RPC Liver Phantom Highly Conformal Stereotactic Body Radiation Therapy

Size: px
Start display at page:

Download "RPC Liver Phantom Highly Conformal Stereotactic Body Radiation Therapy"

Transcription

1 RPC Liver Phantom Highly Conformal Stereotactic Body Radiation Therapy Guidelines for Planning and Irradiating the RPC Liver Phantom. Revised Dec 2005 Credentialing for this protocol requires four steps: (1) submission of the 3D QA Facility Questionnaire for Stereotactic Body Radiation Therapy with supporting documentation to the Image Guided Therapy Center (ITC, (2) a successful dry run test, (3) completion of the phantom treatment experiment and (4) submission of the treatment plan for the first patient treated at the site on this protocol prior to delivering any protocol treatment. The purpose of steps (2) and (3) is to confirm that the dose distribution planned by each institution can be delivered by that institution, and treatment plans can be correctly submitted to the ITC. The RTOG is requesting that each institution keep the phantom for no more than 1 week. During this one-week period, the institution will image, plan, and irradiate the phantom and return it to the Radiological Physics Center (RPC). Thank you for your cooperation with this constraint. This phantom has been designed and constructed by the RPC. The RPC phantom contains two imaging/ dosimetry inserts representing two targets within the liver. The inserts contain a centrally located GTV. There are three orthogonal sheets of radiochromic film passing through the center of the target and two TLD capsules within 0.5 cm of the center of the target. The phantom also contains normal structures: the stomach, a kidney and the spinal cord, each with TLD in the center. If you have any questions, please contact the appropriate person. RPC Paola Alvarez (713) palvarez@mdanderson.org RPC Andrea Molineu (713) amolineu@mdanderson.org RPC Geoff Ibbott (713) gibbott@mdanderson.org MD Anderson Mike Gillin (713) mgillin@mdanderson.org ITC Bill Straube (314) itc@castor.wustl.edu ITC Walter Bosch (314) bosch@radonc.wustl.edu DOSIMETRY INFORMATION TO BE SUBMITTED: The following information is to be submitted to the RPC (include in the phantom shipping box): Original hard-copy isodose distributions in the sagittal, axial and coronal planes through the center of each of the target volumes. Please ensure that each plane fills an entire page, there are greater than 10 isodose lines and that a scale is printed on the page. A completed RPC Liver Phantom Institution Information form. The following information is to be submitted to the ITC (see protocol for additional submissions): The digital treatment planning data in DICOM- RT or the RTOG Data Exchange format using either FTP, CD or tape (see the ITC web site for details). Please cc the RPC (rpc@mdanderson.org) when you inform the ITC of the electronic submission. This will allow us to keep better track of who has and has not submitted the benchmark electronically. Original hard copy isodose distributions in the sagittal, axial and coronal plane through the target center (identical to those sent to the RPC) A copy of the completed RPC Liver Phantom- Institution Information form that was sent to the RPC Send the hard copy data (isodoses and forms) to: Bill Straube, M.S. Image Guided Therapy Center Washington University 4511 Forest Park Ave, Suite 200 St Louis, MO

2 DOSE PRESCRIPTION: Only photon beams with nominal energies ranging from 6 to 25 MV are allowed. The prescribed dose to the phantom is 20 Gy to the isodose line circumscribing the PTV. It should be delivered in 5 fractions with the following constraints: PTV: CTV = GTV (Note that this differs from the protocol). PTV = GTV + (0.4 cm to 1.0 cm) depending on the immobilization device used and/or the individual patient breathing motion (see the protocol and ATC website at The tumors will be labeled GTV1and PTV1 for the first tumor and GTV2 and PTV2 for the second tumor. The most lateral tumor shall be labeled tumor 1and is in the insert labeled A. Prescribed dose of 20 Gy to the PTV. Minimum PTV dose of 18 Gy. No more than 0.5 cc may receive a dose less than 18Gy. Maximum dose of 24 Gy allowed within the PTV. Any hotspots greater than 22 Gy must be within the PTV. DVHs shall be calculated for the liver (liver minus the GTV), kidney, spinal cord, stomach and target lesions (CTV and PTV). Critical Normal Structures Constraints over the normal structures are specified in the following table Normal structure Spinal Cord Volume Any point Dose 17 Gy Kidney 10% 5 Gy Stomach 1 cc 18.5 Gy Normal liver 50% 12 Gy Normal liver 30% 13.5 Gy 2

3 The phantom should be imaged, planned and irradiated as if it were an actual protocol patient, incorporating all of your customary quality assurance checks. IRRADIATING THE PHANTOM Material included in the 2 boxes: Liver Phantom Dosimetric/Imaging inserts Motor driver Motor to platform linkage 2D Reciprocating platform Rubber hose Three acrylic rods containing TLD Envelope with background film and TLD (hidden from view; please don t try to find it) Mailing label to return case at RPC s expense. Traditional RPC TLD block and irradiation table. (Please irradiate this at the time you irradiate the phantom.) Procedures: 1. Call the RPC ( ) with the date that you expect to irradiate the phantom. Ask for Nadia Hernandez or leave a message. Fill the phantom with water: 2. Thread the rubber hose into the filler hole placed on the base of the phantom Fill slowly with water (the rubber hose stretches over most faucets). You may need to jiggle the phantom to release air trapped inside the cavity Remove hose and replace acrylic screw. 3. Allow the phantom to sit with water in it for 20 min. to check for leaks. 4. Look in the insert spaces and check for water leakage. If you find any water call the RPC. If not, proceed to the next step. 5. Position both of the inserts (A and B). The end labeled bottom of insert should be inserted first in the space labeled with the corresponding letter. Align the 2 black arrows. Make sure that each insert is seated properly by making small rotations of the insert around its central axis. 6. Insert the acrylic rod labeled spinal cord rod in the hole labeled spinal cord. The hole and the rod are marked in blue. You will see a TLD capsule in the cavity closed with a screw. The end with the TLD should be inserted first. 7. Insert the acrylic rod labeled stomach rod in the hole labeled stomach. The hole and the rod are marked in green. You will see a TLD capsule in the cavity closed with a screw at the end of the rod and in a slot in the middle of the rod. The end with the TLD should be inserted first. 8. Insert the acrylic rod labeled kidney rod in the hole labeled kidney. The hole and the rod are marked in red. You will see a TLD capsule in the cavity closed with a screw. The end with the TLD should be inserted first. 9. Assemble the 2D reciprocating platform and motor drive system per the attached instructions. Do this on the CT couch so that the phantom and the platform can be imaged. 10. The motor driver for the platform will have been programmed to simulate the manner in which your institution instructs its patients to breathe during the 4D CT. 11. Position and CT the phantom as you would a patient including immobilization techniques. You may wish to scan with 1 mm slices, especially near the target, to better identify the TLD capsules. 12. Turn on the motor drive and acquire your CT images for treatment planning. 13. Segment the phantom images, contouring the skin, liver, stomach, kidney, spinal cord and PTV. Note that the CTV = GTV. PTV = GTV + (0.4 cm to 1.0 cm) depending on the immobilization device used and/or the individual patient breathing motion. Also contour all 8 TLD volumes. Please use the following names for these contours: PTV1_TLD_sup for the superior TLD in target A (lateral), PTV1_TLD_inf for the inferior TLD in target A, PTV2_TLD_sup for the superior TLD in target B (anterior), PTV2_TLD_inf for the inferior TLD in target B, Stomach_TLD for the TLD at the end of the stomach rod, Mid Stomach_TLD for the TLD in the middle of the stomach rod, Kidney_TLD for TLD in the kidney, Cord_TLD for the TLD in the spinal cord The dimensions of the TLD volume are approximately 10 mm long by 2 mm diameter The outside dimensions of the TLD capsules are 15 mm long by 4 mm diameter; the TLD axis is normal to the axial plane. (The capsules and the TLD should be visible on CT image) 14. Plan the treatment as specified in the DOSE PRESCRIPTION above. 15. Remove the inserts and look in the insert space and check for water leakage. If you find any water call the RPC. If not, follow the instructions in step 4 to position the inserts again and proceed to the next step. 16. Perform your customary QA of the plan prior to irradiating the phantom. 17. Irradiate the RPC TLD block according to the instructions provided to measure the reference machine output prior to irradiating the phantom. 3

4 18. Assemble the 2D reciprocating platform and motor drive system per the attached instructions. Do this on the treatment machine couch so that the phantom and the platform can be irradiated. 19. Position the phantom as you would a patient including immobilization techniques prior to delivering the radiation dose. 20. Turn on the motor drive. 21. Irradiate the phantom with the developed plan as you would a protocol patient including immobilization techniques. Try to avoid positioning the axial film at the abutment of adjacent MLC leaves or adjacent arcs. Abutting fields or leaves on the film may increase the uncertainty of the measurement. 22. Remove the insert and place it in the box. 23. Remove the acrylic cylinders from holes and place them in the box. 24. Please verify that there is no water in the insert space. If you find any water call the RPC. 25. Remove the screw on the base of the phantom and drain the water from the phantom. 26. Put the empty phantom in the box. 27. Make sure that the rubber hose is in the box. 28. Include the dosimetry data discussed above. Complete the attached forms. Be sure to include the scale used on the images coming from your TPS. 29. Return the complete package to the RPC. 4

5 RPC Liver Phantom Institution Information (Original to RPC, copy to ITC) Please call the RPC to let us know when you are going to irradiate the phantom. We will irradiate TLD standards to meet your schedule. Ask for Nadia Hernandez or leave a message. Phone number: (713) Institution: Address: Person performing irradiation: Person to receive report: Radiation Oncologist to receive report: Person to call in case of questions: Phone Number: Fax Number: address: Treatment Unit: Manufacturer: Model: In-house specification: Photon Beam: Nominal Energy: (MV) IR (TMR 20/TMR 10): %dd(10) x Collimation Used: MLC MIMIC Other: No. of leaves: Stereotactic System (if modification to linac): Manufacter: Model: Other: 5

6 Please enclose original copies of your treatment plans. Include the coronal, axial and sagittal planes through the target center. Include scaling factors for each plane. Treatment Planning System: Manufacturer: Model: Software: Version Number: Method to Account for Respiratory Induced Target Motion: Please describe your method: 6

7 Treatment of Phantom: Date of Irradiation: Dose specified is to: Muscle Water Indicate the dose delivered to the TLD as determined by your treatment planning computer TLD Mean Dose (Gy) Min. Dose (Gy) Max. Dose (Gy) PTV1_TLD_sup PTV1_TLD_inf PTV2_TLD_sup PTV2_TLD_inf STOMACH_TLD Mid-STOMACH_TLD KIDNEY_TLD CORD_TLD Results of the QA: Did you adjust the MU based on these results? If so, how much? Attach copies of the treatment plan including slices in the sagittal, axial and coronal film planes from both targets. Comments: For Office Use Only TLD Batch Film Batch Phantom ID # Code Date Sent Date Rec'd 7

8 This is a cross sectional view of the phantom. Liver Stomach B Right A Left GTV2 GTV1 Kidney Cord 8

IROC Lung Phantom 3D CRT / IMRT. Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015

IROC Lung Phantom 3D CRT / IMRT. Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015 IROC Lung Phantom 3D CRT / IMRT Guidelines for Planning and Irradiating the IROC Lung Phantom. Revised Dec 2015 The IROC requests that each institution keep the phantom for no more than 2 weeks. During

More information

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014 Lung Spine Phantom Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014 The study groups are requesting that each institution keep the phantom for no more than 2 week. During this

More information

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015

IROC Liver Phantom. Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015 IROC Liver Phantom Guidelines for Planning and Irradiating the IROC Liver Phantom. Revised July 2015 The study groups are requests that each institution keep the phantom for no more than 2 weeks. During

More information

IROC Head and Neck Phantom. Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised April 2014

IROC Head and Neck Phantom. Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised April 2014 IROC Head and Neck Phantom Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised April 2014 The IROC Houston is requesting that each institution keep the phantom for two weeks. During

More information

IROC Prostate Phantom. Guidelines for Planning and Treating the IROC IMRT Prostate Phantom. Revised March 2014

IROC Prostate Phantom. Guidelines for Planning and Treating the IROC IMRT Prostate Phantom. Revised March 2014 IROC Prostate Phantom Guidelines for Planning and Treating the IROC IMRT Prostate Phantom. Revised March 2014 The study groups are requesting that each institution keep the phantom for a period of time

More information

Prostate Phantom. Guidelines for Planning and Treating the IMRT Prostate Phantom. Revised March 2014

Prostate Phantom. Guidelines for Planning and Treating the IMRT Prostate Phantom. Revised March 2014 Prostate Phantom Guidelines for Planning and Treating the IMRT Prostate Phantom. Revised March 2014 GENERAL INFORMATION: Each institution may keep the phantom for a period of time no more than 2 weeks.

More information

IROC Head and Neck Phantom. Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised MARCH 2014

IROC Head and Neck Phantom. Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised MARCH 2014 IROC Head and Neck Phantom Guidelines for Planning and Irradiating the IROC IMRT Phantom. Revised MARCH 2014 The study groups are requesting that each institution keep the phantom for a period of time

More information

IMRT QUESTIONNAIRE. Address: Physicist: Research Associate: Dosimetrist: Responsible Radiation Oncologist(s)

IMRT QUESTIONNAIRE. Address: Physicist:   Research Associate:   Dosimetrist:   Responsible Radiation Oncologist(s) IMRT QUESTIONNAIRE Institution: Date: / / Address: Physicist: e-mail: Telephone: Fax: Research Associate: email: Telephone: Fax: Dosimetrist: email: Telephone: Fax: Responsible Radiation Oncologist(s)

More information

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark*

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark* Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark* Purpose: To evaluate an institution s 3D treatment planning process and the institution

More information

ADVANCED TECHNOLOGY CONSORTIUM (ATC) CREDENTIALING PROCEDURES FOR LUNG BRACHYTHERAPY IMPLANT PROTOCOLS

ADVANCED TECHNOLOGY CONSORTIUM (ATC) CREDENTIALING PROCEDURES FOR LUNG BRACHYTHERAPY IMPLANT PROTOCOLS ACOSOG-RTOG Lung Brachytherapy QA Page 1 of 8 ADVANCED TECHNOLOGY CONSORTIUM (ATC) CREDENTIALING PROCEDURES FOR LUNG BRACHYTHERAPY IMPLANT PROTOCOLS FACILITY QUESTIONNAIRE Institutions wishing to enter

More information

NSABP PROTOCOL B-39B RTOG PROTOCOL 0413

NSABP PROTOCOL B-39B RTOG PROTOCOL 0413 NSABP PROTOCOL B-39B RTOG PROTOCOL 0413 (A RANDOMIZED PHASE III STUDY OF CONVENTIONAL WHOLE BREAST IRRADIATION WBI) VERSUS PARTIAL BREAST IRRADIATION (PBI) FOR WOMEN WITH STAGE 0, I, OR II BREAST CANCER

More information

QA for Clinical Dosimetry with Emphasis on Clinical Trials

QA for Clinical Dosimetry with Emphasis on Clinical Trials QA for Clinical Dosimetry with Emphasis on Clinical Trials Geoffrey S. Ibbott, Ph.D. and RPC Staff G. Ibbott, AAPM Summer School, June 24, 2009 1 QA Infrastructure for Clinical Trials Participating Institutions

More information

Assessing Heterogeneity Correction Algorithms Using the Radiological Physics Center Anthropomorphic Thorax Phantom

Assessing Heterogeneity Correction Algorithms Using the Radiological Physics Center Anthropomorphic Thorax Phantom Assessing Heterogeneity Correction Algorithms Using the Radiological Physics Center Anthropomorphic Thorax Phantom David Followill, Ph.D. Associate Director Radiological Physics Center RPC History Lesson

More information

Credentialing for the Use of IGRT in Clinical Trials

Credentialing for the Use of IGRT in Clinical Trials Credentialing for the Use of IGRT in Clinical Trials James M. Galvin, DSc Thomas Jefferson University Hospital Jefferson Medical College Philadelphia, PA and The Radiation Therapy Oncology Group RADIATION

More information

The RPC s Evaluation of Advanced Technologies. AAPM Refresher Course July 29, 2008 Geoffrey S. Ibbott, Ph.D. and RPC Staff

The RPC s Evaluation of Advanced Technologies. AAPM Refresher Course July 29, 2008 Geoffrey S. Ibbott, Ph.D. and RPC Staff The RPC s Evaluation of Advanced Technologies AAPM Refresher Course July 29, 2008 Geoffrey S. Ibbott, Ph.D. and RPC Staff 1 http://rpc.mdanderson.org Supported by: NCI grants CA10953 and CA81647, and an

More information

RPC s Credentialing Programs for Clinical Trials

RPC s Credentialing Programs for Clinical Trials RPC s Credentialing Programs for Clinical Trials July 19, 2010 Geoffrey S. Ibbott, Ph.D. and RPC Staff Mission The mission of the Radiological Physics Center is to assure NCI and the Cooperative Groups

More information

What Can Go Wrong in Radiation Treatment: Data from the RPC. Geoffrey S. Ibbott, Ph.D. and RPC Staff

What Can Go Wrong in Radiation Treatment: Data from the RPC. Geoffrey S. Ibbott, Ph.D. and RPC Staff What Can Go Wrong in Radiation Treatment: Data from the RPC Geoffrey S. Ibbott, Ph.D. and RPC Staff Clinical NCI Trials CALGB 1768 Participating Institutions NCCTG ECOG COG ACOSOG SWOG QARC RPC ATC RTOG

More information

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer Tony Kin Ming Lam Radiation Planner Dr Patricia Lindsay, Radiation Physicist Dr John Kim, Radiation Oncologist Dr Kim Ann Ung,

More information

Transperineal Interstitial Permanent Prostate Brachytherapy (TIPPB) Quality Assurance Guidelines

Transperineal Interstitial Permanent Prostate Brachytherapy (TIPPB) Quality Assurance Guidelines Prostate Brachytherapy QA Page 1 of 1 Transperineal Interstitial Permanent Prostate Brachytherapy (TIPPB) Quality Assurance Guidelines I. Purpose Table of Contents II. III. IV. Background Credentialing

More information

The Accuracy of 3-D Inhomogeneity Photon Algorithms in Commercial Treatment Planning Systems using a Heterogeneous Lung Phantom

The Accuracy of 3-D Inhomogeneity Photon Algorithms in Commercial Treatment Planning Systems using a Heterogeneous Lung Phantom The Accuracy of 3-D Inhomogeneity Photon Algorithms in Commercial Treatment Planning Systems using a Heterogeneous Lung Phantom Gary Fisher, B.S. David Followill, Ph.D. Geoffrey Ibbott, Ph.D. This investigation

More information

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session Stereotactic Body Radiation Therapy Quality Assurance Educational Session J Perks PhD, UC Davis Medical Center, Sacramento CA SBRT fundamentals Extra-cranial treatments Single or small number (2-5) of

More information

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques TROG 08.03 RAVES Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques Introduction Commissioning and quality assurance of planning systems and treatment delivery

More information

Completion of Treatment Planning. Eugene Lief, Ph.D. Christ Hospital Jersey City, New Jersey USA

Completion of Treatment Planning. Eugene Lief, Ph.D. Christ Hospital Jersey City, New Jersey USA Completion of Treatment Planning Eugene Lief, Ph.D. Christ Hospital Jersey City, New Jersey USA Outline Entering Prescription Plan Printout Print and Transfer DRR Segment BEV Export to R&V Physician approval

More information

Follow this and additional works at: Part of the Medicine and Health Sciences Commons

Follow this and additional works at:  Part of the Medicine and Health Sciences Commons Texas Medical Center Library DigitalCommons@TMC UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences 8-2012 EVALUATION OF THE EFFECTIVENESS OF ANISOTROPIC ANALYTICAL ALGORITHM

More information

doi: /j.ijrobp

doi: /j.ijrobp doi:10.1016/j.ijrobp.2005.05.021 Int. J. Radiation Oncology Biol. Phys., Vol. 63, No. 2, pp. 577 583, 2005 Copyright 2005 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/05/$ see front

More information

Clinical Trial Credentialing:

Clinical Trial Credentialing: IROC Mission Clinical Trial Credentialing: Provide integrated radiation oncology and diagnostic Where imaging to Start quality and control programs in support of the NCI s NCTN Network thereby Resources

More information

RTOG DOSIMETRY DATA SUBMISSION

RTOG DOSIMETRY DATA SUBMISSION Radiation Therapy Oncology Group American College of Radiology 1818 Market Street, Suite 1600 Philadelphia, PA 19103-3604 (215) 574-3189 (800) 227-5463 Ext. 4189 (215) 928-0153 Fax Phoenix, Arizona RTOG

More information

Variable Dose Rate Dynamic Conformal Arc Therapy (DCAT) for SABR Lung: From static fields to dynamic arcs using Monaco 5.10

Variable Dose Rate Dynamic Conformal Arc Therapy (DCAT) for SABR Lung: From static fields to dynamic arcs using Monaco 5.10 Variable Dose Rate Dynamic Conformal Arc Therapy (DCAT) for SABR Lung: From static fields to dynamic arcs using Monaco 5.10 Simon Goodall Radiation Oncology Physicist Genesis Care Western Australia Introduction

More information

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain 1 Carol Boyd March Case Study March 11, 2013 Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain History of Present Illness:

More information

The Physics of Oesophageal Cancer Radiotherapy

The Physics of Oesophageal Cancer Radiotherapy The Physics of Oesophageal Cancer Radiotherapy Dr. Philip Wai Radiotherapy Physics Royal Marsden Hospital 1 Contents Brief clinical introduction Imaging and Target definition Dose prescription & patient

More information

EORTC Member Facility Questionnaire

EORTC Member Facility Questionnaire Page 1 of 9 EORTC Member Facility Questionnaire I. Administrative Data Name of person submitting this questionnaire Email address Function Phone Institution Address City Post code Country EORTC No Enter

More information

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Implementing New Technologies for Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy Implementation of radiosurgery and SBRT requires a fundamentally sound approach Errors don t blur out

More information

ATC/NEMA/AAPM DICOM Demonstration. Walter R. Bosch, D.Sc.

ATC/NEMA/AAPM DICOM Demonstration. Walter R. Bosch, D.Sc. ATC/NEMA/AAPM DICOM Demonstration Walter R. Bosch, D.Sc. Two-Phase Strategy for DICOM Demonstration 1. Demonstrate export of ATC-Compliant DICOM RT objects (or as large a subset as possible) 2. Demonstrate

More information

SBRT of Lung & Liver lesions using Novalis IGRT System. Patrick Silgen, M.S., DABR Park Nicollet Methodist Hospital

SBRT of Lung & Liver lesions using Novalis IGRT System. Patrick Silgen, M.S., DABR Park Nicollet Methodist Hospital SBRT of Lung & Liver lesions using Novalis IGRT System Patrick Silgen, M.S., DABR Park Nicollet Methodist Hospital It could be worse!!! Acknowledgements Michael Weber, M.S., DABR Brenden Garrity, M.S.,

More information

8/2/2018. Disclosure. Online MR-IG-ART Dosimetry and Dose Accumulation

8/2/2018. Disclosure. Online MR-IG-ART Dosimetry and Dose Accumulation Online MR-IG-ART Dosimetry and Dose Accumulation Deshan Yang, PhD, Associate Professor Department of Radiation Oncology, School of Medicine Washington University in Saint Louis 1 Disclosure Received research

More information

Review of Workflow NRG (RTOG) 1308: Phase III Randomized Trial Comparing Overall Survival after Photon versus Proton Chemoradiation Therapy for

Review of Workflow NRG (RTOG) 1308: Phase III Randomized Trial Comparing Overall Survival after Photon versus Proton Chemoradiation Therapy for Review of Workflow NRG (RTOG) 1308: Phase III Randomized Trial Comparing Overall Survival after Photon versus Proton Chemoradiation Therapy for Inoperable Stage II-IIIB NSCLC 1 Co-Chairs Study Chair: Zhongxing

More information

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA Indra J. Das,

More information

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical sites. The final aim will be to be able to make out these

More information

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas 1 Carol Boyd Comprehensive Case Study July 11, 2013 Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas Abstract: Introduction:

More information

Defining Target Volumes and Organs at Risk: a common language

Defining Target Volumes and Organs at Risk: a common language Defining Target Volumes and Organs at Risk: a common language Eduardo Rosenblatt Section Head Applied Radiation Biology and Radiotherapy (ARBR) Section Division of Human Health IAEA Objective: To introduce

More information

Chapters from Clinical Oncology

Chapters from Clinical Oncology Chapters from Clinical Oncology Lecture notes University of Szeged Faculty of Medicine Department of Oncotherapy 2012. 1 RADIOTHERAPY Technical aspects Dr. Elemér Szil Introduction There are three possibilities

More information

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 401 410, 2014 A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * M. D. SUDITU 1,2, D. ADAM 1,2, R. POPA 1,2, V. CIOCALTEI

More information

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer 1 Charles Poole April Case Study April 30, 2012 Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer Abstract: Introduction: This study

More information

EVALUATION OF INTENSITY MODULATED RADIATION THERAPY (IMRT) DELIVERY ERROR DUE TO IMRT TREATMENT PLAN COMPLEXITY AND IMPROPERLY MATCHED DOSIMETRY DATA

EVALUATION OF INTENSITY MODULATED RADIATION THERAPY (IMRT) DELIVERY ERROR DUE TO IMRT TREATMENT PLAN COMPLEXITY AND IMPROPERLY MATCHED DOSIMETRY DATA Texas Medical Center Library DigitalCommons@TMC UT GSBS Dissertations and Theses (Open Access) Graduate School of Biomedical Sciences 8-2011 EVALUATION OF INTENSITY MODULATED RADIATION THERAPY (IMRT) DELIVERY

More information

CyberKnife Technology in Ablative Radiation Therapy. Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017

CyberKnife Technology in Ablative Radiation Therapy. Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017 CyberKnife Technology in Ablative Radiation Therapy Jun Yang PhD Cyberknife Center of Philadelphia Drexel University Jan 2017 Objectives Components and work flow of CyberKnife Motion management of CyberKnife

More information

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT Purpose The purpose of this curriculum outline is to provide a framework for multidisciplinary training for radiation oncologists, medical

More information

An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery

An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery An anthropomorphic head phantom with a BANG polymer gel insert for dosimetric evaluation of IMRT treatment delivery G. Ibbott a, M. Beach a, M. Maryanski b a M.D. Anderson Cancer Center, Houston, Texas,

More information

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Tagreed AL-ALAWI Medical Physicist King Abdullah Medical City- Jeddah Aim 1. Simplify and standardize

More information

NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning

NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD. Dosimetry Planning NIA MAGELLAN HEALTH RADIATION ONCOLOGY CODING STANDARD Dosimetry Planning CPT Codes: 77295, 77300, 77301, 77306, 77307, 77321, 77316, 77317, 77318, 77331, 77399 Original Date: April, 2011 Last Reviewed

More information

3D Conformal Radiation Therapy for Mucinous Carcinoma of the Breast

3D Conformal Radiation Therapy for Mucinous Carcinoma of the Breast 1 Angela Kempen February Case Study February 22, 2012 3D Conformal Radiation Therapy for Mucinous Carcinoma of the Breast History of Present Illness: JE is a 45 year-old Caucasian female who underwent

More information

Disclosures. Clinical Implementation of SRS/SBRT. Overview. Anil Sethi, PhD. Speaker: BrainLAB Standard Imaging Research collaboration: RaySearch

Disclosures. Clinical Implementation of SRS/SBRT. Overview. Anil Sethi, PhD. Speaker: BrainLAB Standard Imaging Research collaboration: RaySearch Clinical Implementation of SRS/SBRT Anil Sethi, PhD Loyola University Medical Center August 3, 2017 Disclosures Speaker: BrainLAB Standard Imaging Research collaboration: RaySearch 2 Overview Physics Considerations

More information

International Practice Accreditation

International Practice Accreditation International Practice Accreditation Program endorsed and supported by Jean-Xavier Hallet Punta Cana, Nov 2017 Short History Created in 2004 by ESTRO, independent since 2009 Dosimetry Laboratory (IGR):

More information

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery Reena Phurailatpam Tejpal Gupta, Rakesh Jalali, Zubin Master, Bhooshan Zade,

More information

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY doi:10.1016/j.ijrobp.2009.03.029 Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 1, pp. 253 259, 2009 Copyright Ó 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/$ see front

More information

Data Collected During Audits for Clinical Trials. July 21, 2010 Geoffrey S. Ibbott, Ph.D. and RPC Staff

Data Collected During Audits for Clinical Trials. July 21, 2010 Geoffrey S. Ibbott, Ph.D. and RPC Staff Data Collected During Audits for Clinical Trials July 21, 2010 Geoffrey S. Ibbott, Ph.D. and RPC Staff RPC Programs Assure... Constancy of basic machine calibration (TLD/OSLD Audits) Validity of treatment

More information

Activity report from JCOG physics group

Activity report from JCOG physics group 2013.5.9 Global Harmonization Group meeting ICCR2013 @ Melbourne Activity report from JCOG physics group 1 Hokkaido University, Graduate School of Medicine, 2 National Cancer Center, Center for Cancer

More information

Clinical Implementation of SRS/SBRT

Clinical Implementation of SRS/SBRT Clinical Implementation of SRS/SBRT Anil Sethi, PhD, FAAPM Loyola University Medical Center November 4, 2017 Disclosures Speaker: BrainLAB Standard Imaging Research collaboration: RaySearch 2 Learning

More information

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Measurement of Dose to Critical Structures Surrounding the Prostate from Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Conformal Radiation Therapy (3D-CRT); A Comparative Study Erik

More information

Treatment Planning & IGRT Credentialing for NRG SBRT Trials

Treatment Planning & IGRT Credentialing for NRG SBRT Trials Treatment Planning & IGRT Credentialing for NRG SBRT Trials Hania Al Hallaq, Ph.D. Department of Radiation & Cellular Oncology The University of Chicago Learning Objectives Explain rationale behind credentialing

More information

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria REVISITING ICRU VOLUME DEFINITIONS Eduardo Rosenblatt Vienna, Austria Objective: To introduce target volumes and organ at risk concepts as defined by ICRU. 3D-CRT is the standard There was a need for a

More information

Specification of Tumor Dose. Prescription dose. Purpose

Specification of Tumor Dose. Prescription dose. Purpose Specification of Tumor Dose George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Prescription dose What do we mean by a dose prescription of 63 Gy? Isocenter dose

More information

Stereotactic Body Radiotherapy for Lung Lesions using the CyberKnife of-the-art and New Innovations

Stereotactic Body Radiotherapy for Lung Lesions using the CyberKnife of-the-art and New Innovations Stereotactic Body Radiotherapy for Lung Lesions using the CyberKnife State-of of-the-art and New Innovations Chad Lee, PhD CK Solutions, Inc. and CyberKnife Centers of San Diego Outline Basic overview

More information

Comparing Study between Conventional and Conformal Planning Radiotherapy

Comparing Study between Conventional and Conformal Planning Radiotherapy Middle East Journal of Applied Sciences Volume : 06 Issue :04 Oct.-Dec. 2016 Pages: 660-670 Comparing Study between Conventional and Conformal Planning Radiotherapy 1 Aida Salama, 1 Sahar Awad, 2 Tamer

More information

Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy

Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy VERSION 2.1 April 2015 Table of Contents Abbreviations & Glossary... 3 Executive Summary...

More information

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident

RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Resident s Name: RADIATION ONCOLOGY RESIDENCY PROGRAM Competency Evaluation of Resident Rotation: PHYS 703: Clinical Rotation 2 Inclusive dates of rotation: Feb. 26, 2016 Aug. 25, 2016 Director or Associate

More information

TRANS-TASMAN RADIATION ONCOLOGY GROUP INC. Quality Assurance. Treatment Planning Benchmark

TRANS-TASMAN RADIATION ONCOLOGY GROUP INC. Quality Assurance. Treatment Planning Benchmark TRANS-TASMAN RADIATION ONCOLOGY GROUP INC. Quality Assurance Treatment Planning Benchmark PORTEC-3/ TROG 08.04 Randomised Phase III Trial Comparing Concurrent Chemoradiation and Adjuvant Chemotherapy with

More information

Additional Questions for Review 2D & 3D

Additional Questions for Review 2D & 3D Additional Questions for Review 2D & 3D 1. For a 4-field box technique, which of the following will deliver the lowest dose to the femoral heads? a. 100 SSD, equal dmax dose to all fields b. 100 SSD, equal

More information

A Dosimetric Comparison of Whole-Lung Treatment Techniques. in the Pediatric Population

A Dosimetric Comparison of Whole-Lung Treatment Techniques. in the Pediatric Population A Dosimetric Comparison of Whole-Lung Treatment Techniques in the Pediatric Population Corresponding Author: Christina L. Bosarge, B.S., R.T. (R) (T) Indiana University School of Medicine Department of

More information

Quality Assurance of TPS: comparison of dose calculation for stereotactic patients in Eclipse and iplan RT Dose

Quality Assurance of TPS: comparison of dose calculation for stereotactic patients in Eclipse and iplan RT Dose Petrovic B Comparison of dose calculation algorithms for stereotaxy Quality Assurance of TPS: comparison of dose calculation for stereotactic patients in and RT Dose Borislava Petrovic 1, Aleksandra Grządziel

More information

Catharine Clark NPL, Royal Surrey County Hospital and RTTQA

Catharine Clark NPL, Royal Surrey County Hospital and RTTQA Catharine Clark NPL, Royal Surrey County Hospital and RTTQA Background Historically UK has been relatively independent of the rest of the world in audit NPL PSDL International intercomparison for reference

More information

BLADDER RADIOTHERAPY PLANNING DOCUMENT

BLADDER RADIOTHERAPY PLANNING DOCUMENT A 2X2 FACTORIAL RANDOMISED PHASE III STUDY COMPARING STANDARD VERSUS REDUCED VOLUME RADIOTHERAPY WITH AND WITHOUT SYNCHRONOUS CHEMOTHERAPY IN MUSCLE INVASIVE BLADDER CANCER (ISRCTN 68324339) BLADDER RADIOTHERAPY

More information

MAX-HD SRS PHANTOM THE COMPREHENSIVE END-TO-END SRS PHANTOM SCAN PLAN LOCALIZE TREAT. distributed by:

MAX-HD SRS PHANTOM THE COMPREHENSIVE END-TO-END SRS PHANTOM SCAN PLAN LOCALIZE TREAT. distributed by: SRS PHANTOM SCAN PLAN LOCALIZE TREAT THE COMPREHENSIVE END-TO-END SRS PHANTOM distributed by: Tel: +33 (0) 42 88 68 41 info@orion-france.com www.orion-france.com 2, Avenue du General Balfourier 75016 Paris,

More information

Patient-Specific QA & QA Process. Sasa Mutic, Ph.D. Washington University School of Medicine

Patient-Specific QA & QA Process. Sasa Mutic, Ph.D. Washington University School of Medicine Patient-Specific QA & QA Process Sasa Mutic, Ph.D. Washington University School of Medicine Outline of Presentation QA and QC in RT Safety vs. quality Patient specific QM program Learning Objectives Describe

More information

Hybrid VMAT/IMRT Approach to Traditional Cranio-Spinal Irradiation (CSI): A Case Study on Planning Techniques and Delivery

Hybrid VMAT/IMRT Approach to Traditional Cranio-Spinal Irradiation (CSI): A Case Study on Planning Techniques and Delivery Hybrid VMAT/IMRT Approach to Traditional Cranio-Spinal Irradiation (CSI): A Case Study on Planning Techniques and Delivery Catherine Cadieux, CMD June 13, 2017 The Ohio State University Comprehensive Cancer

More information

biij Initial experience in treating lung cancer with helical tomotherapy

biij Initial experience in treating lung cancer with helical tomotherapy Available online at http://www.biij.org/2007/1/e2 doi: 10.2349/biij.3.1.e2 biij Biomedical Imaging and Intervention Journal CASE REPORT Initial experience in treating lung cancer with helical tomotherapy

More information

Image Guided Stereotactic Radiotherapy of the Lung

Image Guided Stereotactic Radiotherapy of the Lung Image Guided Stereotactic Radiotherapy of the Lung Jamie Marie Harris, MS DABR Avera McKennan Radiation Oncology September 25, 2015 Stereotactic Body Radiotherapy - Clinical Dose/Fractionation - Normal

More information

The Effects of DIBH on Liver Dose during Right-Breast Treatments: A Case Study Abstract: Introduction: Case Description: Conclusion: Introduction

The Effects of DIBH on Liver Dose during Right-Breast Treatments: A Case Study Abstract: Introduction: Case Description: Conclusion: Introduction 1 The Effects of DIBH on Liver Dose during Right-Breast Treatments: A Case Study Megan E. Sullivan, B.S., R.T.(T)., Patrick A. Melby, B.S. Ashley Hunzeker, M.S., CMD, Nishele Lenards, M.S., CMD, R.T. (R)(T),

More information

Image Registration for Radiation Therapy Applications: Part 2: In-room Volumetric Imaging

Image Registration for Radiation Therapy Applications: Part 2: In-room Volumetric Imaging Image Registration for Radiation Therapy Applications: Part 2: In-room Volumetric Imaging Peter Balter Ph.D University of Texas M.D. Anderson Cancer Center Houston, TX, USA Disclosure Information Peter

More information

8/2/2017. Improving Dose Prescriptions for Safety, Reporting, and Clinical Guideline Consistency. Part III

8/2/2017. Improving Dose Prescriptions for Safety, Reporting, and Clinical Guideline Consistency. Part III Improving Dose Prescriptions for Safety, Reporting, and Clinical Guideline Consistency Part III I Das, J Moran, M Langer Keeping Guidelines On Track: The Effect On Clinical Practice of Neglecting Guidelines

More information

Credentialing for Clinical Trials -IGRT. Evidence Based Radiation Oncology. Levels of Clinical Evidence. Why Credentialing?

Credentialing for Clinical Trials -IGRT. Evidence Based Radiation Oncology. Levels of Clinical Evidence. Why Credentialing? Acknowledgements Credentialing for Clinical Trials -IGRT Invitation from Organizers RTOG Headquarter QA Team ATC Collaborators Evidence Based Radiation Oncology Clinical Trials From Collaborative Groups

More information

Can we hit the target? Can we put the dose where we want it? Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy

Can we hit the target? Can we put the dose where we want it? Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy Quality Assurance in Stereotactic Radiosurgery and Fractionated Stereotactic Radiotherapy David Shepard, Ph.D. Swedish Cancer Institute Seattle, WA Timothy D. Solberg, Ph.D. University of Texas Southwestern

More information

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia IMRT - the physician s eye-view Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia The goals of cancer therapy Local control Survival Functional status Quality of life Causes

More information

IMRT for Prostate Cancer

IMRT for Prostate Cancer IMRT for Cancer All patients are simulated in the supine position. Reproducibility is achieved using a custom alpha cradle cast that extends from the mid-back to mid-thigh. The feet are positioned in a

More information

Future upcoming technologies and what audit needs to address

Future upcoming technologies and what audit needs to address Future upcoming technologies and what audit needs to address Dr R.I MacKay History of audit Absolute dose - Simple phantom standard dose measurement Point doses in beams - Phantoms of relatively simple

More information

Stereotaxy. Outlines. Establishing SBRT Program: Physics & Dosimetry. SBRT - Simulation. Body Localizer. Sim. Sim. Sim. Stereotaxy?

Stereotaxy. Outlines. Establishing SBRT Program: Physics & Dosimetry. SBRT - Simulation. Body Localizer. Sim. Sim. Sim. Stereotaxy? Establishing SBRT Program: Physics & Dosimetry Lu Wang, Ph.D. Radiation Oncology Department Fox Chase Cancer Center Outlines Illustrate the difference between SBRT vs. CRT Introduce the major procedures

More information

IGRT Solution for the Living Patient and the Dynamic Treatment Problem

IGRT Solution for the Living Patient and the Dynamic Treatment Problem IGRT Solution for the Living Patient and the Dynamic Treatment Problem Lei Dong, Ph.D. Associate Professor Dept. of Radiation Physics University of Texas M. D. Anderson Cancer Center Houston, Texas Learning

More information

SBRT Credentialing: Understanding the Process from Inquiry to Approval

SBRT Credentialing: Understanding the Process from Inquiry to Approval SBRT Credentialing: Understanding the Process from Inquiry to Approval David Followill, Ph.D. (presented by Andrea Molineu, M.S.) IROC Houston QA Center July 15, 2015 What is credentialing? Verification

More information

Spatially Fractionated Radiation Therapy: GRID Sponsored by.decimal Friday, August 22, Pamela Myers, Ph.D.

Spatially Fractionated Radiation Therapy: GRID Sponsored by.decimal Friday, August 22, Pamela Myers, Ph.D. Spatially Fractionated Radiation Therapy: GRID Sponsored by.decimal Friday, August 22, 2014 Pamela Myers, Ph.D. Introduction o o o o o Outline GRID compensator Purpose of SFRT/GRID therapy Fractionation

More information

Measurement Guided Dose Reconstruction (MGDR) Transitioning VMAT QA from phantom to patient geometry

Measurement Guided Dose Reconstruction (MGDR) Transitioning VMAT QA from phantom to patient geometry Measurement Guided Dose Reconstruction (MGDR) Transitioning VMAT QA from phantom to patient geometry Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Conflict of interest None Acknowledgement: Jim

More information

Reference Photon Dosimetry Data for the Siemens Primus Linear Accelerator: Preliminary Results for Depth Dose and Output Factor

Reference Photon Dosimetry Data for the Siemens Primus Linear Accelerator: Preliminary Results for Depth Dose and Output Factor Reference Photon Dosimetry Data for the Siemens Primus Linear Accelerator: Preliminary Results for Depth Dose and Output Factor Sang Hyun Cho and Geoffrey S. Ibbott Department of Radiation Physics The

More information

Grid Treatment of Left Upper Lobe Lung Mass History of Present Illness: Past Medical History:

Grid Treatment of Left Upper Lobe Lung Mass History of Present Illness: Past Medical History: 1 Ellie Hawk Clinical Practicum I Case Study II April 19, 2015 Grid Treatment of Left Upper Lobe Lung Mass History of Present Illness: The patient is a 79 year-old white gentleman who was diagnosed with

More information

S. Derreumaux (IRSN) Accidents in radiation therapy in France: causes, consequences and lessons learned

S. Derreumaux (IRSN) Accidents in radiation therapy in France: causes, consequences and lessons learned S. Derreumaux (IRSN) Accidents in radiation therapy in France: causes, consequences and lessons learned MEDICAL LINEAR ACCELERATORS Electron beam (MeV) Photon beam (MV) PRECISION REQUIRED IN RADIOTHERAPY

More information

Spinal Cord Doses in Palliative Lung Radiotherapy Schedules

Spinal Cord Doses in Palliative Lung Radiotherapy Schedules Journal of the Egyptian Nat. Cancer Inst., Vol. 8, No., June: -, 00 Spinal Cord Doses in Palliative Lung Radiotherapy Schedules HODA AL-BOOZ, FRCR FFRRCSI M.D.* and CAROL PARTON, Ph.D.** The Departments

More information

Stereotactic Body Radiotherapy for Lung Tumours. Dr. Kaustav Talapatra Head, Radiation Oncology Kokilaben Dhirubhai Ambani Hospital Mumbai

Stereotactic Body Radiotherapy for Lung Tumours. Dr. Kaustav Talapatra Head, Radiation Oncology Kokilaben Dhirubhai Ambani Hospital Mumbai Stereotactic Body Radiotherapy for Lung Tumours Dr. Kaustav Talapatra Head, Radiation Oncology Kokilaben Dhirubhai Ambani Hospital Mumbai SBRT Definition SBRT is a method of External Beam Radiation that

More information

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida American Association of Medical Dosimetrists 2015 Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida Most

More information

Unrivaled, End-to-End

Unrivaled, End-to-End PHANTOMS Unrivaled, End-to-End Stereotactic QA Industry-leading 0.1mm accuracy minimizes errors at each link in the stereotactic quality assurance chain. Stereotactic radiosurgery (SRS) is governed by

More information

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor Helical (Spiral) Tomotherapy Novel Clinical Applications of IMRT Linac Ring Gantry CT Detector X-Ray Fan Beam Binary Multileaf Collimator Binary MLC Leaves James S Welsh, MS, MD Department of Human Oncology

More information

Automated Plan Quality Check with Scripting. Rajesh Gutti, Ph.D. Clinical Medical Physicist

Automated Plan Quality Check with Scripting. Rajesh Gutti, Ph.D. Clinical Medical Physicist Automated Plan Quality Check with Scripting Rajesh Gutti, Ph.D. Clinical Medical Physicist Veera.Gutti@BSWHealth.org Outline Introduction - BSW Automation in Treatment planning Eclipse Scripting API Script

More information

Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy

Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy Traceability and absorbed dose standards for small fields, IMRT and helical tomotherapy Simon Duane, Hugo Palmans, Peter Sharpe NPL, UK Stefaan Vynckier UCL, Brussels, Belgium LNE-LNHB / BIPM workshop,

More information