 271, 2005 Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after gamma knife

More information

Differentiation of radionecrosis from tumor recurrence

Differentiation of radionecrosis from tumor recurrence Neuro-Oncology 15(12):1732 1738, 2013. doi:10.1093/neuonc/not130 NEURO-ONCOLOGY Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain

More information

JAMA. 2006;295:

JAMA. 2006;295: ORIGINAL CONTRIBUTION Stereotactic Radiosurgery Plus Whole-Brain Radiation Therapy vs Stereotactic Radiosurgery Alone for Treatment of Brain Metastases A Randomized Controlled Trial Hidefumi Aoyama, MD,

More information

Hong Kong Hospital Authority Convention 2018

Hong Kong Hospital Authority Convention 2018 Hong Kong Hospital Authority Convention 2018 Stereotactic Radiosurgery in Brain Metastases - Development of the New Treatment Paradigm in HA, Patients Profiles and Their Clinical Outcomes 8 May 2018 Dr

More information

Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases

Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases clinical article J Neurosurg 123:1261 1267, 2015 Potential role for LINAC-based stereotactic radiosurgery for the treatment of 5 or more radioresistant melanoma brain metastases *Jessica M. Frakes, MD,

More information

Alleinige Radiochirurgie und alleinige Systemtherapie zwei «extreme» Entwicklungen in der Behandlung von Hirnmetastasen?

Alleinige Radiochirurgie und alleinige Systemtherapie zwei «extreme» Entwicklungen in der Behandlung von Hirnmetastasen? Department of Radiation Oncology Chairman: Prof. Dr. Matthias Guckenberger Alleinige Radiochirurgie und alleinige Systemtherapie zwei «extreme» Entwicklungen in der Behandlung von Hirnmetastasen? Matthias

More information

Collection of Recorded Radiotherapy Seminars

Collection of Recorded Radiotherapy Seminars IAEA Human Health Campus Collection of Recorded Radiotherapy Seminars http://humanhealth.iaea.org The Management of Brain Metastases Dr. Luis Souhami Professor Department of Radiation Oncology University,

More information

Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor

Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor CLINICAL ARTICLE J Neurosurg (Suppl) 129:103 110, 2018 Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor Hitoshi

More information

Brain metastases arise in 10% 40% of patients

Brain metastases arise in 10% 40% of patients J Neurosurg (Suppl) 117:38 44, 2012 Validation of Recursive Partitioning Analysis and Diagnosis-Specific Graded Prognostic Assessment in patients treated initially with radiosurgery alone Clinical article

More information

Stereotactic radiosurgery (SRS) has become highly

Stereotactic radiosurgery (SRS) has become highly clinical article J Neurosurg 124:1018 1024, 2016 Changing practice patterns of Gamma Knife versus linear accelerator based stereotactic radiosurgery for brain metastases in the US Henry S. Park, MD, MPH,

More information

Tr a d i t i o n a l ly, WBRT has been the standard approach

Tr a d i t i o n a l ly, WBRT has been the standard approach Neurosurg Focus 27 (6):E7, 2009 Stereotactic radiosurgery boost to the resection bed for oligometastatic brain disease: challenging the tradition of adjuvant whole-brain radiotherapy Br i a n J. Ka r l

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 04/01/2015

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 03/01/2013 Section:

More information

ORIGINAL ARTICLE. Annals of Oncology 28: , 2017 doi: /annonc/mdx332 Published online 27 June 2017

ORIGINAL ARTICLE. Annals of Oncology 28: , 2017 doi: /annonc/mdx332 Published online 27 June 2017 Annals of Oncology 28: 2588 2594, 217 doi:1.193/annonc/mdx332 Published online 27 June 217 ORIGINAL ARTICLE Whole brain radiotherapy after stereotactic radiosurgery or surgical resection among patients

More information

Outcome of Surgical Resection of Symptomatic Cerebral Lesions in Non-Small Cell Lung Cancer Patients with Multiple Brain Metastases

Outcome of Surgical Resection of Symptomatic Cerebral Lesions in Non-Small Cell Lung Cancer Patients with Multiple Brain Metastases ORIGIL ARTICLE Brain Tumor Res Treat 2013;1:64-70 / Print ISSN 2288-2405 / Online ISSN 2288-2413 online ML Comm Outcome of Surgical Resection of Symptomatic Cerebral Lesions in Non-Small Cell Lung Cancer

More information

PROCARBAZINE, lomustine, and vincristine (PCV) is

PROCARBAZINE, lomustine, and vincristine (PCV) is RAPID PUBLICATION Procarbazine, Lomustine, and Vincristine () Chemotherapy for Anaplastic Astrocytoma: A Retrospective Review of Radiation Therapy Oncology Group Protocols Comparing Survival With Carmustine

More information

Radiotherapy and Brain Metastases. Dr. K Van Beek Radiation-Oncologist BSMO annual Meeting Diegem

Radiotherapy and Brain Metastases. Dr. K Van Beek Radiation-Oncologist BSMO annual Meeting Diegem Radiotherapy and Brain Metastases Dr. K Van Beek Radiation-Oncologist BSMO annual Meeting Diegem 24-02-2017 Possible strategies Watchful waiting Surgery Postop RT to resection cavity or WBRT postop SRS

More information

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES CENTRAL NERVOUS SYSTEM BRAIN METASTASES CNS Site Group Brain Metastases Author: Dr. Norm Laperriere Date: February 20, 2018 1. INTRODUCTION

More information

Selecting the Optimal Treatment for Brain Metastases

Selecting the Optimal Treatment for Brain Metastases Selecting the Optimal Treatment for Brain Metastases Clinical Practice Today CME Co-provided by Learning Objectives Upon completion, participants should be able to: Understand the benefits, limitations,

More information

The incidence of brain metastasis (BM) in adult patients

The incidence of brain metastasis (BM) in adult patients clinical article J Neurosurg 125:17 23, 2016 Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases? *Rovel J. Colaco, MD, FRCR, 1 Pierre Martin, BSc,

More information

Collection of Recorded Radiotherapy Seminars

Collection of Recorded Radiotherapy Seminars IAEA Human Health Campus Collection of Recorded Radiotherapy Seminars http://humanhealth.iaea.org The Role of Radiosurgery in the Treatment of Gliomas Luis Souhami, MD Professor Department of Radiation

More information

Br a i n metastases are the tumors most frequently. Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations

Br a i n metastases are the tumors most frequently. Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations J Neurosurg 113:79 83, 2010 Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations Clinical article Ni c o l a s De a, M.D., Mar t i n Bo r d u a s, Br e n d a n Ke n n y,

More information

ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS

ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS ANALYSIS OF TREATMENT OUTCOMES WITH LINAC BASED STEREOTACTIC RADIOSURGERY IN INTRACRANIAL ARTERIOVENOUS MALFORMATIONS Dr. Maitri P Gandhi 1, Dr. Chandni P Shah 2 1 Junior resident, Gujarat Cancer & Research

More information

Role of Prophylactic Cranial Irradiation in Small Cell Lung Cancer

Role of Prophylactic Cranial Irradiation in Small Cell Lung Cancer Role of Prophylactic Cranial Irradiation in Small Cell Lung Cancer Kazi S. Manir MD,DNB,ECMO,PDCR Clinical Tutor Department of Radiotherapy R. G. Kar Medical College and Hospital, Kolkata SCLC 15% of lung

More information

World Journal of Radiology

World Journal of Radiology W J R World Journal of Radiology Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.4329/wjr.v8.i12.916 World J Radiol 2016 December 28; 8(12):

More information

Tania Kaprealian, M.D. Assistant Professor UCLA Department of Radiation Oncology August 22, 2015

Tania Kaprealian, M.D. Assistant Professor UCLA Department of Radiation Oncology August 22, 2015 Tania Kaprealian, M.D. Assistant Professor UCLA Department of Radiation Oncology August 22, 2015 Most common brain tumor, affecting 8.5-15% of cancer patients. Treatment options: Whole brain radiation

More information

Prognostic indices in stereotactic radiotherapy of brain metastases of non-small cell lung cancer

Prognostic indices in stereotactic radiotherapy of brain metastases of non-small cell lung cancer Kaul et al. Radiation Oncology (2015) 10:244 DOI 10.1186/s13014-015-0550-1 RESEARCH Open Access Prognostic indices in stereotactic radiotherapy of brain metastases of non-small cell lung cancer David Kaul

More information

Comparative Analysis of Efficacy and Safety of Multisession Radiosurgery to Single Dose Radiosurgery for Metastatic Brain Tumors

Comparative Analysis of Efficacy and Safety of Multisession Radiosurgery to Single Dose Radiosurgery for Metastatic Brain Tumors ORIGINAL ARTICLE Brain Tumor Res Treat 2015;3(2):95-102 / pissn 2288-2405 / eissn 2288-2413 http://dx.doi.org/10.14791/btrt.2015.3.2.95 Comparative Analysis of Efficacy and Safety of Multisession Radiosurgery

More information

Discovery of additional brain metastases on the day of stereotactic radiosurgery: risk factors and outcomes

Discovery of additional brain metastases on the day of stereotactic radiosurgery: risk factors and outcomes CLINICAL ARTICLE J Neurosurg 126:1756 1763, 2017 Discovery of additional brain metastases on the day of stereotactic radiosurgery: risk factors and outcomes Michael A. Garcia, MD, MS, 1 Ann Lazar, PhD,

More information

THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION. Mustafa Rashid Issa

THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION. Mustafa Rashid Issa THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION Mustafa Rashid Issa ABSTRACT: Illustrate malignant tumors that form either in the brain or in the nerves originating in the brain.

More information

Surgical Management of Brain Metastases

Surgical Management of Brain Metastases Surgical Management of Brain Metastases Christopher P. Kellner, MD a, Anthony L. D Ambrosio, MD a,b,c, * KEYWORDS Brain Management Metastasis Metastases Resection Surgery Secondary metastases to the brain

More information

Radiotherapy for Brain Metastases

Radiotherapy for Brain Metastases Radiotherapy for Brain Metastases Robert B. Den, MD a, David W. Andrews, MD b, * KEYWORDS Brain metastases Treatment approaches SRS WBRT The optimal treatment of brain metastases remains controversial.

More information

Overview: Immunotherapy in CNS Metastases

Overview: Immunotherapy in CNS Metastases Overview: Immunotherapy in CNS Metastases Manmeet Ahluwalia, MD, FACP Miller Family Endowed Chair in Neuro-Oncology Director Brain Metastasis Research Program Cleveland Clinic Disclosures Consultant- Monteris

More information

Targeted/Immunotherapy & Molecular Profiling State-of-the-art in Cancer Care

Targeted/Immunotherapy & Molecular Profiling State-of-the-art in Cancer Care Targeted/Immunotherapy & Molecular Profiling State-of-the-art in Cancer Care Manmeet Ahluwalia, MD, FACP Miller Family Endowed Chair in Neuro-Oncology Director Brain Metastasis Research Program Cleveland

More information

Management of Single Brain Metastases Practice Guideline Report #9-1

Management of Single Brain Metastases Practice Guideline Report #9-1 Management of Single Brain Metastases Practice Guideline Report #9-1 A.P. Mintz, J. Perry, G. Cairncross, A. Chambers and members of the Neuro-oncology Disease Site Group Report Date: August 17, 2004 SUMMARY

More information

VINCENT KHOO. 8 th EIKCS Symposium: May 2013

VINCENT KHOO. 8 th EIKCS Symposium: May 2013 8 th EIKCS Symposium: May 2013 VINCENT KHOO Royal Marsden NHS Foundation Trust & Institute of Cancer Research St George s Hospital & University of London Austin Health & University of Melbourne Disclosures

More information

KEY WORDS: Stereotactic radiosurgery, Brain metastases, Guideline, Review

KEY WORDS: Stereotactic radiosurgery, Brain metastases, Guideline, Review REVIEW Samuel T. Chao, MD Antonio De Salles, MD Motohiro Hayashi, MD Marc Levivier, MD, PhD Lijun Ma, PhD # Roberto Martinez, MD Ian Paddick, MSc Jean Régis, MD Samuel Ryu, MD Ben J. Slotman, MD Arjun

More information

Clinical Commissioning Policy: Stereotactic Radiosurgery / Radiotherapy For Cerebral Metastases. December Reference : NHSCB/D5/1

Clinical Commissioning Policy: Stereotactic Radiosurgery / Radiotherapy For Cerebral Metastases. December Reference : NHSCB/D5/1 Clinical Commissioning Policy: Stereotactic Radiosurgery / Radiotherapy For Cerebral Metastases December 2012 Reference : NHSCB/D5/1 NHS Commissioning Board Clinical Commissioning Policy: Stereotactic

More information

Outcomes after Reirradiation for Brain Metastases

Outcomes after Reirradiation for Brain Metastases Original Article PROGRESS in MEDICAL PHYSICS Vol. 26, No. 3, September, 2015 http://dx.doi.org/10.14316/pmp.2015.26.3.137 Outcomes after Reirradiation for Brain Metastases Jesang Yu, Ji Hoon Choi, Sun

More information

Protocolos de consenso: MTS Cerebrales Resumen ASTRO. Javier Aristu y Germán Valtueña Servicio Oncología Rad. Depart.

Protocolos de consenso: MTS Cerebrales Resumen ASTRO. Javier Aristu y Germán Valtueña Servicio Oncología Rad. Depart. Protocolos de consenso: MTS Cerebrales Resumen ASTRO Javier Aristu y Germán Valtueña Servicio Oncología Rad. Depart. ASTRO 2013 Brain met SRS Abstracts 97. Comparative Effectiveness of SRS versus WBRT

More information

STEREOTACTIC RADIOSURGERY FOR LIMITED BRAIN METASTASES IN IRANIAN BREAST CANCER PATIENTS

STEREOTACTIC RADIOSURGERY FOR LIMITED BRAIN METASTASES IN IRANIAN BREAST CANCER PATIENTS STEREOTACTIC RADIOSURGERY FOR LIMITED BRAIN METASTASES IN IRANIAN BREAST CANCER PATIENTS Yousefi Kashi A. SH, Mofid B. 1 Department of Radiation Oncology,Shohada Tajrish Hospital,Shahid Beheshti University

More information

Outcomes Following Negative Prostate Biopsy for Patients with Persistent Disease after Radiotherapy for Prostate Cancer

Outcomes Following Negative Prostate Biopsy for Patients with Persistent Disease after Radiotherapy for Prostate Cancer Clinical Urology Post-radiotherapy Prostate Biopsy for Recurrent Disease International Braz J Urol Vol. 36 (1): 44-48, January - February, 2010 doi: 10.1590/S1677-55382010000100007 Outcomes Following Negative

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 04/01/2017

More information

Palliative radiotherapy in lung cancer

Palliative radiotherapy in lung cancer New concepts and insights regarding the role of radiation therapy in metastatic disease Umberto Ricardi University of Turin Department of Oncology Radiation Oncology Palliative radiotherapy in lung cancer

More information

The role of WBRT in the management of a resected. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis

The role of WBRT in the management of a resected. Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis J Neurosurg 114:1585 1591, 2011 Cavity-directed radiosurgery as adjuvant therapy after resection of a brain metastasis Clinical article Courtney A. Jensen, M.D., 1 Michael D. Chan, M.D., 1 Thomas P. McCoy,

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 11/20/2015

More information

See the corresponding editorial in this issue, pp J Neurosurg 114: , 2011

See the corresponding editorial in this issue, pp J Neurosurg 114: , 2011 See the corresponding editorial in this issue, pp 790 791. J Neurosurg 114:792 800, 2011 Stereotactic radiosurgery as primary and salvage treatment for brain metastases from breast cancer Clinical article

More information

AUTHOR S PERSONAL COPY

AUTHOR S PERSONAL COPY Clinical Outcomes of Stereotactic Radiosurgery in the Treatment of Patients with Metastatic Brain Tumors Ameer L. Elaimy 1,2, Alexander R. Mackay 1,3, Wayne T. Lamoreaux 1,2, Robert K. Fairbanks 1,2, John

More information

Case Report Prolonged Survival following Repetitive Stereotactic Radiosurgery in a Patient with Intracranial Metastatic Renal Cell Carcinoma

Case Report Prolonged Survival following Repetitive Stereotactic Radiosurgery in a Patient with Intracranial Metastatic Renal Cell Carcinoma Case Reports in Neurological Medicine Volume 2015, Article ID 872915, 5 pages http://dx.doi.org/10.1155/2015/872915 Case Report Prolonged Survival following Repetitive Stereotactic Radiosurgery in a Patient

More information

The role of SRS in the management of metastatic. Motor function after stereotactic radiosurgery for brain metastases in the region of the motor cortex

The role of SRS in the management of metastatic. Motor function after stereotactic radiosurgery for brain metastases in the region of the motor cortex J Neurosurg 119:683 688, 2013 AANS, 2013 Motor function after stereotactic radiosurgery for brain metastases in the region of the motor cortex Clinical article Neal Luther, M.D., 1 Douglas Kondziolka,

More information

Research Article Have Changes in Systemic Treatment Improved Survival in Patients with Breast Cancer Metastatic to the Brain?

Research Article Have Changes in Systemic Treatment Improved Survival in Patients with Breast Cancer Metastatic to the Brain? Oncology Volume 2008, Article ID 417137, 5 pages doi:10.1155/2008/417137 Research Article Have Changes in Systemic Treatment Improved Survival in Patients with Breast Cancer Metastatic to the Brain? Carsten

More information

Outcomes in patients with brain metastasis from esophageal carcinoma

Outcomes in patients with brain metastasis from esophageal carcinoma Original Article Outcomes in patients with brain metastasis from esophageal carcinoma Nishi Kothari 1, Eric Mellon 2, Sarah E. Hoffe 2, Jessica Frakes 2, Ravi Shridhar 3, Jose Pimiento 1, Ken Meredith

More information

WHAT S HOT IN MELANOMA CNS METASTASES?

WHAT S HOT IN MELANOMA CNS METASTASES? WHAT S HOT IN MELANOMA CNS METASTASES? GIUSEPPE MINNITI, MD, PHD Radiation Unit, UPMC, Hillman Cancer Center, San Pietro Hospital, Rome, and IRCCS Neuromed, Pozzilli (IS), Italy Marseille, September 21-22,

More information

Gamma Knife Surgery for Brain Metastasis from Renal Cell Carcinoma : Relationship Between Radiological Characteristics and Initial Tumor Response

Gamma Knife Surgery for Brain Metastasis from Renal Cell Carcinoma : Relationship Between Radiological Characteristics and Initial Tumor Response online ML Comm www.jkns.or.kr Clinical Article Jin Wook Kim, M.D. Jung Ho Han, M.D. Chul-Kee Park, M.D. Hyun-Tai Chung, Ph.D. Sun Ha Paek, M.D. Dong Gyu Kim, M.D. Department of Neurosurgery Seoul National

More information

Shoji Yomo 1,2* and Motohiro Hayashi 2

Shoji Yomo 1,2* and Motohiro Hayashi 2 Yomo and Hayashi BMC Cancer (2016) 16:948 DOI 10.1186/s12885-016-2983-9 RESEARCH ARTICLE Is upfront stereotactic radiosurgery a rational treatment option for very elderly patients with brain metastases?

More information

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Utility of F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Ngoc Ha Le 1*, Hong Son Mai 1, Van Nguyen Le 2, Quang Bieu Bui 2 1 Department

More information

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Policy Number: Original Effective Date: MM.05.008 05/12/1999 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 04/01/2014 Section:

More information

Local control after fractionated stereotactic radiation therapy for brain metastases

Local control after fractionated stereotactic radiation therapy for brain metastases J Neurooncol (2014) 120:339 346 DOI 10.1007/s11060-014-1556-5 CLINICAL STUDY Local control after fractionated stereotactic radiation therapy for brain metastases Selvan Rajakesari Nils D. Arvold Rachel

More information

A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors

A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors J Neurooncol (2012) 109:159 165 DOI 10.1007/s11060-012-0882-8 CLINICAL STUDY A prospective pilot study of two-session Gamma Knife surgery for large metastatic brain tumors Shoji Yomo Motohiro Hayashi Claire

More information

Liang-Hua Ma, Guang Li *, Hong-Wei Zhang, Zhi-Yu Wang, Jun Dang, Shuo Zhang and Lei Yao

Liang-Hua Ma, Guang Li *, Hong-Wei Zhang, Zhi-Yu Wang, Jun Dang, Shuo Zhang and Lei Yao Ma et al. Radiation Oncology (2016) 11:92 DOI 10.1186/s13014-016-0667-x RESEARCH Open Access The effect of non-small cell lung cancer histology on survival as measured by the graded prognostic assessment

More information

Is it cost-effective to treat brain metastasis with advanced technology?

Is it cost-effective to treat brain metastasis with advanced technology? Is it cost-effective to treat brain metastasis with advanced technology? Cost-effectiveness analysis of whole brain RT, stereotactic radiosurgery and craniotomy in HA setting Lam, Tai-Chung, Choi CW Horace,

More information

Clinical Study on Prognostic Factors and Nursing of Breast Cancer with Brain Metastases

Clinical Study on Prognostic Factors and Nursing of Breast Cancer with Brain Metastases Clinical Study on Prognostic Factors and Nursing of Breast Cancer with Brain Metastases Ying Zhou 1#, Kefang Zhong 1#, Fang Zhou* 2 ABSTRACT This paper aims to explore the clinical features and prognostic

More information

8/2/2018. Acknowlegements: TCP SPINE. Disclosures

8/2/2018. Acknowlegements: TCP SPINE. Disclosures A Presentation for the AAPM Annual meeting, Aug 2, 2018 Nashville, TN Stereotactic Radiosurgery for Spinal Metastases: Tumor Control Probability Analyses and Recommended Reporting Standards for Future

More information

Brain metastases: changing visions

Brain metastases: changing visions Brain metastases: changing visions Roberto Spiegelmann, MD Baiona, 2014 Head, Stereotactic Radiosurgery Unit Dept of Neurosurgery, Chaim Sheba Medical Center Tel Hashomer, Israel The best current estimate

More information

RESEARCH HUMAN CLINICAL STUDIES

RESEARCH HUMAN CLINICAL STUDIES TOPIC RESEARCH HUMAN CLINICAL STUDIES RESEARCH HUMAN CLINICAL STUDIES Suzanne R. Sharpton, MD* Eric K. Oermann, BS Dominic T. Moore, PhD Eric Schreiber, PhD Riane Hoffman, BA David E. Morris, MD Matthew

More information

Place of tumor bed radiosurgery and focal radiotherapy following resec7on of brain metastases: A new paradigm Lucyna Kepka

Place of tumor bed radiosurgery and focal radiotherapy following resec7on of brain metastases: A new paradigm Lucyna Kepka Place of tumor bed radiosurgery and focal radiotherapy following resec7on of brain metastases: A new paradigm Lucyna Kepka Department of Radia7on Oncology; M. Sklodowska- Curie Memorial Cancer Center and

More information

Sergio Bracarda MD. Head, Medical Oncology Department of Oncology AUSL-8 Istituto Toscano Tumori (ITT) San Donato Hospital Arezzo, Italy

Sergio Bracarda MD. Head, Medical Oncology Department of Oncology AUSL-8 Istituto Toscano Tumori (ITT) San Donato Hospital Arezzo, Italy Sergio Bracarda MD Head, Medical Oncology Department of Oncology AUSL-8 Istituto Toscano Tumori (ITT) San Donato Hospital Arezzo, Italy Ninth European International Kidney Cancer Symposium Dublin 25-26

More information

Jefferson Digital Commons. Thomas Jefferson University. Mark E Linskey Department of Neurosurgery, University of California-Irvine Medical Center

Jefferson Digital Commons. Thomas Jefferson University. Mark E Linskey Department of Neurosurgery, University of California-Irvine Medical Center Thomas Jefferson University Jefferson Digital Commons Department of Neurosurgery Faculty Papers Department of Neurosurgery 1-1-2010 The role of stereotactic radiosurgery in the management of patients with

More information

CME. Special Article. Received 27 October 2011; revised 9 December 2011; accepted 15 December Practical Radiation Oncology (2012) 2,

CME. Special Article. Received 27 October 2011; revised 9 December 2011; accepted 15 December Practical Radiation Oncology (2012) 2, Practical Radiation Oncology (2012) 2, 210 225 CME www.practicalradonc.org Special Article Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): An American Society for Radiation

More information

Gamma Knife Radiosurgery A tool for treating intracranial conditions. CNSA Annual Congress 2016 Radiation Oncology Pre-congress Workshop

Gamma Knife Radiosurgery A tool for treating intracranial conditions. CNSA Annual Congress 2016 Radiation Oncology Pre-congress Workshop Gamma Knife Radiosurgery A tool for treating intracranial conditions CNSA Annual Congress 2016 Radiation Oncology Pre-congress Workshop ANGELA McBEAN Gamma Knife CNC State-wide Care Coordinator Gamma Knife

More information

Inoue et al. Radiation Oncology 2014, 9:231

Inoue et al. Radiation Oncology 2014, 9:231 Inoue et al. Radiation Oncology 2014, 9:231 RESEARCH Open Access Optimal hypofractionated conformal radiotherapy for large brain metastases in patients with high risk factors: a single-institutional prospective

More information

ORIGINAL ARTICLE GAMMA KNIFE STEREOTACTIC RADIOSURGERY FOR SALIVARY GLAND NEOPLASMS WITH BASE OF SKULL INVASION FOLLOWING NEUTRON RADIOTHERAPY

ORIGINAL ARTICLE GAMMA KNIFE STEREOTACTIC RADIOSURGERY FOR SALIVARY GLAND NEOPLASMS WITH BASE OF SKULL INVASION FOLLOWING NEUTRON RADIOTHERAPY ORIGINAL ARTICLE GAMMA KNIFE STEREOTACTIC RADIOSURGERY FOR SALIVARY GLAND NEOPLASMS WITH BASE OF SKULL INVASION FOLLOWING NEUTRON RADIOTHERAPY James G. Douglas, MD, MS, 1,2 Robert Goodkin, MD, 1,2 George

More information

!"#$%&'()*+,-./01 !"#$ N! !"#$%&'()*+,- !"#$%&'()*+,-)*./01!"#$% &'()*+,-./#0!"#$#%

!#$%&'()*+,-./01 !#$ N! !#$%&'()*+,- !#$%&'()*+,-)*./01!#$% &'()*+,-./#0!#$#% !"#$%&!"#$ N!!"#$%&'()!" N!!"#$%&'()*+,-./0123456789:;4567 OMN!"#$%!&!"#$%&'!( )*+,-./01!2345678019:;?@!ABC%6 2!"#$%&'()*!+,,-./*012345-678*4509:;?@ABC./$! -.!/0123456*+!789:6;?@A2B!#$6CD

More information

Management of Brain Metastases Sanjiv S. Agarwala, MD

Management of Brain Metastases Sanjiv S. Agarwala, MD Management of Brain Metastases Sanjiv S. Agarwala, MD Professor of Medicine Temple University School of Medicine Chief, Oncology & Hematology St. Luke s Cancer Center, Bethlehem, PA, USA Incidence (US):

More information

A prognostic index that predicts outcome following palliative whole brain radiotherapy for patients with metastatic malignant melanoma

A prognostic index that predicts outcome following palliative whole brain radiotherapy for patients with metastatic malignant melanoma British Journal of Cancer (4) 91, 829 833 All rights reserved 7 9/4 $3. www.bjcancer.com A prognostic index that predicts outcome following palliative whole brain radiotherapy for patients with metastatic

More information

Gamma Knife Treatment of Brainstem Metastases

Gamma Knife Treatment of Brainstem Metastases Int. J. Mol. Sci. 2014, 15, 9748-9761; doi:10.3390/ijms15069748 Article OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Gamma Knife Treatment of Brainstem

More information