SOMATOM Drive System Owner Manual Dosimetry and imaging performance report

Size: px
Start display at page:

Download "SOMATOM Drive System Owner Manual Dosimetry and imaging performance report"

Transcription

1 SOMATOM Drive System Owner Manual Dosimetry and imaging performance report

2

3 Table of contents 1 Dosimetry and imaging performance report Dose information General information about dose indication Phantoms and methods Typical CT conditions of operation CTDI 100 for typical CT conditions of operation Dose factors related to the CTDI 100 for typical CT conditions of operation (128-slice) Overview of CTDI 100 (mgy/100 mas) CTDI free air Stray radiation Dose levels causing deterministic radiation effects Tolerances for CTDI Conversion factor for CTDI vol from Ø 32 cm phantom to Ø 16 cm phantom Conversion factor for CTDI vol CTDI vol for topograms Geometric efficiency in the z-direction Dose profiles Nominal values and tolerances for acceptance testing Beam quality, leakage technique factors and minimum filtration Performance specification of automatic exposure controls Use of radiation shields for the purpose of reducing patient dose in CT scanning with Siemens Healthcare CT systems Image quality Low-contrast detectability CT number Uniformity Image noise High-Contrast-Resolution, Modulation Transfer Function (MTF) Sensitivity profiles HD FOV: Advanced extended FOV reconstruction Nominal tomographic section thicknesses Information about quality assurance Test methods for the constancy tests 44 Index 47 SOMATOM Drive 3

4 Table of contents 4 Dosimetry and imaging performance report System Owner Manual

5 Dosimetry and imaging performance report 1 1 Dosimetry and imaging performance report This chapter provides dose and imaging performance data. The data are in accordance with the US code of federal regulations 21 CFR (c) and the International Electrotechnical Commission IEC standard. This chapter provides the following information: CTDI 100 for typical CT conditions of operation with regard to typical modes Dose factors showing the relative changes in CTDI 100 compared to the CTDI 100 of the typical mode, in varying a scan parameter Dosimetry data, such as beam quality, dose profiles, and stray radiation tables Image noise and High-Contrast-Resolution (HCR) of the typical modes Homogeneity of CT values and low-contrast resolution Reconstructable slice thicknesses Dose information General information about dose indication The CT system provides information about the CTDI vol and Dose Length Product (DLP) as defined by the IEC standard. Both values are displayed on the user interface of the scanner before and after each scan range. In addition, these values are stored in the Patient Protocol and the DICOM Structured Dose Report. The CTDI vol represents the average energy dose (expressed as Air KERMA) within a cylindrical PMMA phantom, aligned with the scanner axis and centered in the scan plane. The phantom diameter to which the displayed CTDI vol refers depends on the default application of the used protocol; see ( Page 9 CTDI 100 for typical CT conditions of operation). The reported and displayed CTDI vol and DLP refers to the 16 cm CTDI-phantom for head scans and to the 32 cm CTDI phantom for body scans, whereby the classification to 'head' or 'body' depends on the class of the original protocol delivered with the system. Neck protocols are classified as 'body'. CTDI vol and DLP of protocols originally intended for pediatric body examination and for neck examination refer to the 32 cm phantom. Factors for conversion of the displayed CTDIvol and DLP for the 32 cm phantom to equivalent CTDIvol and DLP for the 16 cm phantom are stated in ( Page 23 Conversion factor for CTDI vol from Ø 32 cm phantom to Ø 16 cm phantom) (child protocols are recommended for pediatric patients under the age of 12 years and with a normal body size). The CTDI values given in this manual are valid for deactivated CARE Dose 4D and CARE kv, as both features are not adapted to phantom measurements. Dynamic collimation (Adaptive Dose Shield) which reduces the dose of spiral overscan is taken into account for the reported DLP but not for the reported CTDI vol. SOMATOM Drive 5

6 1 Dosimetry and imaging performance report Further information regarding dose reduction functions is provided in the SOMATOM Instructions for Use. The reported DLP for spiral scans is calculated from the CTDI vol multiplied with a length L. The length L represents the table travel during the exposure and is corrected for effects of the dynamic collimation (Adaptive Dose Shield) which reduces the dose of spiral overscan. The reduction of DLP by the dynamic collimation is calculated as the time weighted average of collimator during the scan, divided by the nominal collimator opening for the scan. The effect of the dynamic collimation therefore is taken into account for the reported DLP but not for the reported CTDI vol. If the tube current varies during a scan, e.g. when using CARE Dose 4D, the CTDI vol and DLP displayed is the time-weighted average over the scan range Phantoms and methods According to: 21 CFR This chapter describes both, phantoms and methods used to establish the dose values reported below, and an instruction how to measure and determine CTDI vol, in order to verify against the value displayed at the scanner. The phantoms used to measure the CTDI values are circular cylinders of PMMA of diameter 16 cm (for head applications) or 32 cm (for all body applications), and with a length of at least 14 cm. They contain holes parallel to the axis of the phantom (A E) to hold 100 mm dose chambers. Phantoms are aligned with the scanner axis and centered in the scan field. A dose chamber with an active length of 100 mm is used for the dose measurements. All dose values are given in Air KERMA. CTDI 100 is measured in the center (A) and peripheral drillings at the 3 o clock, 6 o clock, 9 o clock and 12 o clock positions (B E). CTDI 100 locations in dosimetry phantoms with the line of sight towards the front side of the gantry To ensure correct dose measurements, it is recommended that a dosimeter conforming to IEC be used. The dosimeter has to be calibrated with beam qualities suitable for the CT energy spectrum examined, e.g. CT beam qualities "RQT" according IEC For dose measurements at 70 kv tube voltage or with tin filtration, an additional calibration with suitable beam qualities (for example RQR 5 acc. IEC and N150 acc. ISO 4037) is recommended to ensure that the energy dependance of the dosimeter does not distort the results of the dose measurements. 6 Dosimetry and imaging performance report System Owner Manual

7 Dosimetry and imaging performance report 1 The dose is measured in single axial scans, so that the dose chamber measures the integrated dose profile along the z-direction over 10 cm, in the center of the scan plane. The measured values should be large compared to the accuracy of the dosemeter. As a result, it might be necessary to select either a large tube current and exposure time or to average the dosimeter readings over several scans. For measurements with the dose chamber in one of the peripheral positions it is recommended to average the results over several scans. Otherwise the scan start angle of the individual scans may influence the result. IEC 61674: 2012 'Medical electrical equipment Dosimeters with ionization chambers and/or semiconductor detectors as used in X-ray diagnostic imaging' IEC 61267: 2005 'Radiation conditions for use in the determination of characteristics' ISO : 2004 'X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy' To calculate the CTDI 100 from the dosimeter readings (usually displayed as dose integrated over z-direction, i.e. as Dose Length Product (DLP), e.g. in mgy cm) the value has to be divided by the nominal beam collimation. For scan modes without a z-flying focal spot, the nominal beam collimation is equal to the acquisition displayed at the scanner's console (e.g. 'Acquisition mm' = 1.92 cm). For scan modes with a z-flying focal spot, the nominal beam collimation is equal to half of the acquisition displayed on the scanner's console (e.g. 'Acquisition mm' 0.5 = mm = 3.84 cm). ( Page 40 Nominal tomographic section thicknesses) LDP measured Length-Dose-Product [mgy cm] Note that the reading may also be displayed as dose averaged over the chamber length, e.g. in mgy. NxT Nominal Beam Collimation [cm] This is valid for all nominal beam collimations 4 cm. The CTDI w is the sum of a third of the CTDI 100 measured in the phantom's central chamber position (CTDI 100c ) and two third of the average of CTDI 100 measured in the phantom's four peripheral chamber position (CTDI 100p ). According to it's definition, CTDI w has to be derived from CTDI 100 measured in single axial scans. In this situation the CTDI vol is equal to the CTDI w. In general the CTDI vol displayed is derived from the CTDI w by multiplication with a factor that takes into account the table feed during scanning: SOMATOM Drive 7

8 1 Dosimetry and imaging performance report For spiral scanning For axial scanning For axial scanning without table feed For scanning with periodic back and forth table movement p Pitch factor NxT Nominal collimation n Number of scans v f Table feed per scan R Table range Typical CT conditions of operation According to: 21 CFR The following table provides scan parameter settings for typical modes of operation based on default setting of the Siemens scan protocols (with deactivated CARE Dose 4D and CARE kv). Protocol descriptions are provided by the Workflow Assistant. The system provides two shaped Xray beam filter settings (narrow, standard). These are set depending on the protocol type selected. The scan parameter settings provided here, although typical, may slightly deviate from the default protocols provided with the scanner software. Application type Typical head Typical head perfusion Typical body Typical cardiac Typical body Patient type Adult Adult Adult Adult Child Scan type Sequence Multiscan Spiral Sequence Spiral Protocol name HeadNeuroSeq NeuroPCT Abdomen Routine_IR DS_Coronary CTA_Adapt_Seq_IR* Abdomen Routine_IR Tube voltage 120 kv 80 kv 120 kv A, B: 100 kv, 100 kv 100 kv Tube mode Single Tube (A) Single Tube (A) Single Tube (A) Dual Tube (AB) Single Tube (A) Shaped filter A: Standard A: Standard A: Standard A, B: Narrow A: Narrow Tube current time product 390 mas 200 mas 147 eff. mas 250 mas/rot 98 eff. mas Tube current (per tube) 195 ma 200 ma 176 ma 439 ma 274 ma Rotation time 1.00 s 1.00 s 0.50 s s 0.50 s Number of scans Scan time 2.0 s 40 s 5.2 s 0.16 s 2.5 s Table range 112 mm 0 mm 237 mm 104 mm 268 mm Pitch factor or table feed 14.0 mm feed 0 mm feed 0.6 pitch 34.5 mm feed 1.4 pitch Collimation mm mm mm mm mm Data acquisition mm mm mm mm mm Total collimation 14.4 mm 38.4 mm 38.4 mm 38.4 mm 38.4 mm z-sharp off off on on off Reconstructed slice width 4.8 mm 5.0 mm 5.0 mm 3.0 mm 5.0 mm *) Flex 0.28 s, trigger: scan 70 to 70, pulsing off, 60 bpm, best phase manual, phase start 70 % 8 Dosimetry and imaging performance report System Owner Manual

9 Dosimetry and imaging performance report 1 Application type Typical head Typical head perfusion Typical body Typical cardiac Typical body Patient type Adult Adult Adult Adult Child Scan type Sequence Multiscan Spiral Sequence Spiral Kernel H31s H30s B30f B30f B30f *) Flex 0.28 s, trigger: scan 70 to 70, pulsing off, 60 bpm, best phase manual, phase start 70 % Typical CT conditions of operation CTDI 100 for typical CT conditions of operation According to: 21 CFR The following table indicates the CTDI for the protocols specified. There is no significant difference in the exposure of the peripheral chamber positions. The stated dose chamber positions are B - E according to their positions in the phantom (up, down, left, and right). ( Page 8 Typical CT conditions of operation) Application type Typical Head Typical Head Typical Body Typical Cardiac Typical Body Perfusion Patient size Adult Adult Adult Adult Child CTDI phantom Ø 16 cm Ø 16 cm Ø 32 cm Ø 32 cm Ø 32 cm CTDI 100 (mgy) per scan per scan per rotation per scan* per rotation Chamber position A (central) 62.8 mgy 331 mgy 3.66 mgy 3.76 mgy 2.90 mgy Chamber position B (Up) 64.0 mgy 347 mgy 6.76 mgy 6.3 mgy** 4.92 mgy Chamber position C (down) 65.4 mgy 354 mgy 6.41 mgy 6.1 mgy** 4.73 mgy Chamber position D (left) 63.5 mgy 342 mgy 6.64 mgy 6.2 mgy** 4.85 mgy Chamber position E (right) 63.3 mgy 341 mgy 6.67 mgy 6.3 mgy** 4.87 mgy Average peripheral 64.0 mgy 346 mgy 6.6 mgy 6.2 mgy 4.85 mgy CTDI W 63.6 mgy 341 mgy 5.63 mgy 5.4 mgy 4.20 mgy CTDI vol 65.5 mgy 341 mgy 9.4 mgy 6.01 mgy 3.00 mgy *) 0.33s full scan without pulsing **) Average over several partial scans CTDI 100 for typical CT conditions of operation CTDI vol and CTDI w are calculated values based on the measured CTDI 100, where the CTDI 100 has to be measured in axial scans (according to their definition in IEC ). As typical modes may be spiral scans, the values of CTDI 100 stated above are measured in axial scans with the same scan parameters (kv, ma, collimation, rotation time and filter) as used in the spiral mode General information Dose factors related to the CTDI 100 for typical CT conditions of operation (128-slice) According to: 21 CFR SOMATOM Drive 9

10 1 Dosimetry and imaging performance report The CTDI 100 is influenced by the following selectable scan parameters: kv Acquisition Shaped filter mas values (mas, eff. mas, mas/rot, ref. mas, ref. mas/rot) The CTDI 100 is not influenced by the rotation time or recon parameters, such as Kernel or FoV. In the following tables, the CTDI 100 for the typical mode is represented by the value 1.00, shown in bold. CTDI 100 for varying scan parameters are given as a proportion of the CTDI 100 for the typical mode. Dose factors are presented for a wide range of scan parameter combinations that influence dose. However, depending on system configuration, licences and available scan protocols, not all of the combinations shown may be selectable. CTDI 100 dose factors for varying tube voltage and shaped filter Values are given for central and peripheral CTDI 100 and are expressed as a proportion of the CTDI 100 for the typical mode, shown in bold. Sn 100 kv 140 kv 130 kv 120 kv 110 kv 100 kv 90 kv 80 kv 70 kv* Tube voltage Typical Head Typical Head Perfusion Typical Body CTDI Phantom Ø 16 cm Shaped filter CTDI Phantom Ø 16 cm Shaped filter CTDI Phantom Ø 32cm Shaped filter Narrow Standard Narrow Standard Narrow Standard Central 0,17 0,18 n.a. 0,63 0,12 0,14 Peripheral 0,16 0,19 n.a. 0,64 0,13 0,17 Weighted 0,16 0,19 n.a. 0,63 0,13 0,16 Central 0,27 0,29 n.a. 1,00 0,22 0,25 Peripheral 0,25 0,30 n.a. 1,00 0,21 0,28 Weighted 0,26 0,30 n.a. 1,00 0,21 0,27 Central 0,40 0,43 n.a. 1,47 0,35 0,39 Peripheral 0,38 0,44 n.a. 1,46 0,33 0,42 Weighted 0,38 0,44 n.a. 1,46 0,33 0,42 Central 0,55 0,60 n.a. 2,03 0,50 0,56 Peripheral 0,52 0,60 n.a. 1,99 0,45 0,59 Weighted 0,53 0,60 n.a. 2,00 0,46 0,58 Central 0,74 0,80 n.a. 2,72 0,69 0,78 Peripheral 0,70 0,80 n.a. 2,66 0,61 0,79 Weighted 0,71 0,80 n.a. 2,68 0,63 0,79 Central 0,92 1,00 n.a. 3,40 0,89 1,00 Peripheral 0,87 1,00 n.a. 3,32 0,78 1,00 Weighted 0,89 1,00 n.a. 3,34 0,80 1,00 Central 1,12 1,21 n.a. 4,12 1,12 1,26 Peripheral 1,06 1,21 n.a. 4,02 0,97 1,24 Weighted 1,08 1,21 n.a. 4,05 1,00 1,24 Central 1,35 1,45 n.a. 4,93 1,38 1,54 Peripheral 1,28 1,45 n.a. 4,80 1,18 1,50 Weighted 1,30 1,45 n.a. 4,85 1,22 1,51 Central 0,10 0,11 n.a. 0,37 0,11 0,13 Peripheral 0,10 0,11 n.a. 0,36 0,09 0,12 Weighted 0,10 0,11 n.a. 0,36 0,10 0,12 10 Dosimetry and imaging performance report System Owner Manual

11 Dosimetry and imaging performance report 1 Sn140 kv Tube voltage Typical Head Typical Head Perfusion Typical Body CTDI Phantom Ø 16 cm Shaped filter CTDI Phantom Ø 16 cm Shaped filter CTDI Phantom Ø 32cm Shaped filter Narrow Standard Narrow Standard Narrow Standard Central 0,44 0,46 n.a. 1,58 0,53 0,58 Peripheral 0,42 0,46 n.a. 1,53 0,42 0,52 Weighted 0,43 0,46 n.a. 1,54 0,44 0,53 Dose Factors of CTDI 100 for variation of tube voltage and shaped filter for central / peripheral /weighted CTDI 100; each related to typical mode (bold) Sn140 kv* Sn 100 kv 140 kv 130 kv 120 kv 110 kv 100 kv 90 kv 80 kv 70 kv* Tube voltage Typical Cardiac Typical Pediatric Body CTDI Phantom Ø 32 cm Shaped filter CTDI Phantom Ø 32cm Shaped filter Narrow Standard Narrow Standard Central 0,24 n.a. 0,24 n.a. Peripheral 0,28 n.a. 0,28 n.a. Weighted 0,27 n.a. 0,27 n.a. Central 0,44 n.a. 0,43 n.a. Peripheral 0,47 n.a. 0,47 n.a. Weighted 0,46 n.a. 0,46 n.a. Central 0,69 n.a. 0,70 n.a. Peripheral 0,72 n.a. 0,72 n.a. Weighted 0,71 n.a. 0,71 n.a. Central 1,00 n.a. 1,00 n.a. Peripheral 1,00 n.a. 1,00 n.a. Weighted 1,00 n.a. 1,00 n.a. Central 1,39 n.a. 1,39 n.a. Peripheral 1,35 n.a. 1,35 n.a. Weighted 1,36 n.a. 1,36 n.a. Central 1,79 n.a. 1,79 n.a. Peripheral 1,71 n.a. 1,71 n.a. Weighted 1,73 n.a. 1,73 n.a. Central 2,25 n.a. 2,25 n.a. Peripheral 2,13 n.a. 2,13 n.a. Weighted 2,16 n.a. 2,15 n.a. Central 2,77 n.a. 2,77 n.a. Peripheral 2,59 n.a. 2,59 n.a. Weighted 2,63 n.a. 2,63 n.a. Central 0,23 n.a. 0,23 n.a. Peripheral 0,20 n.a. 0,20 n.a. Weighted 0,21 n.a. 0,21 n.a. Central 1,07 n.a. 1,06 n.a. Peripheral 0,93 n.a. 0,92 n.a. Weighted 0,96 n.a. 0,95 n.a. Dose Factors of CTDI 100 for variation of tube voltage and shaped filter for central / peripheral /weighted CTDI 100; each related to typical mode (bold) Dose factors for varying acquisition type Values are given for central and peripheral CTDI 100 and are expressed as a proportion of the typical mode CTDI 100, shown in bold. SOMATOM Drive 11

12 1 Dosimetry and imaging performance report Acquisition Collimation Typical Head Typical Head Perfusion Typical Body Typical Cardiac Typical Pediatric Body 2 x 1 mm 2 x 1 mm n.a. n.a n.a x 5 mm 1 x 5 mm 0.78 n.a n.a x 0.6 mm 10 x 0.6 mm 1.03 n.a n.a x 0.6 mm 8 x 0.6 mm 1.49 n.a n.a x 0.3 mm 8 x 0.6 mm 1.49 n.a n.a x 10 mm 1 x 10 mm 0.78 n.a n.a x 0.6 mm 20 x 0.6 mm 1.05 n.a n.a x 1.2 mm 12 x 1.2 mm 1.00 n.a n.a x 0.6 mm 32 x 0.6 mm 0.96 n.a x 0.6 mm 32 x 0.6 mm 0.98 n.a x 1.2 mm 32 x 1.2 mm x 0.6 mm 64 x 0.6 mm 0.86 n.a Dose factors for varying acquisition type Dose factors for varying mas Values are given for central and peripheral CTDI 100 and are expressed as a proportion of the typical mode CTDI 100, shown in bold. Dose factors are valid for deactivated CARE Dose 4D. Current* Typical Head Typical Head Perfusion Typical Body Typical Cardiac Typical Pediatric Body mas factor mas factor eff. mas factor mas/rot factor eff. mas factor 20 ma ma ma ma ma ma ma , , , , , ma ,77 n.a. n.a , , , ma n.a. n.a. n.a. n.a , , , ma n.a. n.a. n.a. n.a. n.a. n.a ,82 n.a. n.a. *) per tube Dose Factors for variation of mas central and peripheral CTDI 100, related to typical mode (bold) Overview of CTDI 100 (mgy/100 mas) Not all combinations of mode parameters shown are selectable. For dual-source modes, separate calculations have to be done for Tube A and B. 12 Dosimetry and imaging performance report System Owner Manual

13 Dosimetry and imaging performance report 1 CTDI100 (mgy/100 mas) Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, central 2,57 4,17 4,39 2,31 3,04 2,31 2,96 3,10 2,86 2,59 2,52 CTDI100, peripheral 2,74 4,44 4,64 2,46 3,22 2,46 3,16 3,28 3,04 2,75 2,67 CTDIw 2,69 4,35 4,56 2,41 3,16 2,41 3,09 3,22 2,98 2,70 2,62 CTDI100, central 4,12 6,66 7,03 3,69 4,87 3,69 4,74 4,97 4,58 4,13 4,04 CTDI100, peripheral 4,30 6,97 7,30 3,86 5,06 3,86 4,95 5,16 4,77 4,32 4,20 CTDIw 4,24 6,87 7,21 3,80 5,00 3,80 4,88 5,10 4,71 4,26 4,15 90 kv 80 kv CTDI100, central 6,06 9,81 10,4 5,44 7,19 5,44 6,97 7,33 6,75 6,09 5,97 CTDI100, peripheral 6,26 10,1 10,6 5,62 7,38 5,62 7,21 7,52 6,95 6,29 6,12 CTDIw 6,20 10,0 10,6 5,56 7,32 5,56 7,13 7,46 6,89 6,22 6,07 CTDI100, central 8,35 13,5 14,3 7,49 9,91 7,49 9,60 10,1 9,30 8,38 8,22 CTDI100, peripheral 8,57 13,9 14,6 7,69 10,1 7,69 9,86 10,3 9,51 8,61 8,37 CTDIw 8,49 13,8 14,5 7,62 10,0 7,62 9,77 10,2 9,44 8,53 8, kv 100 kv CTDI100, central 11,2 18,1 19,2 10,1 13,3 10,1 12,9 13,5 12,5 11,3 11,0 CTDI100, peripheral 11,4 18,5 19,5 10,3 13,5 10,3 13,2 13,7 12,7 11,5 11,2 CTDIw 11,4 18,4 19,4 10,2 13,4 10,2 13,1 13,7 12,6 11,4 11,1 CTDI100, central 14,0 22,7 23,9 12,6 16,6 12,6 16,1 16,9 15,6 14,1 13,8 CTDI100, peripheral 14,3 23,1 24,3 12,8 16,8 12,8 16,4 17,1 15,8 14,3 13,9 CTDIw 14,2 23,0 24,1 12,7 16,7 12,7 16,3 17,1 15,8 14,2 13,9 130 kv 120 kv CTDI100, central 16,9 27,4 29,0 15,2 20,1 15,2 19,5 20,5 18,9 17,0 16,7 CTDI100, peripheral 17,3 28,0 29,4 15,5 20,4 15,5 19,9 20,8 19,2 17,4 16,9 CTDIw 17,2 27,8 29,3 15,4 20,3 15,4 19,8 20,7 19,1 17,3 16,8 CTDI100, central 20,3 32,9 34,8 18,2 24,1 18,2 23,4 24,6 22,6 20,4 20,0 CTDI100, peripheral 20,7 33,5 35,2 18,5 24,4 18,5 23,8 24,9 23,0 20,8 20,3 CTDIw 20,5 33,3 35,1 18,4 24,3 18,4 23,6 24,8 22,9 20,6 20,2 Sn 100 kv 140 kv CTDI100, central 1,54 2,50 2,65 1,38 1,84 1,38 1,77 1,87 1,72 1,55 1,52 CTDI100, peripheral 1,53 2,48 2,62 1,38 1,82 1,38 1,76 1,85 1,71 1,54 1,51 CTDIw 1,54 2,49 2,63 1,38 1,82 1,38 1,77 1,86 1,71 1,54 1,51 CTDI100, central 6,49 10,5 11,2 5,82 7,74 5,82 7,47 7,88 7,25 6,52 6,42 CTDI100, peripheral 6,58 10,6 11,3 5,90 7,81 5,90 7,57 7,97 7,33 6,61 6,48 CTDIw 6,55 10,6 11,2 5,87 7,79 5,87 7,54 7,94 7,30 6,58 6,46 Sn 140 kv Phantom: Ø 16 cm; Shaped Filter: Standard; Typical Application: Head SOMATOM Drive 13

14 1 Dosimetry and imaging performance report Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, central 2,32 3,75 3,95 2,08 2,74 2,08 2,67 2,79 2,58 2,33 2,27 CTDI100, peripheral 2,28 3,69 3,85 2,05 2,67 2,05 2,62 2,72 2,52 2,29 2,21 CTDIw 2,29 3,71 3,88 2,06 2,69 2,06 2,64 2,74 2,54 2,30 2,23 CTDI100, central 3,74 6,05 6,38 3,35 4,43 3,35 4,30 4,51 4,16 3,76 3,67 CTDI100, peripheral 3,63 5,88 6,15 3,26 4,26 3,26 4,18 4,34 4,02 3,65 3,54 CTDIw 3,67 5,94 6,23 3,29 4,32 3,29 4,22 4,40 4,07 3,68 3,58 90 kv 80 kv CTDI100, central 5,54 8,97 9,47 4,97 6,57 4,97 6,38 6,69 6,17 5,56 5,45 CTDI100, peripheral 5,36 8,68 9,06 4,81 6,28 4,81 6,17 6,41 5,93 5,38 5,21 CTDIw 5,42 8,77 9,20 4,86 6,38 4,86 6,24 6,50 6,01 5,44 5,29 CTDI100, central 7,66 12,4 13,1 6,87 9,08 6,87 8,81 9,25 8,53 7,69 7,53 CTDI100, peripheral 7,39 12,0 12,5 6,63 8,67 6,63 8,50 8,84 8,18 7,42 7,19 CTDIw 7,48 12,1 12,7 6,71 8,81 6,71 8,60 8,98 8,30 7,51 7, kv 100 kv CTDI100, central 10,3 16,7 17,6 9,26 12,2 9,26 11,9 12,5 11,5 10,4 10,1 CTDI100, peripheral 9,94 16,1 16,8 8,92 11,7 8,92 11,4 11,9 11,0 9,99 9,68 CTDIw 10,1 16,3 17,1 9,03 11,9 9,03 11,6 12,1 11,2 10,1 9,83 CTDI100, central 12,9 20,9 22,1 11,6 15,3 11,6 14,9 15,6 14,4 13,0 12,7 CTDI100, peripheral 12,5 20,2 21,1 11,2 14,6 11,2 14,3 14,9 13,8 12,5 12,1 CTDIw 12,6 20,4 21,4 11,3 14,9 11,3 14,5 15,1 14,0 12,7 12,3 130 kv 120 kv CTDI100, central 15,7 25,4 26,8 14,1 18,6 14,1 18,1 19,0 17,5 15,8 15,4 CTDI100, peripheral 15,2 24,6 25,8 13,6 17,9 13,6 17,5 18,2 16,8 15,3 14,8 CTDIw 15,4 24,9 26,1 13,8 18,1 13,8 17,7 18,5 17,1 15,4 15,0 CTDI100, central 18,8 30,5 32,3 16,9 22,4 16,9 21,7 22,8 21,0 18,9 18,5 CTDI100, peripheral 18,2 29,5 31,0 16,3 21,5 16,3 21,0 21,9 20,2 18,3 17,8 CTDIw 18,4 29,8 31,4 16,5 21,8 16,5 21,2 22,2 20,5 18,5 18,0 Sn 100 kv 140 kv CTDI100, central 1,45 2,35 2,49 1,30 1,73 1,30 1,67 1,76 1,62 1,46 1,43 CTDI100, peripheral 1,38 2,23 2,35 1,24 1,63 1,24 1,59 1,66 1,53 1,38 1,35 CTDIw 1,40 2,27 2,40 1,26 1,66 1,26 1,61 1,69 1,56 1,41 1,38 CTDI100, central 6,16 9,97 10,6 5,52 7,35 5,52 7,09 7,49 6,88 6,19 6,09 CTDI100, peripheral 6,00 9,72 10,3 5,39 7,12 5,39 6,91 7,26 6,69 6,03 5,91 CTDIw 6,06 9,80 10,4 5,43 7,20 5,43 6,97 7,34 6,75 6,08 5,97 Sn 140 kv Phantom: Ø 16 cm; Shaped Filter: Narrow; Typical Application: Inner Ear 14 Dosimetry and imaging performance report System Owner Manual

15 Dosimetry and imaging performance report 1 Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, central 0,58 0,94 0,99 0,52 0,69 0,52 0,66 0,70 0,64 0,58 0,57 CTDI100, peripheral 1,29 2,08 2,20 1,15 1,52 1,15 1,48 1,55 1,43 1,29 1,26 CTDIw 1,05 1,70 1,79 0,94 1,24 0,94 1,21 1,27 1,17 1,05 1,03 CTDI100, central 1,04 1,69 1,79 0,94 1,24 0,94 1,20 1,26 1,16 1,05 1,03 CTDI100, peripheral 2,16 3,50 3,67 1,94 2,55 1,94 2,49 2,59 2,40 2,17 2,11 CTDIw 1,79 2,90 3,04 1,60 2,11 1,60 2,06 2,15 1,99 1,80 1,75 90 kv 80 kv CTDI100, central 1,66 2,68 2,84 1,49 1,97 1,49 1,91 2,00 1,85 1,66 1,63 CTDI100, peripheral 3,27 5,30 5,55 2,93 3,85 2,93 3,76 3,92 3,63 3,29 3,19 CTDIw 2,73 4,42 4,64 2,45 3,22 2,45 3,14 3,28 3,03 2,74 2,67 CTDI100, central 2,38 3,85 4,07 2,13 2,82 2,13 2,73 2,88 2,65 2,39 2,34 CTDI100, peripheral 4,53 7,34 7,69 4,06 5,33 4,06 5,21 5,43 5,03 4,55 4,42 CTDIw 3,81 6,17 6,48 3,42 4,50 3,42 4,39 4,58 4,23 3,83 3, kv 100 kv CTDI100, central 3,28 5,31 5,62 2,94 3,90 2,94 3,77 3,97 3,66 3,29 3,23 CTDI100, peripheral 6,10 9,88 10,35 5,47 7,17 5,47 7,02 7,31 6,77 6,13 5,95 CTDIw 5,16 8,36 8,77 4,63 6,08 4,63 5,94 6,20 5,73 5,18 5,04 CTDI100, central 4,22 6,84 7,23 3,79 5,01 3,79 4,86 5,11 4,70 4,24 4,16 CTDI100, peripheral 7,69 12,4 13,1 6,90 9,05 6,90 8,85 9,22 8,53 7,72 7,50 CTDIw 6,53 10,6 11,1 5,86 7,70 5,86 7,52 7,85 7,25 6,56 6, kv 120 kv CTDI100, central 5,29 8,57 9,07 4,75 6,29 4,75 6,09 6,41 5,90 5,31 5,22 CTDI100, peripheral 9,50 15,4 16,1 8,52 11,2 8,52 10,9 11,4 10,5 9,54 9,28 CTDIw 8,10 13,1 13,8 7,26 9,55 7,26 9,32 9,74 8,99 8,13 7,92 CTDI100, central 6,49 10,5 11,1 5,82 7,72 5,82 7,47 7,86 7,24 6,52 6,40 CTDI100, peripheral 11,5 18,6 19,6 10,3 13,6 10,3 13,3 13,8 12,8 11,6 11,2 CTDIw 9,84 15,9 16,7 8,83 11,6 8,83 11,3 11,8 10,9 9,89 9,63 Sn 100 kv 140 kv CTDI100, central 0,54 0,87 0,92 0,48 0,64 0,48 0,62 0,65 0,60 0,54 0,53 CTDI100, peripheral 0,89 1,44 1,52 0,80 1,05 0,80 1,02 1,07 0,99 0,89 0,87 CTDIw 0,77 1,25 1,32 0,69 0,91 0,69 0,89 0,93 0,86 0,78 0,76 CTDI100, central 2,45 3,97 4,21 2,20 2,92 2,20 2,82 2,97 2,73 2,46 2,42 CTDI100, peripheral 3,98 6,45 6,81 3,57 4,72 3,57 4,59 4,81 4,44 4,00 3,91 CTDIw 3,47 5,62 5,94 3,12 4,12 3,12 4,00 4,20 3,87 3,49 3,42 Sn 140 kv Phantom: Ø 32 cm; Shaped Filter: Standard; Typical Application: Adult Body SOMATOM Drive 15

16 1 Dosimetry and imaging performance report Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, central 0,50 0,81 0,86 0,45 0,60 0,45 0,58 0,61 0,56 0,50 0,49 CTDI100, peripheral 0,98 1,58 1,66 0,88 1,15 0,88 1,13 1,17 1,08 0,98 0,95 CTDIw 0,82 1,33 1,39 0,74 0,97 0,74 0,94 0,98 0,91 0,82 0,80 CTDI100, central 0,91 1,48 1,56 0,82 1,08 0,82 1,05 1,11 1,02 0,92 0,90 CTDI100, peripheral 1,65 2,68 2,79 1,48 1,94 1,48 1,90 1,97 1,83 1,66 1,61 CTDIw 1,41 2,28 2,38 1,26 1,65 1,26 1,62 1,68 1,56 1,41 1,37 90 kv 80 kv CTDI100, central 1,46 2,36 2,49 1,31 1,73 1,31 1,68 1,76 1,62 1,47 1,43 CTDI100, peripheral 2,52 4,09 4,26 2,26 2,95 2,26 2,90 3,01 2,79 2,53 2,45 CTDIw 2,17 3,51 3,67 1,95 2,54 1,95 2,50 2,59 2,40 2,18 2,11 CTDI100, central 2,10 3,40 3,59 1,89 2,49 1,89 2,42 2,54 2,34 2,11 2,07 CTDI100, peripheral 3,52 5,69 5,93 3,15 4,11 3,15 4,05 4,19 3,89 3,53 3,41 CTDIw 3,04 4,93 5,15 2,73 3,57 2,73 3,50 3,64 3,37 3,06 2, kv 100 kv CTDI100, central 2,91 4,72 4,98 2,61 3,45 2,61 3,35 3,52 3,24 2,93 2,86 CTDI100, peripheral 4,75 7,69 8,02 4,26 5,56 4,26 5,47 5,67 5,26 4,77 4,61 CTDIw 4,14 6,70 7,01 3,71 4,86 3,71 4,76 4,95 4,59 4,16 4,03 CTDI100, central 3,76 6,09 6,42 3,37 4,45 3,37 4,33 4,54 4,18 3,78 3,69 CTDI100, peripheral 6,03 9,76 10,2 5,41 7,05 5,41 6,93 7,18 6,66 6,05 5,84 CTDIw 5,27 8,53 8,92 4,73 6,18 4,73 6,06 6,30 5,84 5,29 5, kv 120 kv CTDI100, central 4,73 7,65 8,08 4,24 5,60 4,24 5,44 5,71 5,26 4,75 4,65 CTDI100, peripheral 7,48 12,1 12,6 6,71 8,76 6,71 8,60 8,93 8,28 7,51 7,27 CTDIw 6,56 10,6 11,1 5,88 7,71 5,88 7,55 7,86 7,27 6,59 6,39 CTDI100, central 5,81 9,41 9,96 5,21 6,90 5,21 6,69 7,04 6,48 5,84 5,72 CTDI100, peripheral 9,10 14,7 15,4 8,16 10,7 8,16 10,5 10,9 10,1 9,14 8,84 CTDIw 8,00 13,0 13,6 7,18 9,40 7,18 9,21 9,58 8,87 8,04 7,80 Sn 100 kv 140 kv CTDI100, central 0,48 0,78 0,82 0,43 0,57 0,43 0,55 0,58 0,54 0,48 0,47 CTDI100, peripheral 0,71 1,15 1,20 0,64 0,83 0,64 0,82 0,85 0,79 0,71 0,69 CTDIw 0,63 1,02 1,08 0,57 0,75 0,57 0,73 0,76 0,70 0,64 0,62 CTDI100, central 2,23 3,61 3,83 2,00 2,66 2,00 2,57 2,71 2,49 2,24 2,20 CTDI100, peripheral 3,24 5,24 5,50 2,90 3,81 2,90 3,73 3,88 3,59 3,25 3,16 CTDIw 2,90 4,70 4,94 2,60 3,43 2,60 3,34 3,49 3,22 2,92 2,84 Sn 140 kv Phantom: Ø 32 cm; Shaped Filter: Narrow; Typical Application: Cardio, Pediatric Body, Flash (except Flash Trauma) 16 Dosimetry and imaging performance report System Owner Manual

17 Dosimetry and imaging performance report 1 Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, free air 4,48 7,25 7,65 4,02 5,30 4,02 5,16 5,40 4,98 4,50 4,40 CTDI100, free air 6,79 11,0 11,6 6,09 8,06 6,09 7,82 8,21 7,56 6,82 6,68 90 kv 80 kv CTDI100, free air 9,50 15,4 16,3 8,53 11,3 8,53 10,9 11,5 10,6 9,55 9,36 CTDI100, free air 12,5 20,3 21,5 11,3 14,9 11,3 14,4 15,2 14,0 12,6 12,4 110 kv 100 kv CTDI100, free air 16,3 26,3 27,8 14,6 19,3 14,6 18,7 19,7 18,1 16,3 16,0 CTDI100, free air 20,0 32,4 34,3 18,0 23,8 18,0 23,0 24,3 22,3 20,1 19,7 130 kv 120 kv CTDI100, free air 24,2 39,2 41,5 21,7 28,8 21,7 27,9 29,3 27,0 24,3 23,9 CTDI100, free air 28,9 46,7 49,5 25,9 34,3 25,9 33,2 35,0 32,2 29,0 28,5 Sn 100 kv 140 kv CTDI100, free air 2,00 3,23 3,44 1,79 2,39 1,79 2,30 2,43 2,23 2,01 1,98 CTDI100, free air 8,60 13,9 14,8 7,72 10,3 7,72 9,90 10,5 9,62 8,64 8,53 SN 140 kv Phantom: none; Shaped Filter: Standard; Application: n.a. Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, free air 4,12 6,68 7,05 3,70 4,89 3,70 4,75 4,98 4,59 4,14 4,06 CTDI100, free air 6,29 10,2 10,8 5,64 7,48 5,64 7,24 7,62 7,01 6,32 6,20 90 kv 80 kv CTDI100, free air 8,87 14,4 15,2 7,96 10,5 7,96 10,2 10,7 9,9 8,91 8,74 CTDI100, free air 11,8 19,0 20,1 10,6 14,0 10,6 13,5 14,2 13,1 11,8 11,6 110 kv 100 kv CTDI100, free air 15,3 24,7 26,2 13,7 18,2 13,7 17,6 18,5 17,0 15,3 15,1 Phantom: none; Shaped Filter: Narrow; Application: n.a. SOMATOM Drive 17

18 1 Dosimetry and imaging performance report Collimation [mm] 2 x 1 6 x x x 5 10 x x x x x x x 0.6 Acquisition [mm] 16 x x x x 0.6 mm, 64 x 0.6 mm Filter (z-sharp) (z-sharp) (z-sharp) (z-sharp) (z-sharp) 128 x kv Tube Voltage CTDI100, free air 18,9 30,6 32,4 16,9 22,5 16,9 21,7 22,9 21,1 19,0 18,6 CTDI100, free air 22,9 37,0 39,2 20,5 27,2 20,5 26,3 27,7 25,5 23,0 22,5 140 kv 130 kv CTDI100, free air 27,4 44,3 46,9 24,5 32,5 24,5 31,5 33,2 30,5 27,5 27,0 CTDI100, free air 1,92 3,11 3,31 1,72 2,30 1,72 2,21 2,34 2,15 1,93 1,91 SN 140 kv Sn 100 kv CTDI100, free air 8,34 13,5 14,4 7,48 10,0 7,48 9,60 10,2 9,32 8,38 8,27 Phantom: none; Shaped Filter: Narrow; Application: n.a. 18 Dosimetry and imaging performance report System Owner Manual

19 Dosimetry and imaging performance report CTDI free air The CTDI free air is stated in the following table based on the typical body mode (shown in bold type) for varying collimation, kv, and filter setting. Additionally, the CTDI free air for the typical head mode is stated. Acquisition [mm] Variation of the collimation 2 1 6x x x 5 20 x (typical) Total collimation [mm] 2.0 mm 3.6 mm 4.8 mm 5.0 mm 6.0 mm 10.0 mm 12.0 mm 14.4 mm 19.2 mm 19.2 mm 38.4 mm 38.4 mm 70 kv 6,6 10,7 11,2 5,9 7,8 5,9 7,9 7,6 7,3 7,4 6,6 6,5 80 kv 10,0 16,2 17,1 9,0 11,8 9,0 12,1 11,5 11,0 11,2 10,0 9,8 90 kv 14,0 22,6 23,9 12,5 16,6 12,5 16,9 16,1 15,4 15,8 14,0 13,8 100 kv 18,4 29,9 31,6 16,5 21,9 16,5 22,3 21,2 20,3 20,8 18,5 18,2 110 kv 23,9 38,7 40,9 21,4 28,4 21,4 28,9 27,5 26,3 26,9 24,0 23,5 120 kv (typical) 29,4 47,6 50,5 26,4 35,0 26,4 35,7 33,9 32,4 33,2 29,6 29,0 Shaped filter: Shaped filter: standard narrow 130 kv 35,6 57,6 61,0 31,9 42,3 31,9 43,1 41,0 39,2 40,2 35,7 35,1 140 kv 42,4 68,7 72,8 38,1 50,5 38,1 51,4 48,8 46,7 47,9 42,6 41,9 Sn 100 kv 2,9 4,8 5,1 2,6 3,5 2,6 3,6 3,4 3,2 3,3 2,9 2,9 Sn 140 kv 12,6 20,5 21,8 11,3 15,1 11,3 15,4 14,6 13,9 14,4 12,7 12,5 70 kv 6,1 9,8 10,4 5,4 7,2 5,4 7,3 7,0 6,7 6,8 6,1 6,0 80 kv 9,2 15,0 15,9 8,3 11,0 8,3 11,2 10,6 10,2 10,4 9,3 9,1 90 kv 13,0 21,1 22,3 11,7 15,5 11,7 15,8 15,0 14,4 14,7 13,1 12,8 100 kv 17,3 28,0 29,6 15,5 20,5 15,5 20,9 19,9 19,0 19,5 17,4 17,0 110 kv 22,5 36,4 38,5 20,2 26,7 20,2 27,2 25,8 24,7 25,3 22,6 22,1 120 kv 27,7 44,9 47,7 24,9 33,0 24,9 33,7 31,9 30,6 31,4 27,9 27,4 130 kv 33,6 54,4 57,6 30,1 40,0 30,1 40,7 38,7 37,0 38,0 33,8 33,1 140 kv 40,2 65,1 69,0 36,1 47,8 36,1 48,7 46,3 44,3 45,4 40,4 39,7 Sn 100 kv 2,8 4,6 4,9 2,5 3,4 2,5 3,4 3,3 3,1 3,2 2,8 2,8 Sn 140 kv 12,3 19,8 21,1 11,0 14,7 11,0 14,9 14,1 13,5 13,9 12,3 12,2 CTDI free air in mgy for typical body mode (bold type) with variation of collimation, kv, and filter setting Acquisition [mm] Total collimation [mm] 14.4 Shaped Filter Wide 120 kv (typical) 89,8 CTDI free air in mgy for setting of typical head mode Stray radiation Stray radiation is indicated for the horizontal and vertical planes based on the scanner coordinate system (intersection of scanner axis with scan plane) for maximum tube voltage (140 kv) and maximum collimation width ( mm). A cylindrical PMMA phantom with a diameter of 32 cm and a length of 15 cm is centered in the scan plane for the stray radiation measurement. A 500 cm 3 dose chamber is used for the measurements. SOMATOM Drive 19

20 1 Dosimetry and imaging performance report The accuracy of stated values is determined by the accuracy of chamber positioning (± 5 cm in each direction) and by the accuracy of the dosemeter (± 5% or µgy/mas, whichever is more). Backscatter from cabin walls or similar surfaces may cause additional variation in the radiation measurement. The data below represent the maximum scatter radiation for that system type. Depending on the system configuration, i.e. shaped filter or gantry cover, lower values may result. Data in the tables below are derived from measured values. Stray radiation in microgray (µgy) per mas Stray radiation (vertical) 20 Dosimetry and imaging performance report System Owner Manual

21 Dosimetry and imaging performance report 1 Stray radiation (horizontal) Dose levels causing deterministic radiation effects Certain modes of operation allow selections of scan parameters that may lead to an accumulated peripheral CTDI 100 of more than 1 Gy. This dose may exceed the threshold for deterministic radiation effects on the patient's skin or eye lenses (see IEC :2008, Annex A.2, ). SOMATOM Drive 21

22 1 Dosimetry and imaging performance report The accumulated peripheral CTDI 100 may serve as a very rough estimation of skin or eye lens dose. However, other factors may influence the dose to cause deterministic radiation effects, for example: A deviation of the patient's body diameter from the standard CTDI phantom size may lead to a patient's skin dose that is noticeably higher than indicated by the accumulated peripheral CTDI 100. Such a deviation may occur, for example, if a body perfusion examination is performed with a very thin patient. Repeating examinations within a short time period (compared to the biological recovery time for deterministic radiation effects) may lead to deterministic radiation damages, even if the accumulated peripheral CTDI 100 of the single examinations was below 1 Gy. By using the default Siemens scan protocols for patients with a standard patient size, without changing the default settings of the scan parameters, and without repeating the scans, the accumulated peripheral CTDI 100 will be kept reasonably below 1 Gy. The following list gives examples of situations that may lead to an accumulated peripheral CTDI 100 of 1.0 Gy and above (numbers are approximations). The list refers to default Siemens scan protocols and concentrates on scan modes with relatively high radiation exposure. This list is not exhaustive. Use of perfusion protocols with changes in kv, scan times, or mas, for example: Neuro PCT with tube voltage changed from 80 kv to 120 kv ( 1.2 Gy) Neuro PCT with mas increased from 200 mas to 580 mas Use of interventional protocols, for example: Head Intervention i-fluoro with an accumulated scan time of 21 s Head Intervention i-fluoro with 10 s scan time and mas increased from 100 mas to 220 mas Head Intervention i-fluoro with 15 s scan time and tube voltage increased from 120 kv to 140 kv Scanning of sequence protocols without table feed, for example: Approximately 16 scans of Head Neuro Seq without table feed Repeating standard sequences or spiral scans within an examination, for example: Repeated application of the default protocol Head Neuro Seq (approximately 16 times) Repeated application of the default protocol Abdomen Seq (approximately 93 times) Repeated application of the default protocol Abdomen Routine (approximately 89 times) 22 Dosimetry and imaging performance report System Owner Manual

23 Dosimetry and imaging performance report 1 To prevent unintended, excessive exposure, the CT system provides tools for Dose Notification and Dose Alert according NEMA XR-25 and IEC (Ed. 3.1). The default threshold value for Dose Alert is an accumulated CTDI vol of 1.0 Gy for adult patients and 1.0 Gy for pediatric patients. Ratio of peripheral CTDI 100 to displayed CTDI vol In general, the accumulated peripheral CTDI 100 for a scan can be derived from the displayed CTDI vol by multiplying the CTDI vol with a given factor that depends on the tube voltage and shaped filter used: Tube Voltage Shaped Filter: Narrow Standard CTDI phantom size: Ø 16 cm Ø 32 cm Ø 16 cm Ø 32 cm 70 kv kv KV kv kv kv kv kv Sn 100 kv Sn 140 kv Ratio of peripheral CTDI 100 to displayed CTDI vol Tolerances for CTDI According to: 21 CFR The actual exposure values, such as CTDI 100, CTDI w, CTDI vol and DLP, may deviate from the values displayed at the scanner and may deviate from the values stated in this manual within the following tolerances: Typical deviation* within ± 10% Max. tolerance* ± 20% *) Not including the dosemeter's tolerance; verified with dosemeter according IEC Tolerances for CTDI values Linearity of the radiation output (linearity of measured dose related to displayed mas): ± 10% Conversion factor for CTDI vol from Ø 32 cm phantom to Ø 16 cm phantom The displayed and reported CTDI vol and DLP refer to cylindrical PMMA phantoms with a diameter of 16 cm for head protocols and with a diameter of 32 cm for all body protocols (adult and pediatric protocols) according to IEC Neck protocols refer to the 32 cm phantom, too. The table below lists factors for the conversion of the CTDI vol and the DLP from the CTDI phantom size of Ø 32 cm to the CTDI phantom size of Ø 16 cm. SOMATOM Drive 23

24 1 Dosimetry and imaging performance report The table below provides conversion factors to calculate the CTDI vol and DLP for the 16 cm phantom from the values of a 32 cm phantom. The factors are stated separately for each setting of shaped filter. Please note that for adult neck protocols the standard shaped filter is used and for pediatric body and pediatric neck protocols the narrow shaped filter is used Conversion factor for CTDI vol Conversion factor from Ø 32 cm to Ø 16 cm Tube Voltage Shaped filter Standard Shaped filter Narrow 70 kv kv kv kv kv kv kv kv Sn 100 kv Sn 140 kv Conversion factor for CTDI volfrom Ø 32 cm to Ø 16 cm Example For a typical pediatric body protocol at 100 kv, the displayed CTDI vol (related to the Ø 32 cm CTDI-phantom) is 3.00 mgy cm; see ( Page 8 Typical CT conditions of operation). For the same protocol, the CTDI vol of a Ø 16 cm CTDIphantom is 2.5 times higher than the CTDI vol of a Ø 32 cm CTDI-phantom, resulting in 7.50 mgy CTDI vol for topograms The CTDI vol for topogram scans may be estimated according to IEC Since the collimation (6 0.6 mm) and table speed (100 mm/s) for the topogram is fixed, the CTDI vol for topograms is stated in the following table depending on the kv and ma values: Protocol type Head Adult body Child body Shaped filter Standard Standard Narrow Phantom size Ø 16 cm Ø 32 cm Ø 32 cm CTDI vol µgy/ma CTDI vol µgy/ma CTDI vol µgy/ma 70 kv kv kv kv Dosimetry and imaging performance report System Owner Manual

25 Dosimetry and imaging performance report 1 Protocol type Head Adult body Child body Shaped filter Standard Standard Narrow Phantom size Ø 16 cm Ø 32 cm Ø 32 cm CTDI vol µgy/ma CTDI vol µgy/ma CTDI vol µgy/ma 110 kv kv kv kv CTDI vol for topograms Geometric efficiency in the z-direction The dose efficiency is defined by IEC as the integral of the free in air dose profile in the isocenter along the z-axis over the acquisition range in the z-direction. It is expressed as percentage of the total integral of the dose profile in the z-direction. The acquisition range is the distance spanned by the selected detector elements along the z-axis. The displayed CTDI vol and DLP reflect the dose efficiency of a collimation according to the definition of CTDI vol. Correlation of dose profile and collimation with regards to dose efficiency y z Dose z-axis (1) Total dose profile width (2) Dose profile (3) Detector (4) Acquisition range Dose efficiency values for the various collimation types Acquisition Total collimation Dose efficiency 2 1 mm 2.0 mm 79% 1 5 mm 5.0 mm 84% mm 6.0 mm 70% SOMATOM Drive 25

26 1 Dosimetry and imaging performance report Acquisition Total collimation Dose efficiency mm 4.8 mm 50% mm 4.8 mm 50% 1 10 mm 10.0 mm 92% mm 12.0 mm 71% mm 14.4 mm 78% mm 19.2 mm 82% mm 19.2 mm 76% mm 38.4 mm 90% mm 38.4 mm 87% Dose efficiency values of CT scans For CT scans with a dose efficiency lower than 70%, a message containing information about the dose efficiency is displayed after a scan range is loaded. The user has to confirm the message before starting the scan Dose profiles According to: 21 CFR Dose profiles for single axial scans have been measured for the narrowest and widest collimations, as well as for a mid-range collimation. For each of these collimations, the dose profiles have been measured without any phantom (free air), at the center of the Ø 16 cm CTDI phantom (head) and at the center of the Ø 32 cm CTDI phantom (body). The phantoms were centered in the isocenter and aligned with the scanner axes. For the measurements, a semiconductor diode sensor was moved through the phantom. Dose profile diagrams In the diagrams below, dose profiles (thick lines) are presented as a percentage of their maximum value. Sensitivity profiles for the detector slices used in these collimations are plotted as thin lines (sum of single-slice sensitivity profiles). The dotted lines indicate the nominal collimation. Nominal values and tolerances for acceptance testing The stated tolerances are determined by the accuracy of the measurement method. For acceptance testing, dose profile widths are measured using film (GAFCHROMIC XR-QA / XR-QA2) and without any phantom. The tube is fixed and positioned at 12 o'clock. The exposure parameters are chosen to overexpose the film (120 kv, 160 ma, 10 s). Using this method, no densitometry is needed to evaluate the film. The width of the blackened range is a measure of the base width of the profile. Nominal values and tolerances are defined accordingly. 26 Dosimetry and imaging performance report System Owner Manual

27 Dosimetry and imaging performance report 1 Dose profile diagrams no phantom phantom 16 cm phantom 32 cm 2 1 mm mm mm x-axis: z-position [mm] y-axis: rel. dose & ssp[%] Dose profiles Full Width at Half Maximum (FWHM) of dose profiles Collimation No phantom Ø 16 cm phantom Ø 32 cm phantom Tolerance 2 1 mm 2.5 mm 2.7 mm 2.9 mm ± 1.5 mm mm 18 mm 22 mm 55 mm ± 4.0 mm mm 43 mm 45 mm 88 mm ± 4.0 mm Full Width at Half Maximum (FWHM) of dose profiles Nominal values and tolerances for acceptance testing Collimation Nominal blackening width Tolerance 2 1 mm 3.5 mm ± 1.0 mm mm 19.4 mm ± 1.5 mm mm 45.5 mm ± 2.0 mm Nominal values and tolerances for acceptance testing SOMATOM Drive 27

28 1 Dosimetry and imaging performance report Beam quality, leakage technique factors and minimum filtration According to: 21 CFR Tube voltage Half Value Layer (HVL) 70 kv 4.0 mm Al (typical mm*) 80 kv 4.5 mm Al (typical mm*) 90 kv 5.0 mm Al (typical mm*) 100 kv 5.0 mm Al (typical mm*) 110 kv 5.0 mm Al (typical mm*) 120 kv 5.0 mm Al (typical mm*) 130 kv 5.0 mm Al (typical mm*) 140 kv 5.0 mm Al (typical mm*) Sn 100 kv 5.0 mm Al (typical mm*) Sn 140 kv 5.0 mm Al (typical mm*) *) Depending on shaped filter Beam quality 0.88 mgy/h Leakage radiation of X-ray tube housing assembly at 1 m distance to focal spot with 145 kv, 4600 W Minimum filtration, permanent in the useful beam (tube housing assembly) Minimum filtration, permanent in the useful beam (beam limiting device) Additional filtration, conditional in the useful beam (beam limiting device) Leakage technique factors Quality equivalent filtration 6.8 mm Al at 145 kv 0.3 mm Ti + 1 mm C, (2.9 mm Al 140 kv/hvl 8.4 mm Al) 0.5 mm Al (0.5 mm Al 140 kv/hvl 9.4 mm Al) 0.4 mm Sn (47 mm Al 140 kv/hvl 9.4 mm Al) Minimum filtration CARE filter Tube A and tube B CARE filter Tube A and tube B Setting of shaped filter: standard (e.g. head and standard body protocols) CARE filter Tube A and tube B Setting of shaped filter: narrow (e.g. cardiac and pediatric body protocols) (protocols with setting Sn 100 kv or Sn 140 kv) Performance specification of automatic exposure controls The CT scanner offers different types of automatic exposure controls for adaptation of the exposure to the indvidual patient. CARE Dose 4D: mas adaptation to patient size, longitudinal, and angular tube current modulation ECG-Pulsing: Adaptation of tube current to the patient's ECG signal 28 Dosimetry and imaging performance report System Owner Manual

29 Dosimetry and imaging performance report 1 X-CARE: Control of the angular tube current to reduce dose for an angular segment with radiation sensitive organs, such as eye lenses and breast tissue CARE kv: Optimization of kv to minimize patient dose but maintaining image quality The modulation type applied depends on the protocol selected and the individual setting: Protocol types, organ characteristics Abdomen AngioBody Pediatric Head Pediatric Angio Head Neck Pelvis Runoff Shoulder Spine Thorax Adult Head Adult Angio Head Respiratory Body-Perfusion Extremities Osteo Cardio (Z exposure control for chest pain protocols only) X-CARE protocols Modulation type XYZ exposure control (CARE Dose 4D) Z exposure control (CARE Dose 4D) XY exposure control (CARE Dose) Fixed exposure control (CARE Dose 4D) ECG-Pulsing (possibly combined with fixed exposure control or Z exposure control) Angular modulated exposure control (X-CARE) (possibly combined with fixed exposure control, Z exposure control or XY exposure control) The tube current is adapted to the patient size. It is varied along the z-axis according to the patient s attenuation profile and modulated angularily according to the patient's angular attenuation profile that has been measured online. The tube current is adapted to the patient size and varied along the z-axis according to the patient s attenuation profile. The tube current is modulated angularily according to the patient's angular attenuation profile that has been measured online and is based on the user-selected mas. The tube current is adapted to an average patient size and kept constant. The tube current is pulsed according to the patient's ECG signal. The tube current is modulated angularly relatively to the patient's orientation to reduce dose in certain body ranges (eye lenses, breast tissue). Modulation types of automatic exposure control, related to the selected protocols CARE Dose 4D CARE Dose 4D automatically adapts the tube current to the patient's body size and shape. Using the patient's topogram, Care Dose 4D evaluates two profiles of the patient's body size in the a.p. and lateral directions, related to the X-ray attenuation of the patient's body. Based on these profiles, the mas value is adapted to the patient during the subsequent CT scans. The adaptation follows a curve, which determines the correlation between patient size and tube current. The adaptation curve has been derived from clinical optimization for constant diagnostic image quality. SOMATOM Drive 29

Computed tomography Acceptance testing and dose measurements

Computed tomography Acceptance testing and dose measurements Computed tomography Acceptance testing and dose measurements Jonas Andersson Medical Physicist, Ph.D. Department of Radiation Sciences University Hospital of Norrland, Umeå Sweden Contents The Computed

More information

Toshiba Aquillion 64 CT Scanner. Phantom Center Periphery Center Periphery Center Periphery

Toshiba Aquillion 64 CT Scanner. Phantom Center Periphery Center Periphery Center Periphery Comparison of radiation dose and imaging performance for the standard Varian x-ray tube and the Richardson Healthcare ALTA750 replacement tube for the Toshiba Aquillion CT scanners. by Robert L. Dixon,

More information

Implementation of the 2012 ACR CT QC Manual in a Community Hospital Setting BRUCE E. HASSELQUIST, PH.D., DABR, DABSNM ASPIRUS WAUSAU HOSPITAL

Implementation of the 2012 ACR CT QC Manual in a Community Hospital Setting BRUCE E. HASSELQUIST, PH.D., DABR, DABSNM ASPIRUS WAUSAU HOSPITAL Implementation of the 2012 ACR CT QC Manual in a Community Hospital Setting BRUCE E. HASSELQUIST, PH.D., DABR, DABSNM ASPIRUS WAUSAU HOSPITAL Conflict of Interest Disclaimer Employee of Aspirus Wausau

More information

CT Quality Control Manual FAQs

CT Quality Control Manual FAQs CT Quality Control Manual FAQs General Question: How often will the QC Manual be updated and how will those updates be communicated? Answer: The ACR CT Physics Subcommittee will review any comments, issues

More information

Patient / Organ Dose in CT

Patient / Organ Dose in CT Patient / Organ Dose in CT Patient specific and organ dose estimation H.D. Nagel Dr. HD Nagel, Science & Technology for Radiology Buchholz / Germany www.sascrad.com 1 Topics CTDI & patient dose SSDE Organ

More information

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography IAEA Training Material on Radiation Protection in Diagnostic and Interventional Radiology RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY L19: Optimization of Protection in Mammography

More information

Accounting for Imaging Dose

Accounting for Imaging Dose Accounting for Imaging Dose High Profile Over-exposures Lead to Growing Concern FDA issues warning in October 2009-209 patients exposed to 8 times typical dose for CT brain perfusion scan (3-4 Gy) - Some

More information

Investigation of the clinical performance of a novel solid-state diagnostic dosimeter

Investigation of the clinical performance of a novel solid-state diagnostic dosimeter JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 4, 2015 Investigation of the clinical performance of a novel solid-state diagnostic dosimeter Jason Tse, a Donald McLean Medical Physics and

More information

CURRENT CT DOSE METRICS: MAKING CTDI SIZE-SPECIFIC

CURRENT CT DOSE METRICS: MAKING CTDI SIZE-SPECIFIC CURRENT CT DOSE METRICS: MAKING CTDI SIZE-SPECIFIC Keith Strauss, MSc, FAAPM, FACR Cincinnati Children s Hospital University of Cincinnati College of Medicine Acknowledgments John Boone, PhD Michael McNitt-Grey,

More information

Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use?

Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use? Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use? Eva Godske Friberg * Norwegian Radiation Protection Authority, P.O. Box, Østerås, Norway Abstract.

More information

ESTABLISHING DRLs in PEDIATRIC CT. Keith Strauss, MSc, FAAPM, FACR Cincinnati Children s Hospital University of Cincinnati College of Medicine

ESTABLISHING DRLs in PEDIATRIC CT. Keith Strauss, MSc, FAAPM, FACR Cincinnati Children s Hospital University of Cincinnati College of Medicine ESTABLISHING DRLs in PEDIATRIC CT Keith Strauss, MSc, FAAPM, FACR Cincinnati Children s Hospital University of Cincinnati College of Medicine CT Dose Indices CTDI INTRODUCTION CTDI 100, CTDI w, CTDI vol

More information

Doses from Cervical Spine Computed Tomography (CT) examinations in the UK. John Holroyd and Sue Edyvean

Doses from Cervical Spine Computed Tomography (CT) examinations in the UK. John Holroyd and Sue Edyvean Doses from Cervical Spine Computed Tomography (CT) examinations in the UK John Holroyd and Sue Edyvean Why a new dose survey? Number of enquires received concerning the current NDRL Concern that could

More information

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method Iran. J. Radiat. Res., 2004; 1(4): 187-194 Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method M.R. Ay 1, M. Shahriari 2, S. Sarkar 3, P.

More information

Measurements of Air Kerma Index in Computed Tomography: A comparison among methodologies

Measurements of Air Kerma Index in Computed Tomography: A comparison among methodologies Measurements of Air Kerma Index in Computed Tomography: A comparison among methodologies Thêssa C. Alonso 1, 2, Arnaldo P. Mourão 1, 3, Teógenes A. Da Silva 1, 2 1 Program of Nuclear Science and Techniques

More information

Why is CT Dose of Interest?

Why is CT Dose of Interest? Why is CT Dose of Interest? CT usage has increased rapidly in the past decade Compared to other medical imaging CT produces a larger radiation dose. There is direct epidemiological evidence for a an increase

More information

CT Dose Estimation. John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology. University of California Davis Medical Center

CT Dose Estimation. John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology. University of California Davis Medical Center CT Dose Estimation John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology 1 University of California Davis Medical Center CT Dose Estimation Introduction The CTDI Family of Metrics

More information

Calculation of Effective Doses for Radiotherapy Cone-Beam CT and Nuclear Medicine Hawkeye CT Laura Sawyer

Calculation of Effective Doses for Radiotherapy Cone-Beam CT and Nuclear Medicine Hawkeye CT Laura Sawyer Calculation of Effective Doses for Radiotherapy Cone-Beam CT and Nuclear Medicine Hawkeye CT Laura Sawyer Department of Medical Physics and Bioengineering, Royal United Hospital, Bath Overview Varian Acuity

More information

CT Dosimetry in the Clinical Environment: Methods and Analysis

CT Dosimetry in the Clinical Environment: Methods and Analysis CT Dosimetry in the Clinical Environment: Methods and Analysis Manuel Arreola, Ph.D. DABR Associate Chair of Radiology Director, Medical Physics Graduate Program Department of Radiology University of Florida

More information

Application of international standards to diagnostic radiology dosimetry

Application of international standards to diagnostic radiology dosimetry Application of international standards to diagnostic radiology dosimetry Poster No.: C-780 Congress: ECR 2009 Type: Scientific Exhibit Topic: Physics in Radiology Authors: I. D. McLean, A. Meghzifene,

More information

Radiation Dose Reduction Strategies in Coronary CT Angiography

Radiation Dose Reduction Strategies in Coronary CT Angiography Radiation Dose Reduction Strategies in Coronary CT Angiography Noor Diyana Osman, PhD noordiyana@usm.my Contents: Introduction Radiation dosimetry in CT Radiation risk associated with coronary CT angiography

More information

Translating Protocols Across Patient Size: Babies to Bariatric

Translating Protocols Across Patient Size: Babies to Bariatric Translating Protocols Across Patient Size: Babies to Bariatric Cynthia H. McCollough, PhD, FACR, FAAPM Professor of Radiologic Physics Director, CT Clinical Innovation Center Department of Radiology Mayo

More information

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009 2033-4 Joint ICTP/ Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation 11-15 May 2009 Dosimetry for General Radiology and Clinical Uncertainty Peter Homolka EFOMP Training

More information

X-Ray & CT Physics / Clinical CT

X-Ray & CT Physics / Clinical CT Computed Tomography-Basic Principles and Good Practice X-Ray & CT Physics / Clinical CT INSTRUCTORS: Dane Franklin, MBA, RT (R) (CT) Office hours will be Tuesdays from 5pm to 6pm CLASSROOM: TIME: REQUIRED

More information

True Dual Energy. Dr. Stefan Ulzheimer, Siemens Healthcare GmbH. DEfinitely Siemens

True Dual Energy. Dr. Stefan Ulzheimer, Siemens Healthcare GmbH. DEfinitely Siemens DEfinitely Siemens True Dual Energy Dr. Stefan Ulzheimer, Siemens Healthcare GmbH International version. Not for distribution in the US. Unrestricted Siemens AG 2015 All rights reserved. The products/features

More information

Survey of patients CT radiation dose in Jiangsu Province

Survey of patients CT radiation dose in Jiangsu Province Original Article Page 1 of 6 Survey of patients CT radiation dose in Jiangsu Province Yuanyuan Zhou 1, Chunyong Yang 1, Xingjiang Cao 1, Xiang Du 1, Ningle Yu 1, Xianfeng Zhou 2, Baoli Zhu 1, Jin Wang

More information

Managing Radiation Risk in Pediatric CT Imaging

Managing Radiation Risk in Pediatric CT Imaging Managing Radiation Risk in Pediatric CT Imaging Mahadevappa Mahesh, MS, PhD, FAAPM, FACR, FACMP, FSCCT. Professor of Radiology and Cardiology Johns Hopkins University School of Medicine Chief Physicist

More information

8/18/2011. Acknowledgements. Managing Pediatric CT Patient Doses INTRODUCTION

8/18/2011. Acknowledgements. Managing Pediatric CT Patient Doses INTRODUCTION Managing Pediatric CT Patient Doses Keith J. Strauss, MSc, FAAPM, FACR President X-Ray Computations, Inc. Boston, Massachusetts Acknowledgements Marilyn Goske, MD John Boone, PhD Cynthia McCollough, PhD

More information

BICOE Breast Imaging Center of Excellence. What is it? - Requirements. National Mammography Database. What do you get? ACR Accreditation in:

BICOE Breast Imaging Center of Excellence. What is it? - Requirements. National Mammography Database. What do you get? ACR Accreditation in: BICOE Breast Imaging Center of Excellence What is it? - Requirements William Geiser, MS DABR Senior Medical Physicist MD Anderson Cancer Center Houston, Texas wgeiser@mdanderson.org ACR Accreditation in:

More information

Thoracic examinations with 16, 64, 128 and 256 slices CT: comparison of exposure doses measured with an anthropomorphic phantom and TLD dosimeters

Thoracic examinations with 16, 64, 128 and 256 slices CT: comparison of exposure doses measured with an anthropomorphic phantom and TLD dosimeters Thoracic examinations with 16, 64, 128 and 256 slices CT: comparison of exposure doses measured with an anthropomorphic phantom and TLD dosimeters Poster No.: C-2584 Congress: ECR 2015 Type: Scientific

More information

Dental ConeBeam Computed Tomography (CBCT) X-ray Systems

Dental ConeBeam Computed Tomography (CBCT) X-ray Systems Dental ConeBeam Computed Tomography (CBCT) X-ray Systems PROPOSED REVISIONS TO 4732.XXXX, 1.0 4732.#### DENTAL CONEBEAM COMPUTED TOMOGRAPHY (CBCT) X-RAY SYSTEMS; STATIONARY AND MOBILE. Subpart 1. Applicability.

More information

A comparison of radiation doses from modern multi-slice Computed Tomography angiography and conventional diagnostic Angiography:

A comparison of radiation doses from modern multi-slice Computed Tomography angiography and conventional diagnostic Angiography: A comparison of radiation doses from modern multi-slice Computed Tomography angiography and conventional diagnostic Angiography: Rob Loader Oliver Gosling Introduction Approached by Dr Oliver Gosling (Research

More information

American College of Radiology CT Accreditation Program. Testing Instructions

American College of Radiology CT Accreditation Program. Testing Instructions American College of Radiology CT Accreditation Program Testing Instructions (Revised January 6, 2017) This guide provides all of the instructions necessary for clinical tests, phantom tests and general

More information

SPECIFIC PRINCIPLES FOR DOSE REDUCTION IN HEAD CT IMAGING. Rajiv Gupta, MD, PhD Neuroradiology, Massachusetts General Hospital Harvard Medical School

SPECIFIC PRINCIPLES FOR DOSE REDUCTION IN HEAD CT IMAGING. Rajiv Gupta, MD, PhD Neuroradiology, Massachusetts General Hospital Harvard Medical School SPECIFIC PRINCIPLES FOR DOSE REDUCTION IN HEAD CT IMAGING Rajiv Gupta, MD, PhD Neuroradiology, Massachusetts General Hospital Harvard Medical School OUTLINE 1 st Presentation: Dose optimization strategies

More information

Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD)

Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD) Journal of Physics: Conference Series PAPER OPEN ACCESS Measurement of computed tomography dose profile with pitch variation using Gafchromic XR-QA2 and thermoluminescence dosimeter (TLD) To cite this

More information

Adopting DAP as a dose metric in CT

Adopting DAP as a dose metric in CT Adopting DAP as a dose metric in CT Nick Weir Department of Medical Physics Royal Infirmary of Edinburgh NHS Lothian Dose Area Product (DAP) in CT Hypothesis: There are advantages to using DAP: (i) In

More information

Conventional and spiral CT dose indices in Yazd general hospitals, Iran

Conventional and spiral CT dose indices in Yazd general hospitals, Iran Iran. J. Radiat. Res., 2006; 3 (4): 183-189 Conventional and spiral CT dose indices in Yazd general hospitals, Iran F. Bouzarjomehri 1*,M.H.Zare 2, D. Shahbazi 2 1 Department of Medical Physics, Shahid

More information

BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation. Introduction. Educational Objectives

BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation. Introduction. Educational Objectives BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation William Geiser, MS DABR Senior Medical Physicist MD Anderson Cancer Center Houston, Texas wgeiser@mdanderson.org 1 Introduction Objectives

More information

Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science

Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science PATIENT DOSIMETRY IN DIAGNOSTIC RADIOLOGY MODALITIES Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science Ankara University Institute of Nuclear Science USE OF RADIATION! INCREASING? Natural

More information

Managing the imaging dose during image-guided radiation therapy

Managing the imaging dose during image-guided radiation therapy Managing the imaging dose during image-guided radiation therapy Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Richmond VA Imaging during radiotherapy Radiographic

More information

BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation. Introduction. Educational Objectives

BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation. Introduction. Educational Objectives BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation William Geiser, MS DABR Senior Medical Physicist MD Anderson Cancer Center Houston, Texas wgeiser@mdanderson.org 1 Introduction Objectives

More information

Practical Reference Dosimetry Course April 2015 PRDC Program, at a glance. Version 1.0. Day 1 Day 2 Day 3 Day 4

Practical Reference Dosimetry Course April 2015 PRDC Program, at a glance. Version 1.0. Day 1 Day 2 Day 3 Day 4 Practical Reference Dosimetry Course 21-24 April 2015 PRDC 2015 Program, at a glance Version 1.0 Day 1 Day 2 Day 3 Day 4 Quantities and Units Free air chambers Uncertainties Brachytherapy traceability

More information

CT Optimisation for Paediatric SPECT/CT Examinations. Sarah Bell

CT Optimisation for Paediatric SPECT/CT Examinations. Sarah Bell CT Optimisation for Paediatric SPECT/CT Examinations Sarah Bell Sarah.bell14@nhs.net Outline 1. Introduction 2. Aims and Objectives 3. Methods 4. Results 5. Discussion 6. Conclusions 7. References Introduction

More information

Prepublication Requirements

Prepublication Requirements Issued Prepublication Requirements Standards Revisions for Organizations Providing Fluoroscopy Services The Joint Commission has approved the following revisions for prepublication. While revised requirements

More information

Estimating Iodine Concentration from CT Number Enhancement

Estimating Iodine Concentration from CT Number Enhancement Estimating Iodine Concentration from CT Number Enhancement Rosemary Eaton, Andrew Shah, Jane Shekhdar Medical Physics, Mount Vernon Hospital CT Users Group 4 th October 212, Edinburgh Summary Background

More information

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry DETECTORS Always perfectly oriented. Semiflex 3D 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry The New Reference Class Full 3D Geometry For FFF and FF Beams Semiflex 3D 3D Detector

More information

Combined Anatomical and Functional Imaging with Revolution * CT

Combined Anatomical and Functional Imaging with Revolution * CT GE Healthcare Case studies Combined Anatomical and Functional Imaging with Revolution * CT Jean-Louis Sablayrolles, M.D. Centre Cardiologique du Nord, Saint-Denis, France Case 1 Whole Brain Perfusion and

More information

ACR MRI Accreditation: Medical Physicist Role in the Application Process

ACR MRI Accreditation: Medical Physicist Role in the Application Process ACR MRI Accreditation: Medical Physicist Role in the Application Process Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics University of Texas M.D. Anderson Cancer Center Educational Objectives

More information

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry

Semiflex 3D. Always perfectly oriented. 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry DETECTORS Always perfectly oriented. Semiflex 3D 3D Thimble Ionization Chamber for Relative and Absolute Dosimetry The New Reference Class Full 3D Geometry For FFF and FF Beams Semiflex 3D 3D Detector

More information

Radiation Safety Characteristics of the NOMAD Portable X-ray System

Radiation Safety Characteristics of the NOMAD Portable X-ray System Radiation Safety Characteristics of the NOMAD Portable X-ray System D. Clark Turner 1, Donald K. Kloos 1, Robert Morton 2 1 ARIBA X-Ray, Inc., 754 South 400 East, Orem, UT 84097 USA, www.aribaxray.com

More information

Introduction and Background

Introduction and Background CT Lung Cancer Screening and the Medical Physicist: Background, Findings and Participant Dosimetry Summary of the National Lung Screening Trial (NLST) Randell Kruger, PhD, DABR Medical Physics Section

More information

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy

Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy Dosimetric characterization with 62 MeV protons of a silicon segmented detector for 2D dose verifications in radiotherapy C. Talamonti a*, M. Bucciolini a, L. Marrazzo a, D. Menichelli a. a) Department

More information

Performance of several active personal dosemeters in interventional radiology and cardiology

Performance of several active personal dosemeters in interventional radiology and cardiology Performance of several active personal dosemeters in interventional radiology and cardiology S. Chiriotti 1,*, M. Ginjaume 1, E. Vano 2,3, R. Sanchez 3, J.M. Fernandez 2,3, M.A. Duch 1, J. Sempau 1 1.

More information

Chief Radiographer TEI Clinical Associate 2016

Chief Radiographer TEI Clinical Associate 2016 MDCT Principles i and Applications Ε ΑGADAKOS MSc Ε. ΑGADAKOS MSc Chief Radiographer TEI Clinical Associate 2016 Aim To understand d recent technological advances in MSCT and how they can be effectively

More information

CT SCAN PROTOCOL. Shoulder

CT SCAN PROTOCOL. Shoulder CT SCAN PROTOCOL Shoulder Purpose and Summary CT images made with this protocol are used to provide the orthopedic surgeon with a detailed 3D anatomical reconstruction of the patient s scapula and proximal

More information

Estimating Patient Radiation Dose from Computed Tomography

Estimating Patient Radiation Dose from Computed Tomography Estimating Patient Radiation Dose from Computed Tomography C. Cagnon, J. DeMarco, E. Angel, M. McNitt-Gray UCLA David Geffen School of Medicine 1 Patient Dose from CT Advances in Technology... Helical

More information

Ultralow Dose Chest CT with MBIR

Ultralow Dose Chest CT with MBIR Ultralow Dose Chest CT with MBIR Ella A. Kazerooni, M.D. Professor & Director Cardiothoracic Radiology Associate Chair for Clinical Affairs University of Michigan Disclosures Consultant: GE Healthcare

More information

Outline. Chapter 12 Treatment Planning Combination of Beams. Opposing pairs of beams. Combination of beams. Opposing pairs of beams

Outline. Chapter 12 Treatment Planning Combination of Beams. Opposing pairs of beams. Combination of beams. Opposing pairs of beams Chapter 12 Treatment Planning Combination of Beams Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther Outline Combination

More information

Varian Edge Experience. Jinkoo Kim, Ph.D Henry Ford Health System

Varian Edge Experience. Jinkoo Kim, Ph.D Henry Ford Health System Varian Edge Experience Jinkoo Kim, Ph.D Henry Ford Health System Disclosures I participate in research funded by Varian Medical Systems. Outline of Presentation Review advanced imaging in Varian Edge Linear

More information

CT Radiation Risks and Dose Reduction

CT Radiation Risks and Dose Reduction CT Radiation Risks and Dose Reduction Walter L. Robinson, M.S. D.A.B.S.N.M., D.A.B.M.P., D.A.B.R. Consultant Certified Medical Radiation Health & Diagnostic Imaging Physicist Medical Radiation and Children

More information

Managing the imaging dose during Image-guided Radiotherapy. Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University

Managing the imaging dose during Image-guided Radiotherapy. Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Managing the imaging dose during Image-guided Radiotherapy Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Radiographic image guidance has emerged as the new paradigm

More information

Skyscan 1076 in vivo scanning: X-ray dosimetry

Skyscan 1076 in vivo scanning: X-ray dosimetry Skyscan 1076 in vivo scanning: X-ray dosimetry DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in

More information

IORT with mobile linacs: the Italian experience

IORT with mobile linacs: the Italian experience IORT with mobile linacs: the Italian experience G. Tosi, M. Ciocca lntroduction At the beginning of 1999 a mobile Linac (Novac 7, manufactured by Hitesys, Aprilia, Italy) able to produce electron beams

More information

Mammography. Background and Perspective. Mammography Evolution. Background and Perspective. T.R. Nelson, Ph.D. x41433

Mammography. Background and Perspective. Mammography Evolution. Background and Perspective. T.R. Nelson, Ph.D. x41433 - 2015 Background and Perspective 2005 (in US) Women Men Mammography Invasive Breast Cancer Diagnosed 211,240 1,690 Noninvasive Breast Cancer Diagnosed 58,940 Deaths from Breast Cancer 40,410 460 T.R.

More information

Dual-Energy 101: Principles, Methods and Dose

Dual-Energy 101: Principles, Methods and Dose Dual-Energy 101: Principles, Methods and Dose Juan Carlos Ramirez-Giraldo, Ph.D Staff Scien2st, Collabora2ons Manager SE Region ISCT San Francisco, 2017 Siemens Medical Solu2ons USA, Inc., 2017 Page 1

More information

Assessment of effective dose in paediatric CT examinations

Assessment of effective dose in paediatric CT examinations Assessment of effective dose in paediatric CT examinations E. Dougeni 1,2 CL. Chapple 1, J. Willis 1, G. Panayiotakis 2 1 Regional Medical Physics Department, Freeman Hospital, Freeman Road, Newcastle

More information

A new geometric and mechanical verification device for medical LINACs

A new geometric and mechanical verification device for medical LINACs JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 2, SPRING 2002 A new geometric and mechanical verification device for medical LINACs Keith T. Welsh,* Robert A. Wlodarczyk, and L. E. Reinstein

More information

THE UNIVERSITY OF OKLAHOMA HEALTH SCIENCES CENTER GRADUATE COLLEGE RADIATION DOSE ESTIMATION FOR DIAGNOSTIC MODALITIES

THE UNIVERSITY OF OKLAHOMA HEALTH SCIENCES CENTER GRADUATE COLLEGE RADIATION DOSE ESTIMATION FOR DIAGNOSTIC MODALITIES THE UNIVERSITY OF OKLAHOMA HEALTH SCIENCES CENTER GRADUATE COLLEGE RADIATION DOSE ESTIMATION FOR DIAGNOSTIC MODALITIES A THESIS SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements

More information

Dosimetry in digital mammography

Dosimetry in digital mammography Dosimetry in digital mammography Professor David Dance NCCPM, Royal Surrey County Hospital, Guildford, United kingdom Outline Why do dosimetry? History Essentials of European breast dosimetry protocol

More information

Table of Contents. Introduction 3. Background 4

Table of Contents. Introduction 3. Background 4 Training manual Table of Contents Introduction 3 Background 4 What are X-rays? 4 How are X-rays Generated? 5 Primary and Scatter Radiation 6 Interactions with Matter 6 Biological Effects of Radiation 7

More information

Hi RES Extremity - (04/18/2011) CTDI: ~13 mgy per acquisition Used for evaluation of: Ankle Elbow Hand Wrist Foot /Calcaneous Toes Fingers

Hi RES Extremity - (04/18/2011) CTDI: ~13 mgy per acquisition Used for evaluation of: Ankle Elbow Hand Wrist Foot /Calcaneous Toes Fingers P a g e 1 Hi RES Extremity - (04/18/2011) CTDI: ~13 mgy per acquisition Used for evaluation of: Ankle Elbow Hand Wrist Foot /Calcaneous Toes Fingers Billing: 1. CT Upper/Lower Extremity of concern without

More information

Low Dose Era in Cardiac CT

Low Dose Era in Cardiac CT Low Dose Era in Cardiac CT DIANA E. LITMANOVICH, MD Department of Radiology Beth Israel Deaconess Medical Center Harvard Medical School Disclosures Neither I nor my immediate family members have a financial

More information

Bureau of Laboratory Quality Standards

Bureau of Laboratory Quality Standards 1. Condom -Lubricant ISO 4074:2002/Cor.1:2003 Annex C -Thickness ISO 4074:2002/Cor.1:2003 Annex F - Length ISO 4074:2002 / Cor1 : 2003 - Width ISO 4074 : 2002/Cor 1 : 2003 - Bursting pressure and Volume

More information

GATE MONTE CARLO DOSIMETRY SIMULATION OF MARS SPECTRAL CT

GATE MONTE CARLO DOSIMETRY SIMULATION OF MARS SPECTRAL CT GATE MONTE CARLO DOSIMETRY SIMULATION OF MARS SPECTRAL CT R Aamir, C Lowe, J Damet, P Carbonez, A P H Butler, N Schleich, N G Anderson MARFO, Emmanuel Geant4 User Workshop 2017, Wollongong Overview MARS

More information

Regional diagnostic reference levels and collective effective doses from CT scanners in India

Regional diagnostic reference levels and collective effective doses from CT scanners in India Regional diagnostic reference levels and collective effective doses from CT scanners in India Roshan S Livingstone and Paul M Dinakaran Department of Radiology Christian Medical College, Vellore, S India

More information

Quality Control and Patient Dosimetry on line for Computed Tomography

Quality Control and Patient Dosimetry on line for Computed Tomography Quality Control and Patient Dosimetry on line for Computed Tomography Jose I. Ten 1,2, Eliseo Vano 2,3, Jose M. Fernandez-Soto 2,3, Roberto Sanchez 3, Juan Arrazola 1,2 1 Diagnostic Radiology Service and

More information

45 Hr PET Registry Review Course

45 Hr PET Registry Review Course 45 HR PET/CT REGISTRY REVIEW COURSE Course Control Document Timothy K. Marshel, MBA, R.T. (R), (N)(CT)(MR)(NCT)(PET)(CNMT) The PET/CT Training Institute, Inc. SNMMI-TS 028600-028632 45hr CEH s Voice Credits

More information

HI-Res Extremity Sensation 16

HI-Res Extremity Sensation 16 Page 1 Routine Extremity - (2/14/2013) CTDI: ~20 mgy per acquisition Used for evaluation of: Humerus Forearm Femur Knee Tib/Fib Billing: 1. CT Upper/Lower Extremity of concern without contrast, with contrast,

More information

3D Accuitomo XYZ Slice View Tomograph. Super High-Resolution Images of Region of Interest

3D Accuitomo XYZ Slice View Tomograph. Super High-Resolution Images of Region of Interest 3D Accuitomo XYZ Slice View Tomograph. Super High-Resolution Images of Region of Interest Thinking ahead. Focused on life. 2 Cone Beam X-Ray CT Imaging X-Ray Tube Imaging Intensifier Imaging Volume Voxel

More information

RaySafe X2 Solo DENT. X-ray meter for dental applications

RaySafe X2 Solo DENT. X-ray meter for dental applications RaySafe X2 Solo DENT X-ray meter for dental applications Quality Assurance in Dental X-ray Hundreds of millions of X-ray exposures are done every year in dental clinics around the globe. The majority are

More information

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program ACR MRI Accreditation Program Update Donna M. Reeve, MS, DABR, DABMP Department of Imaging Physics University of Texas M.D. Anderson Cancer Center Educational Objectives Present requirements of the new

More information

Verification of micro-beam irradiation

Verification of micro-beam irradiation Journal of Physics: Conference Series OPEN ACCESS Verification of micro-beam irradiation To cite this article: Qiongge Li et al 2015 J. Phys.: Conf. Ser. 573 012047 View the article online for updates

More information

3/5/2015. Don t Electrocute Me!: Common Misconceptions in Imaging and Radiation Safety (and What to Do About Them)

3/5/2015. Don t Electrocute Me!: Common Misconceptions in Imaging and Radiation Safety (and What to Do About Them) Don t Electrocute Me!: Common Misconceptions in Imaging and Radiation Safety (and What to Do About Them) Rebecca Milman Marsh, Ph.D. University of Colorado Department of Radiology Who in the Facility Works

More information

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Tagreed AL-ALAWI Medical Physicist King Abdullah Medical City- Jeddah Aim 1. Simplify and standardize

More information

A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV

A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV A comparison of dose distributions measured with two types of radiochromic film dosimeter MD55 and EBT for proton beam of energy 175 MeV M. Mumot, G. V. Mytsin, Y. I. Luchin and A. G. Molokanov Medico-Technical

More information

Medical Diagnostic Imaging

Medical Diagnostic Imaging Medical Diagnostic Imaging Laboratories Medical Diagnostic Imaging Lab Name Location Person in Charge Programs Served Courses Served Patient Care and Management (2) Introduction to MDI Radiographic Technique

More information

Radiation Dose Reduction: Should You Use a Bismuth Breast Shield?

Radiation Dose Reduction: Should You Use a Bismuth Breast Shield? Radiation Dose Reduction: Should You Use a Bismuth Breast Shield? Lincoln L. Berland, M.D., F.A.C.R. Michael V. Yester, Ph.D. University of Alabama at Birmingham Breast Radiation on CT Use of chest CT

More information

Cardiac CT - Coronary Calcium Basics Workshop II (Basic)

Cardiac CT - Coronary Calcium Basics Workshop II (Basic) Cardiac CT - Coronary Calcium Basics Workshop II (Basic) J. Jeffrey Carr, MD, MSCE Dept. of Radiology & Public Health Sciences Wake Forest University School of Medicine Winston-Salem, NC USA No significant

More information

Online Care, Online Control, Online Confidence

Online Care, Online Control, Online Confidence Online Care, Online Control, Online Confidence * Online Treatment Monitoring and much more! Designed for Efficiency provides you with online control and online confidence of treating your patients exactly

More information

Testing of the Implementation of the Code of Practice on Dosimetry in X-ray Diagnostic Radiology Hungarian Contribution

Testing of the Implementation of the Code of Practice on Dosimetry in X-ray Diagnostic Radiology Hungarian Contribution Testing of the Implementation of the Code of Practice on Dosimetry in X-ray Diagnostic Radiology Hungarian Contribution Ferenc Giczi a*, Sándor Pellet b, Ian Donald McLean c and Ahmed Meghzifene c a Széchenyi

More information

A more accurate method to estimate patient dose during body CT examinations with tube current modulation

A more accurate method to estimate patient dose during body CT examinations with tube current modulation A more accurate method to estimate patient dose during body CT examinations with tube current modulation Poster No.: C-0738 Congress: ECR 2014 Type: Scientific Exhibit Authors: A. Kawaguchi 1, Y. Matsunaga

More information

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction Parham Alaei, Ph.D. Department of Radiation Oncology University of Minnesota NCCAAPM Fall

More information

Automatic Patient Centering for MDCT: Effect on Radiation Dose

Automatic Patient Centering for MDCT: Effect on Radiation Dose Patient Centering for MDCT CT Imaging Original Research Jianhai Li 1 Unni K. Udayasankar 1 Thomas L. Toth 2 John Seamans 2 William C. Small 1 Mannudeep K. Kalra 1,3 Li J, Udayasankar UK, Toth TL, Seamans

More information

CT examination is a high-radiation-dose imaging technique

CT examination is a high-radiation-dose imaging technique ORIGINAL RESEARCH J.S.P. Tan K.-L. Tan J.C.L. Lee C.-M. Wan J.-L. Leong L.-L. Chan Comparison of Eye Lens Dose on Neuroimaging Protocols between 16- and 64-Section Multidetector CT: Achieving the Lowest

More information

CT NUMBER ACCURACY ANALYSIS FOR RADIOTHERAPY TREATMENT PLANNING IMAGING

CT NUMBER ACCURACY ANALYSIS FOR RADIOTHERAPY TREATMENT PLANNING IMAGING CT NUMBER ACCURACY ANALYSIS FOR RADIOTHERAPY TREATMENT PLANNING IMAGING Julian Liu a, Keisha Robinson a, DhanaJayan Kothandan a and Joshua Luis b (a) Cancer Centre London (b) University College London

More information

Out-of-field doses of CyberKnife in stereotactic radiotherapy of prostate cancer patients

Out-of-field doses of CyberKnife in stereotactic radiotherapy of prostate cancer patients EURAMED,MELODI and EURADOS Workshop, Helsinki 19.-20.4.2017 Out-of-field doses of CyberKnife in stereotactic radiotherapy of prostate cancer patients Jan Seppälä, Chief Physicist Tuomas Virén, Medical

More information

Abstract: A National Project for the in-vivo dosimetry in radiotherapy: first results

Abstract: A National Project for the in-vivo dosimetry in radiotherapy: first results Abstract: A National Project for the in-vivo dosimetry in radiotherapy: first results A.Piermattei 1, L. Azario 1, S. Cilla 2, A.Fidanzio 1, F.Greco 1, M.T.Russo 3, S. Zucca 4 1 Istituto di Fisica e Unità

More information

Radiosurgery by Leksell gamma knife. Josef Novotny, Na Homolce Hospital, Prague

Radiosurgery by Leksell gamma knife. Josef Novotny, Na Homolce Hospital, Prague Radiosurgery by Leksell gamma knife Josef Novotny, Na Homolce Hospital, Prague Radiosurgery - Definition Professor Lars Leksell The tools used by the surgeon must be adapted to the task and where the human

More information

Sasa Mutic a) Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110

Sasa Mutic a) Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110 Quality assurance for computed-tomography simulators and the computedtomography-simulation process: Report of the AAPM Radiation Therapy Committee Task Group No. 66 Sasa Mutic a) Department of Radiation

More information

Normal tissue doses from MV image-guided radiation therapy (IGRT) using orthogonal MV and MV-CBCT

Normal tissue doses from MV image-guided radiation therapy (IGRT) using orthogonal MV and MV-CBCT Received: 28 September 2017 Revised: 17 November 2017 Accepted: 28 December 2017 DOI: 10.1002/acm2.12276 RADIATION ONCOLOGY PHYSICS Normal tissue doses from MV image-guided radiation therapy (IGRT) using

More information