Evolution at Its Worst: Cancer. SHP-Neurobiology of Development and Disease

Size: px
Start display at page:

Download "Evolution at Its Worst: Cancer. SHP-Neurobiology of Development and Disease"

Transcription

1 Evolution at Its Worst: Cancer SHP-Neurobiology of Development and Disease

2 Introduction to Cancer Cancer is currently the second leading cause of death in the US (22.8%) behind heart disease. Yearly 0.5% of the population is diagnosed with cancer. Although we have learned a lot about cancer over the years, many cancers still do not enjoy a decrease in mortality/morbidity (including most brain cancers). Cancer is particularly difficult of a disease to treat because each case and each type have a different underlying profile of mutations. Also, being derived from human cells, they express all the same proteins as normal cells (though usually in aberrant amounts) which complicates the search for drug targets.

3 Cancer is a Disease of Corrupted Evolution: Normal cells proliferate until they touch one another. During wound healing, they can reenter the cell cycle and grow until they seal the wound. Adult stem cells are proliferative cells with multipotent potential that usually have a very highly controlled balance between proliferation and differentiation. In tumor cells, the regulation of these processes are damaged, therefore cancer is a disease of inappropriate self-renewal. Once initiated, the transformed cell(s) will undergo rapid mutation and subsequent selection against conditions in the body and those cells that attain enhanced proliferation/survival, nutrient procreation, colonization capacity or drug resistance will survive to multiply their numbers.

4 Conditions of Natural Selection If the organism can reproduce If offspring inherit traits from their progenitors If there is a variability of traits (usually a result of natural mutation) If environment cannot support all individuals of a population Those individuals with the most adaptive traits for that environmental state will out compete others to preferentially pass on their genes to the next generation

5 Mechanism of Oncogensis Overexpression of an Oncogene Loss of Tumor Suppressor Genes Become immortalized Overexpression or Autocrine Production of Growth Factors Loss of DNA repair and checkpoint control Inappropriate resistance to apoptosis

6 Mechanisms of Cancer Progression Invasion Metastasis

7 Invasion Initial tumor is produced from a clone of neoplastic cells that overgrow (hyperplasia) and ignore their tissue boundaries. Larger tumors produce angiogenic factors (ie VEGF) to cause blood vessels to grow in an provide vascular support to the tumor. Very invasive cancers can grow throughout other tissues causing increased pressure, intense pain, and hemorrhage.

8 Metastasis

9 Step-wise Mutation Allow Cancers to Overcome Barriers Mutations happen throughout the progression of tumerogenesis and give rise to clonal lines with enhanced aggressiveness over their progenitors. Often a cell requires 6 or 7 mutations before it is transformed to a metastatic cancer

10 Syndrome Li-Fraumeni Syndrome Cloned Gene Chromosomal Location Tumor Types cell cycle regulation, apoptosis 17p13 brain tumors, sarcomas, leukemia, breast cancer cell cycle regulation 13q14 retinoblastoma, osteogenic sarcoma transcriptional regulation 11p13 pediatric kidney cancer catalysis of RAS inactivation 17q11.2 neurofibromas, sarcomas, gliomas linkage of cell membrane to cytoskeleton 22q12.2 Schwann cell tumors, astrocytomas, meningiomas, ependynomas signaling through adhesion molecules to nucleus 5q21 colon cancer 9q34 facial angiofibromas GTPase activation 16 benign growths (hamartomas) in many tissues, astrocytomas, rhabdomyosarcomas regulation of TGFβ/BMP signal transduction 18q21.1 pancreatic carcinoma, colon cancer transmembrane receptor involved in axonal guidance via netrins 18q21.3 colorectal cancer repair of double strand breaks by association with Rad51 protein 17q21 breast and ovarian cancer similar to BRCA1? 13q12.3 breast and ovarian cancer P53 tumor suppressor OMIM data Familial Retinoblastoma Function RB1 tumor suppressor OMIM data Wilms Tumor WT1 tumor suppressor OMIM data Neurofibromatosis Type 1 NF1 protein=neurofibromin 1 Syndromes Associated With Predisposition To cancer And their related genes OMIM data Neurofibromatosis Type 2 tumor suppressor NF2 protein = merlin or OMIM data neurofibromin 2 tumor suppressor Familial Adenomatous Polyposis APC tumor suppressor OMIM data Tuberous sclerosis 1 TSC1 OMIM data tumor suppressor Tuberous sclerosis 2 TSC2 protein = hamartin protein = tuberin OMIM data Deleted in Pancreatic Carcinoma 4 tumor suppressor DPC4 also known as Smad4 OMIM data tumor suppressor Deleted in Colorectal Carcinoma DCC tumor suppressor OMIM data Familial Breast Cancer BRCA1 tumor suppressor OMIM data Familial Breast Cancer BRCA2 tumor suppressor OMIM data u/thcme/mwking/onc ogene.html Peutz-Jeghers Syndrome STK11 tumor suppressor OMIM data protein = serine-threonine kinase 11 potential regulation of vascular endothelial growth factor (VEGF) pathway 19p13.3 hyperpigmentation, multiple hamartomatous polyps, colorectal, breast and ovarian cancers

11 Circuit Showing Many Signaling Pathways Controlling Tumerogenesis

12 Representation of Mutation Sequence Giving Rise to a Metastasis

13 Rb1 is a Classic Tumor Repressor Gene Rb1 is a tumor suppressor gene that is deleted in the pediatric cancer retinoblastoma Rb1 normally binds and inhibits E2F transcription factors and prevent entry into S-phase of the cell cycle. Rb1 is inactivated when hyperphosphorylated by cyclin dependent kinases (CDKs). When Rb is lost, there is a loss of checkpoint control and often precocious entry into S-phase

14 How Gene Can be Lost and Produce the Disease in Heterozygous Individuals

15 Telomeres Telomeres are long CG-rich repeats that occur at the ends of chromosomes. They prime the synthesis of chromosomal ends Repeats shorten as the life of the cell progresses and is thought to be central in senescence. Reactivation of telomerase in humans is thought to be a major step in immortalization of a cell line.

16 Loss of Telomeres Results in Genome Instability and Gene Duplication/Loss

17

18 Tumors Can Form from Many Neural Cell Types

19 Neural Tumors Isolate Themselves to Different Age Groups Pediatric Neural Tumors: Retinoblastoma: arises in the retina. Caused by a mutation in Rb1. Neuroblastoma: most common extracranial solid tumor in children. Arise from neural crest sympathicoblasts (sympathetic neural stem cells) Medulloblastoma: arise in the cerebellum and often resemble proliferating pluripotent postnatal external granule cells. Adult Neural Tumors: Astrocytoma: neoplastic astrocyte Oligoastrocytoma Glioblastoma multiforme (GBM): highly proliferative and metastatic cancer usually associated with a poor prognosis. The most common of all primary brain tumor cases.

20 WHO Grading System for Astrocytomas Type I: pilocytic astrocytoma (panel A) Type II: diffuse astrocytoma (B and C) Type III: anaplastic astrocytoma (D) Type IV: glioblastoma multiforme (E and F)

21 Neural Tumors Preferentially Form in Proliferative Areas of the Brain

22 Neurosphere Assay Is a Method to Test SelfRenewal Reynolds and Rietze, 2005

23 Neurospheres Differentiate Upon Plating Suspended Attached Differentiated

24 Further Evidence that Cancer is a Disease of Stemness Transfection of oncogenes by virus to stem cells but not differentiated astrocytes produces gliomas in rat. Neurospheres can be isolated from gliomas and these are positive for the stem cell markers bmi-1, musashi-1, Sox2, and nestin. Differentiating these neurospheres reproduces the marker profile of the cells found in the tumor.

25 Maturation-Arrest Theory Progenitor cells that differentiate into a specific cell lineage can lose the capacity to do so and divide continually Only a percentage of a tumor are actually proliferative and contain stem cells that produce the cell types of that tumor.

26

27 CD133+ Cells Are Tumerogenic It has been shown that purified CD133+ tumor cells generate tumors in a transplant recipient rat. CD133+ cells can be extracted from these secondary tumors and transplanted into new hosts, producing more tumors CD133- cells did not grow into tumors

28 There are many signaling pathways that have been shown to be deregulated in tumor lines

29 Brain tumor progenitors can be purified by the cell surface antigen CD133 This CD133+ positive population can be passaged as a neurosphere culture to test self-renewal and differentiation

30 Good Twin vs Evil Twin: Using Stems Cells to Target Cancer Treatment Since stem cells have been shown to migrate to sites of injury in the body, scientists have asked whether they can target and migrate to tumors. Many tumors secrete factors, such as EGF, that either stimulate their own growth (autocrine loop) or recruit cells to themselves. Stem cells are though to follow these signals to the source (tumor or injury). The recent evidence linking tumorogenesis to stem cell fate imply that these stem cells might be following these tumor factors because the share the fate (and therefore receptors, signal responsiveness) with their pathogenic cousins.

31 Stem Cells Target and Migrate to Brain Tumors in vivo A cluster of either fibroblasts (top panel, A) or neural stem cells (NSC, top panel, B) were plated on adherent tumor monolayer. Both seeded cells are labelled in blue. After 5 days, NSCs but not fibroblasts have migrated over the entire surface of the tumor. These investigators injected cancer cells (labeled in green with GFP, lower panel) to initiate a tumor into the brain of a rat, and then injected in labeled neural stem cells at another location. The injected neurons, irregardless of where they are injected, migrate in the direction of the tumor and colonize it. They mostly stall around the boundary of the tumor and normal tissue. Tumor appears in green. The migrating NSCs show up in red or blue.

32 Using Stem Cells for Localized Chemotherapy It is well known that chemotherapy treatment for cancer is poorly tolerated, due to its high toxicity to normal cells. These NSCs can be engineered with retroviruses to express the enzyme cytosine deaminase (CD), which can convert the nontoxic prodrug 5fluorocytosine to the oncolytic drug 5-fluorouracil. These cells can then function as a guided missile that colonize tumors and then convert the prodrug at high levels locally to the chemotherapy agent, destroying the tumor but sparing most of the normal tissue.c

33 Stem cells Expressing IL-4 Can Prolong the Lifespan of a Rat with GBM

34 Treatment of Rats with Glioblastoma Tumor with IL-4 Expressing Cells Causes Tumor Regression. Before Treatment (whiter mass is tumor) After Treatment (tumor has largely disappeared)

35 Interferon-producing Stem Cells Can also be Used to Treat Cancer. Another protein, interferon, is known to diminish proliferation and sensitize surrounding cells for death. This protein is often secreted from cells after they have become infected with a pathogen as a signal to their neighbors, and systemic treatment in patients comes with toxicity. Mesenchymal stem cells engineered to express and secrete interferon can colonize lung tumors and suppress tumor expansion.

Neoplasia 18 lecture 6. Dr Heyam Awad MD, FRCPath

Neoplasia 18 lecture 6. Dr Heyam Awad MD, FRCPath Neoplasia 18 lecture 6 Dr Heyam Awad MD, FRCPath ILOS 1. understand the role of TGF beta, contact inhibition and APC in tumorigenesis. 2. implement the above knowledge in understanding histopathology reports.

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber jweber@dom.wustl.edu Oncogenes & Cancer DNA Tumor Viruses Simian Virus 40 p300 prb p53 Large T Antigen Human Adenovirus p300 E1A

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

CELL BIOLOGY - CLUTCH CH CANCER.

CELL BIOLOGY - CLUTCH CH CANCER. !! www.clutchprep.com CONCEPT: OVERVIEW OF CANCER Cancer is a disease which is primarily caused from misregulated cell division, which form There are two types of tumors - Benign tumors remain confined

More information

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz Cancer and Oncogenes Bioscience in the 21 st Century Linda Lowe-Krentz December 1, 2010 Just a Few Numbers Becoming Cancer Genetic Defects Drugs Our friends and family 25 More mutations as 20 you get older

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II CELL CYCLE REGULATION AND CANCER Cellular Reproduction II THE CELL CYCLE Interphase G1- gap phase 1- cell grows and develops S- DNA synthesis phase- cell replicates each chromosome G2- gap phase 2- cell

More information

Determination Differentiation. determinated precursor specialized cell

Determination Differentiation. determinated precursor specialized cell Biology of Cancer -Developmental Biology: Determination and Differentiation -Cell Cycle Regulation -Tumor genes: Proto-Oncogenes, Tumor supressor genes -Tumor-Progression -Example for Tumor-Progression:

More information

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles:

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles: Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis Major Principles: 1. Nonlethal genetic damage is central to

More information

Cancer genetics

Cancer genetics Cancer genetics General information about tumorogenesis. Cancer induced by viruses. The role of somatic mutations in cancer production. Oncogenes and Tumor Suppressor Genes (TSG). Hereditary cancer. 1

More information

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation.

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation. Tumor Suppressor Genes A class of genes that normally suppress cell proliferation. p53 and Rb..ect Mutations that inactivate the tumor suppressor gene products can release cells from growth suppression

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea TUMOR-SUPPRESSOR GENES Molecular Oncology 2011 Michael Lea TUMOR-SUPPRESSOR GENES - Lecture Outline 1. Summary of tumor suppressor genes 2. P53 3. Rb 4. BRCA1 and 2 5. APC and DCC 6. PTEN and PPA2 7. LKB1

More information

Regulation of Cell Division. AP Biology

Regulation of Cell Division. AP Biology Regulation of Cell Division 2006-2007 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development

More information

Chapter 12. Regulation of Cell Division. AP Biology

Chapter 12. Regulation of Cell Division. AP Biology Chapter 12. Regulation of Cell Division Coordination of cell division! Multicellular organism " need to coordinate across different parts of organism! timing of cell division! rates of cell division "

More information

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes.

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. ۱ RAS Genes The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. Oncogenic ras genes in human cells include H ras, N ras,

More information

Chapter 9. Cells Grow and Reproduce

Chapter 9. Cells Grow and Reproduce Chapter 9 Cells Grow and Reproduce DNA Replication DNA polymerase Addition of a nucleotide to the 3 end of a growing strand Use dntps as substrate Release of pyrophosphate Initiation of Replication Replication

More information

number Done by Corrected by Doctor Maha Shomaf

number Done by Corrected by Doctor Maha Shomaf number 19 Done by Waseem Abo-Obeida Corrected by Abdullah Zreiqat Doctor Maha Shomaf Carcinogenesis: the molecular basis of cancer. Non-lethal genetic damage lies at the heart of carcinogenesis and leads

More information

Deregulation of signal transduction and cell cycle in Cancer

Deregulation of signal transduction and cell cycle in Cancer Deregulation of signal transduction and cell cycle in Cancer Tuangporn Suthiphongchai, Ph.D. Department of Biochemistry Faculty of Science, Mahidol University Email: tuangporn.sut@mahidol.ac.th Room Pr324

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture:

Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture: Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture: Spandana Baruah December, 2016 Cancer is defined as: «A disease caused

More information

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions.

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions. Cancer Cells Cancer, then, is a disease in which a single normal body cell undergoes a genetic transformation into a cancer cell. This cell and its descendants, proliferating across many years, produce

More information

PATHOBIOLOGY OF NEOPLASIA

PATHOBIOLOGY OF NEOPLASIA PATHOBIOLOGY OF NEOPLASIA Department of Pathology Gadjah Mada University School of Medicine dr. Harijadi Blok Biomedis, 6 Maret 2009 [12] 3/17/2009 1 The pathobiology of neoplasia Normal cells Malignant

More information

Regulation of Cell Division (Ch. 12)

Regulation of Cell Division (Ch. 12) Regulation of Cell Division (Ch. 12) Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development &

More information

Molecular biology :- Cancer genetics lecture 11

Molecular biology :- Cancer genetics lecture 11 Molecular biology :- Cancer genetics lecture 11 -We have talked about 2 group of genes that is involved in cellular transformation : proto-oncogenes and tumour suppressor genes, and it isn t enough to

More information

Development of Carcinoma Pathways

Development of Carcinoma Pathways The Construction of Genetic Pathway to Colorectal Cancer Moriah Wright, MD Clinical Fellow in Colorectal Surgery Creighton University School of Medicine Management of Colon and Diseases February 23, 2019

More information

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS Summary of the regulation of cyclin/cdk complexes during celll cycle Cell cycle phase Cyclin-cdk complex inhibitor activation Substrate(s) G1 Cyclin D/cdk 4,6

More information

Regulation of Cell Division

Regulation of Cell Division Regulation of Cell Division Two HeLa cancer cells are just completing cytokinesis. Explain how the cell division of cancer cells like these is misregulated. Identify genetic and other changes that might

More information

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease) CANCER Affects 25% of US population Kills 19% of US population (2nd largest killer after heart disease) NOT one disease but 200-300 different defects Etiologic Factors In Cancer: Relative contributions

More information

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer VIII Curso Internacional del PIRRECV Some molecular mechanisms of cancer Laboratorio de Comunicaciones Celulares, Centro FONDAP Estudios Moleculares de la Celula (CEMC), ICBM, Facultad de Medicina, Universidad

More information

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous Session8 Medical Genetics Cancer Genetics J avad Jamshidi F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, N o v e m b e r 2 0 1 7 What is Cancer? Uncontrolled growth of cells Not all tumors

More information

Emerging" hallmarks of cancer, a. Reprogramming of energy metabolism b. Evasion of the immune system, Enabling characteristics, a.

Emerging hallmarks of cancer, a. Reprogramming of energy metabolism b. Evasion of the immune system, Enabling characteristics, a. HALLMARKS OF CANCER - Together dictate the malignant phenotype. 1. Self-sufficiency in growth signals 2. Insensitivity to growth inhibitory signals 3. Evasion of cell death 4. Limitless replicative potential

More information

Carcinogenesis. Carcinogenesis. 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples

Carcinogenesis. Carcinogenesis. 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Carcinogenesis 1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples Major Principles (cont d) 4. Principle targets of genetic damage: 4 classes

More information

Section D. Genes whose Mutation can lead to Initiation

Section D. Genes whose Mutation can lead to Initiation This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

Present State of Gene Diagnosis and Future Prospects

Present State of Gene Diagnosis and Future Prospects Clinical Medicine: Cancer Present State of Gene Diagnosis and Future Prospects JMAJ 45(3): 118 124, 2002 Eiichi TAHARA Chairman, Hiroshima Cancer Seminar Foundation Abstract: The entire base sequence of

More information

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz October 11, 2013

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz October 11, 2013 Cancer and Oncogenes Bioscience in the 21 st Century Linda Lowe-Krentz October 11, 2013 Just a Few Numbers Becoming Cancer Genetic Defects Drugs Our friends and family 200 180 160 140 120 100 80 60 40

More information

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? Questions about cancer What is cancer? Cancer Gil McVean, Department of Statistics, Oxford What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? What are the steps in

More information

Chapter 9, Part 1: Biology of Cancer and Tumor Spread

Chapter 9, Part 1: Biology of Cancer and Tumor Spread PATHOPHYSIOLOGY Name Chapter 9, Part 1: Biology of Cancer and Tumor Spread I. Cancer Characteristics and Terminology Neoplasm new growth, involves the overgrowth of tissue to form a neoplastic mass (tumor).

More information

Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1

Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1 Mohammed El-Khateeb Tumor Genetics MGL-12 July 21 st 2013 台大農藝系遺傳學 601 20000 Chapter 22 slide 1 Cellular Basis of Cancer Cancer is a collection of diseases characterized by abnormal and uncontrolled growth

More information

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 MIT OpenCourseWare http://ocw.mit.edu HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Disorders of Cell Growth & Neoplasia. Lecture 4 Molecular basis of cancer

Disorders of Cell Growth & Neoplasia. Lecture 4 Molecular basis of cancer General Pathology VPM 152 Disorders of Cell Growth & Neoplasia Lecture 4 Molecular basis of cancer Enrique Aburto Apr 2010 Skin tumor in a 10-year-old Rottweiler. Considering the external appearance and

More information

- A cancer is an uncontrolled, independent proliferation of robust, healthy cells.

- A cancer is an uncontrolled, independent proliferation of robust, healthy cells. 1 Cancer A. What is it? - A cancer is an uncontrolled, independent proliferation of robust, healthy cells. * In some the rate is fast; in others, slow; but in all cancers the cells never stop dividing.

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Regulation of Cell Division 2008-2009 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs u critical for normal growth, development

More information

Overview of the core ideas in cancer research

Overview of the core ideas in cancer research Overview of the core ideas in cancer research Paul Edwards Cancer Research UK Cambridge Institute and Department of Pathology, University of Cambridge This lecture Overview of the ideas that provide the

More information

Regulation of the Cell Cycle

Regulation of the Cell Cycle Regulation of the Cell Cycle 21 I. OVERVIEW Quiescent differentiated cell / can be induced to re-enter the active cell cycle. urvival Cell division Apoptosis 1 Daughter cells Apoptic cell enescent cell

More information

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

MOLECULAR BASIS OF ONCOGENESIS

MOLECULAR BASIS OF ONCOGENESIS MOLECULAR BASIS OF ONCOGENESIS MUDr. Jiří Vachtenheim, CSc. 1 Cell processes which result also in cell cycle effects. Differentiation. Differentiated cells are usually in the G0 phase of the cell cycle.

More information

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras Molecular Cell Biology Prof. D. Karunagaran Department of Biotechnology Indian Institute of Technology Madras Module 9 Molecular Basis of Cancer, Oncogenes and Tumor Suppressor Genes Lecture 2 Genes Associated

More information

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD Lecture 8 Neoplasia II Dr. Nabila Hamdi MD, PhD ILOs Understand the definition of neoplasia. List the classification of neoplasia. Describe the general characters of benign tumors. Understand the nomenclature

More information

Functional Limitations

Functional Limitations Regulation of the Cell Cycle Chapter 12 Pg. 228 245 Functional Limitations Various factors determine whether and when a cell divides. Two functional limitations for cell size limit growth or influence

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval Biochemistry of Carcinogenesis Lecture # 35 Alexander N. Koval What is Cancer? The term "cancer" refers to a group of diseases in which cells grow and spread unrestrained throughout the body. It is difficult

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

Mohammed El-Khateeb. Tumor Genetics. MGL-12 May 13 th Chapter 22 slide 1 台大農藝系遺傳學

Mohammed El-Khateeb. Tumor Genetics. MGL-12 May 13 th Chapter 22 slide 1 台大農藝系遺傳學 Mohammed El-Khateeb Tumor Genetics MGL-12 May 13 th 2014 台大農藝系遺傳學 601 20000 Chapter 22 slide 1 Cancer Genetics Types of Genetic Alterations in Cancer Evidence that Mutations Cause Cancer Multistage Model

More information

Cancer and Gene Alterations - 1

Cancer and Gene Alterations - 1 Cancer and Gene Alterations - 1 Cancer and Gene Alteration As we know, cancer is a disease of unregulated cell growth. Although we looked at some of the features of cancer when we discussed mitosis checkpoints,

More information

Tumors of the Nervous System

Tumors of the Nervous System Tumors of the Nervous System Peter Canoll MD. PhD. What I want to cover What are the most common types of brain tumors? Who gets them? How do they present? What do they look like? How do they behave? 1

More information

Glioblastoma Multiforme

Glioblastoma Multiforme Glioblastoma Multiforme Highly malignant, invasive, difficult-to-treat primary brain tumor" " Frequency: 9,000 cases/year (peak age, 55 65 years)" " Recurrence: rapid growth; size may double every 10 days"

More information

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology Neoplasia Dr Rodney Itaki Lecturer Anatomical Pathology Discipline University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology General Considerations Overview: Neoplasia uncontrolled,

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 MITOSIS

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 MITOSIS Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 MITOSIS Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 9.1

More information

Cell Death and Cancer. SNC 2D Ms. Papaiconomou

Cell Death and Cancer. SNC 2D Ms. Papaiconomou Cell Death and Cancer SNC 2D Ms. Papaiconomou How do cells die? Necrosis Death due to unexpected and accidental cell damage. This is an unregulated cell death. Causes: toxins, radiation, trauma, lack of

More information

Regarding techniques of proteomics, there is:

Regarding techniques of proteomics, there is: Molecular الحلقة biology 14 واألخيرة To put you back in the context; the discussion was about Trancriptomics (the study of transcription). The following topic will be PROTEOMICS, which is the study of

More information

Contents. Preface XV Acknowledgments XXI List of Abbreviations XXIII About the Companion Website XXIX

Contents. Preface XV Acknowledgments XXI List of Abbreviations XXIII About the Companion Website XXIX Contents Preface XV Acknowledgments XXI List of Abbreviations XXIII About the Companion Website XXIX 1 General Aspects of Signal Transduction and Cancer Therapy 1 1.1 General Principles of Signal Transduction

More information

Disorders of Cell Growth & Neoplasia

Disorders of Cell Growth & Neoplasia General Pathology VPM 152 Disorders of Cell Growth & Neoplasia Lecture 3 Rate of growth, local invasion, and metastasis. Molecular basis of cancer (normal cell-cycle and cellular proliferation). Enrique

More information

Asingle inherited mutant gene may be enough to

Asingle inherited mutant gene may be enough to 396 Cancer Inheritance STEVEN A. FRANK Asingle inherited mutant gene may be enough to cause a very high cancer risk. Single-mutation cases have provided much insight into the genetic basis of carcinogenesis,

More information

(MTS1, INK4A, CDKN2) BRCA1, BRCA2

(MTS1, INK4A, CDKN2) BRCA1, BRCA2 Tumour Suppressors Properties of tumour suppressors Evidence for the existence of tumour suppressors Retinoblastoma Properties and function of the RB protein (prb, prb) E2F prb phosphorylation cell cycle

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Neoplasia part I. Dr. Mohsen Dashti. Clinical Medicine & Pathology nd Lecture

Neoplasia part I. Dr. Mohsen Dashti. Clinical Medicine & Pathology nd Lecture Neoplasia part I By Dr. Mohsen Dashti Clinical Medicine & Pathology 316 2 nd Lecture Lecture outline Review of structure & function. Basic definitions. Classification of neoplasms. Morphologic features.

More information

Biochemistry of Cancer and Tumor Markers

Biochemistry of Cancer and Tumor Markers Biochemistry of Cancer and Tumor Markers The term cancer applies to a group of diseases in which cells grow abnormally and form a malignant tumor. It is a long term multistage genetic process. The first

More information

Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF

Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF Application Note The PromoCell 3D Tumorsphere Medium XF While adherent cultures of brain tumor cells in

More information

TARGETED THERAPY FOR CHILDHOOD CANCERS

TARGETED THERAPY FOR CHILDHOOD CANCERS TARGETED THERAPY FOR CHILDHOOD CANCERS AZIZA SHAD, MD AMEY DISTINGUISHED PROFESSOR OF PEDIATRIC HEMATOLOGY ONCOLOGY, BLOOD AND MARROW TRANSPLANTATION LOMBARDI CANCER CENTER GEORGETOWN UNIVERSITY HOSPITAL

More information

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D Regulation of cell cycle Dr. SARRAY Sameh, Ph.D Control of cell cycle: Checkpoints Are the cell cycle controls mechanisms in eukaryotic cells. These checkpoints verify whether the processes at each phase

More information

- is a common disease - 1 person in 3 can expect to contract cancer at some stage in their life -1 person in 5 can expect to die from it

- is a common disease - 1 person in 3 can expect to contract cancer at some stage in their life -1 person in 5 can expect to die from it MBB157 Dr D Mangnall The Molecular Basis of Disease CANCER Lecture 1 One of the simpler (and better) definitions of cancer comes from the American Cancer Society, who define cancer as; 'Cancer is a group

More information

Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α

Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α Mahnaz Janghorban, PhD Dr. Rosalie Sears lab 2/8/2015 Zanjan University Content 1. Background (keywords: c-myc, PP2A,

More information

Genetics and Cancer Ch 20

Genetics and Cancer Ch 20 Genetics and Cancer Ch 20 Cancer is genetic Hereditary cancers Predisposition genes Ex. some forms of colon cancer Sporadic cancers ~90% of cancers Descendants of cancerous cells all cancerous (clonal)

More information

Cell Cycle and Cancer

Cell Cycle and Cancer 142 8. Cell Cycle and Cancer NOTES CELL CYCLE G 0 state o Resting cells may re-enter the cell cycle Nondividing cells (skeletal and cardiac muscle, neurons) o Have left the cell cycle and cannot undergo

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

number Done by Corrected by Doctor مها شوماف

number Done by Corrected by Doctor مها شوماف number 15 Done by Ali Yaghi Corrected by Waseem Alhaj Doctor مها شوماف 1 P a g e Epidemiology Epidemiology is the study of the incidence of a disease. It can give us information about the possible causes

More information

September 20, Submitted electronically to: Cc: To Whom It May Concern:

September 20, Submitted electronically to: Cc: To Whom It May Concern: History Study (NOT-HL-12-147), p. 1 September 20, 2012 Re: Request for Information (RFI): Building a National Resource to Study Myelodysplastic Syndromes (MDS) The MDS Cohort Natural History Study (NOT-HL-12-147).

More information

Cancer Biology How a cell responds to DNA Damage

Cancer Biology How a cell responds to DNA Damage 1 Cancer Biology How a cell responds to DNA Damage Jann Sarkaria Department of Oncology Mayo Clinic 2 EDUCATIONAL GOALS How proteins can transmit signals to each other. The definition of a tumor suppressor

More information

Early cell death (FGF) B No RunX transcription factor produced Yes No differentiation

Early cell death (FGF) B No RunX transcription factor produced Yes No differentiation Solution Key - Practice Questions Question 1 a) A recent publication has shown that the fat stem cells (FSC) can act as bone stem cells to repair cavities in the skull, when transplanted into immuno-compromised

More information

BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY

BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY Cancer is a group of more than 100 different diseases that are characterized by uncontrolled cellular growth,

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download:https://getbooksolutions.com/download/test-bank-for-robbinsand-cotran-pathologic-basis-of-disease-9th-edition-by-kumar Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th

More information

TUMOR M ARKERS MARKERS

TUMOR M ARKERS MARKERS TUMOR MARKERS M.Shekarabi IUMS Definition Many cancers are associated with the abnormal production of some molecules l which h can be measured in plasma. These molecules are known as tumor markers. A good

More information

Chapter 8 DNA Replication, Binary Fission, and Mitosis

Chapter 8 DNA Replication, Binary Fission, and Mitosis Chapter 8 DNA Replication, Binary Fission, and Mitosis World s tallest man Frederic J. Brown/AFP/Getty Images Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download: http://testbankair.com/download/test-bank-for-robbins-cotran-pathologic-basis-of-disease-9th-edition-bykumar-abbas-and-aster Test Bank for Robbins and Cotran Pathologic Basis of Disease

More information

2015 AP Biology Unit #4 Test Cell Communication, Cancer, Heredity and The Cell Cycle Week of 30 November

2015 AP Biology Unit #4 Test Cell Communication, Cancer, Heredity and The Cell Cycle Week of 30 November Class: Date: 2015 AP Biology Unit #4 Test Cell Communication, Cancer, Heredity and The Cell Cycle Week of 30 November Multiple Choice 1 point each Identify the choice that best completes the statement

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

5.1. KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 68 Reinforcement Unit 2 Resource Book

5.1. KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 68 Reinforcement Unit 2 Resource Book 5.1 THE CELL CYCLE KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. Cells have a regular pattern of growth, DNA duplication, and division that is called the cell cycle.

More information

Advances in Brain Tumor Research: Leveraging BIG data for BIG discoveries

Advances in Brain Tumor Research: Leveraging BIG data for BIG discoveries Advances in Brain Tumor Research: Leveraging BIG data for BIG discoveries Jill Barnholtz-Sloan, PhD Associate Professor & Associate Director for Bioinformatics and Translational Informatics jsb42@case.edu

More information

TARGETS OF CYCLIN D1-CDK

TARGETS OF CYCLIN D1-CDK TARGETS OF CYCLIN D1-CDK FIRST TARGET OF THE COMPLEX CYCLIN D-KINASI: prb, IS THE PRODUCT OF THE GENE CONFERRING SUSCEPTIBILITY TO RETINOBLASTOMA - ABSENT OR MUTATED IN SEVERAL HUMAN CANCERS - TRANSCRIPTIONL

More information

Chapter 10-3 Regulating the Cell Cycle

Chapter 10-3 Regulating the Cell Cycle Chapter 10-3 Regulating the Cell Cycle Vocabulary: Cyclin Cancer Key Concepts: How is the cell cycle regulated? How are cancer cells different from other cells? I. Introduction A. An Interesting Fact About

More information

General Pathology VPM 152. Disorders of Cell Growth & Neoplasia. Lecture 4 Molecular basis of cancer

General Pathology VPM 152. Disorders of Cell Growth & Neoplasia. Lecture 4 Molecular basis of cancer General Pathology VPM 152 Disorders of Cell Growth & Neoplasia Lecture 4 Molecular basis of cancer Enrique Aburto http://people.upei.ca/eaburto Winter 2015 Molecular Basis of Cancer Fundamental principles

More information