Review. Ageing 2: Cancer! Review: Mutations. Mutations 2/14/11. The Raw Material for Evolution. The Double Edged Sword

Size: px
Start display at page:

Download "Review. Ageing 2: Cancer! Review: Mutations. Mutations 2/14/11. The Raw Material for Evolution. The Double Edged Sword"

Transcription

1 Ageing 2: Cancer! Review: The force of natural selection declines with ageing due to increase in extrinsic mortality (= weakening of natural selection) and reduction in reproduction with age (selection acts at reproduction) Review Selection acts on genetic variation in a population (culling different individuals that have different genotypes) This variation is caused by mutations What are mutations? Mutations The Raw Material for Evolution Mistakes: Any change in the genetic code, including changes caused by errors in DNA replication or errors in DNA repair Mutations The Double Edged Sword Cause of many diseases, ageing, cancer Cause of evolutionary novelty, upon which natural selection could act Hierarchical processes that are affected by Mutations STRUCTURAL Amino Acid composition (nucleotide substitutions, Amino Acid substitutions) Gene duplications, deletions; Chromosome duplications, deletions Secondary, Tertiary, Quaternary structure REGULATORY Gene/Protein expression (transcription, RNA processing, translation, etc) Protein activity (allosteric control, conformational changes, receptors) 1

2 Amino Acid Substitutions Synonymous substitutions: Mutations that do not cause amino acid change (usually 3rd position) Nonsynonymous substitutions: Mutations that cause amino acid change (usually 1st, 2nd position) REGULATORY Gene/Protein expression Transcription: Mutations at promoters, enhancers, transcription factors, Histones/acetylation, etc. RNA Processing: Mutations at splice sites, sites of polyadenylation, sites controlling RNA export Translation: Mutations in ribosomes, regulatory regions, etc Protein activity (allosteric control, conformational changes, receptors) Central Dogma Transcription Could have mutations in promoter or enhancer Could have mutation in transcription factor Mutation in repressor Mutations in factors that alter chromatin structure (histone acetylation) (gene expression) A hallmark of ageing and cancer is the increase of genomic instability with age Selection that acts to preserve genomic stability would diminish with age Somatic mutations (mutations in the body) accumulate with age mutational accumulation from previous lecture (heritable deleterious mutations that get expressed later in life diseases expressed later in life) Cancer is very common Lifetime risk of cancer in human populations is around 1 out of 3 Each year 10 million cases are diagnosed We have no global cure for cancer 2

3 What is Cancer? A problem of multicellular organisms HeLa cells Multicellularity requires social cohesion of cells: All cells must die at some point in multicellular organisms (apoptosis, programmed cell death) Cancer cells revert to unicellular selfishness, and are immortal, and fail to die tumor Tumor Progression by Clonal Evolution Cancer cells have a short term evolutionary advantage over wild type cells, because they grow and proliferate at a greater rate Thus, selection leads to a preponderance of cancer cells over healthy cells As more mutations accumulate in cancer cells, the greater the competitive edge In other words, cancer cells evolve towards higher virulence within the body However, at the whole organismal level there is a cost Cancer Stem Cells? Unresolved issue: to what extent is cancer (tumor growth) due to proliferation of all cells or a few special cells (cancer stem cells)? Hypothesis 1: all tumor cells are immortal- every cell in a tumor is the same Hypothesis 2: only some cells immortal- special lineage of cells (cancer stem cells) in a tumor is really responsible for tumor growth and metastasis Ageing and Cancer! Cancer Cells Cancer is considered a disease of ageing because the somatic mutations that accumulate during ageing can sometimes disrupt normal genetic control of cell proliferation and cell death (apoptosis) Ironically, these mutations make cancer cells immortal, such that they fail to age and die To what extent should treatment focus on targeting cancer stem cells? The Irony of Cancer! Environmental assaults (oxidative stress, smoking, pesticides, radiation, etc.) cause DNA damage This is considered a symptom of ageing because as you age the DNA repair and genomic stability mechanisms decline with age Mutations by chance at genes that affect cell growth, proliferation, DNA repair; some of the mutations might have been inherited Cancer (immortal) cells that fail to age and die (tend to be expressed in older individuals) 3

4 Types of Mutations that lead to Cancer! Mutations to proto-oncogenes --> leading to oncogenes, or insertions of oncogenes (genes involved in cell growth and development; growth factors, growth factor receptors etc) Mutations to tumor suppressor genes (e.g. Trp53; Genes whose products block abnormal growth) Mutations to DNA repair genes (mismatch repair etc) Telomere shortening leading to chromosome instability and gene deletions Treatment for Cancer can age you further Once cells have become immortal, there is a tradeoff between killing the cancer cells and accelerating ageing in normal cells Radiation and chemotherapy kills cancer cells but will age normal cells (and induce mutations) Cancer is a byproduct of ageing; yet, cancer protection/treatment could accelerate ageing Targets for! Cancer Suppression Reduction in cell proliferation and apoptosis (programmed cell death) Tyrosine kinase inhibitors: target signal transduction (block signal pathways that cause cells to proliferate; upregulate pathways that cause apoptosis) Histone deacetylase inhibitors Angiogenesis inhibitors (choking cells, by cutting off blood supply) Example: p53 Transcription factor -- regulates expression of other genes In humans is encoded by the TP53 gene One of the most commonly mutated genes in human cancers; Regulates the cell cycle; reduce cell proliferation, increases apoptosis; thus, functions as a tumor suppressor that is involved in preventing cancer Activate DNA repair proteins when DNA has sustained damage Regulates genes involved in metabolism (glucose utilization and mitochondrial respiration)-- recall that increased metabolism could lead to faster ageing, as escaped electrons during respiration (e-transport chain) could cause cellular and DNA damage) Sirtuins! In recent years, the increasing interest in Sirtuin protein biology has been astounding Mechanism of action poorly understood Sirtuins! Sirtuins perform NAD + dependent ADPribosylation of histones to interfere with histone acetylation (they are histone deacetylases) Important function in maintaining genomic stability, in some cases DNA repair 4

5 Histone Deacetylases/! Histone Acetyltransferase! Plays important role in regulation of gene expression The ability of a particular transcription factor to bind to its target gene is, in part, dependent on modifications that are made to the histone proteins. Abnormal activity of HDACs has been observed in acute promyelocytic leukemia, acute myelogenous leukemia, non-hodgkin lymphoma, and some types of colorectal and gastric carcinoma Histone Deacetylases/! Histone Acetyltransferase! Plays an important role in the regulation of gene expression Histone acetyl transferases (HATs): Acetylate Histones, enhance transcription; acetylation neutralizes positive charges on the histone by changing amines into amides and decreases the ability of the histones to bind to DNA, allowing gene expression Histone Deacetylases (HDACs): Deactylate Histones, repress transcription; remove acetyl groups from an ε-n-acetyl lysine amino acid on a histone Different classes have different effects that either promote or suppress cancer depending on which histones they are affecting (and which genes are expressed or repressed) Histone Deacetylases Defects in acetylation machinery appears to lead to alterations in acetylation and perhaps the development of cancer An imbalance in histone acetylation may lead to changes in chromatin structure and transcriptional dysregulation of genes involved in the control of cell cycle progression, differentiation, and apoptosis Certain classes of Histone deacetylases (which affect gene expression) affect insulin regulation (glucose, insulin production, fat metabolism, cell survival) Such HDACs have the same effects of DR without starving One class of Histone Deacetylases: Sirtuins are a family of NAD + dependent histone deacetylases that play important roles in gene silencing, DNA repair, rdna recombination, and aging SIR2 Mammalian Sirtuins The deacetylation of histones by SIR2 interferes with recombination in the repeated array of ribosomal DNA genes Such rdna recombination could result in a type of mutation (extrachromosomal rdna circles), which cause ageing in yeast (Sinclair & Guarente, 1997) Extra copies of or greater expression of SIR2 increases lifespan in yeast, C. elegans, Drosophila, Metazoans (multicellular animals) 5

6 SIRT1 The most prominent mammalian sirtuin, SIRT1, has received considerable attention because of its link with human metabolism, aging and cancer SIRT1 has many targets for histone deacetylation, including lysine residues at positions 9 and 26 of histone H1, 14 of H3, and 16 of H4 (next figure) SIRT1 regulates many functions involving apoptosis and cell survival For example, cooperates with HIC1 to regulate activity of p53 (tumor suppressor gene) and apoptosis Ageing 3: Mechanisms, Mitigation! Well, ageing and cancer are difficult issues to resolve because so many potential targets are involved (as mutations are happening all across the genome) Current treatment Ageing: the tendency is to treat the symptoms, and not the mechanistic root causes For example with cancer: the treatments are very crude and involve a brute force approach Let s just kill off the cells with radiation or chemotherapy: kill both normal and cancer cells; hope that the cancer will die and the patient will survive It might be more effective to take a targeted approach in treating ageing and diseases of ageing, like cancer This is difficult because there are so many potential targets Where are the mutations occurring? What impacts are they having? 6

7 Related topics that I ll discuss Next: Caloric Restriction Caloric Restriction Nutrient Signaling Sirtuins Resveratrol Much research is devoted to understanding why caloric restriction extends lifespan, as such insights would help reveal what genetic mechanisms cause ageing Role of Diet Dietary restriction (DR) has been found to increase life span in many organisms Caloric Reduction by 30% greatly increases lifespan Mechanism is not fully understood Lifespan varies among populations 7

8 While there are genetic differences among populations, environment (diet) also plays a big role It has been established that certain diets lead to longer lifespan For example, the Japanese live the longest. However, Japanese-Americans on an American diet have shorter (= American) life spans Americans tend to eat large portions (large caloric intake), and have higher animal fat intake, less vegetables Evolutionary Hypothesis: tradeoff between reproduction and maintenance (longer lifespan) Why should caloric restriction slow aging and increase lifespan? During years of famine, it may be evolutionarily favorable for an organism to halt reproduction and to upregulate protective and repair enzyme mechanisms to try to extend lifespan to allow for reproduction in future years. Mechanism? Physiological mechanisms are poorly understood Hypotheses (some examples): 1. Energy: Decreased oxidative damage: less food consumption, less metabolic damage 2. Nutrient Signaling: Altered glucose utilization, Reduction of IGF/insulin signaling activity 3. Enhanced stress responsiveness 4. Changes in gene expression; Increased levels of sirtuins Bishop, N.A. & L. Guarente Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Reviews Genetics 8: Severe Caloric Restriction (famine) Upregulate AMPK and downregulate TOR genes Mechanisms of life span extension might differ between moderate vs severe caloric restriction 8

9 Severe Caloric Restriction mtor (downregulated with severe DR) is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription Under severe caloric restriction, downregulating TOR1 and SCH9 (genes encoding two protein kinases involved in nutrient sensing), as well as other genes of these nutrientsensing pathways, extend the life span of yeast (not know yet if important in mammals) Sirtuin independent extension of lifespan AMPK (upregulated with severe DR) suppresses mtor; acts as a metabolic master switch regulating several intracellular systems, including cellular uptake of glucose, β-oxidation of fatty acids and the biogenesis of glucose transporter 4 (GLUT4) and mitochondria. It has been argued that reduced insulin signaling and DR increase lifespan by a common mechanism Insulin-like signaling accelerates ageing Reduction of IGF/insulin signaling activity is associated with increased longevity With caloric restriction, there is an increase in insulin sensitivity and decrease in blood glucose Moderate Caloric Restriction (~30% decrease) Activate Sirtuins Some think that there is a link between insulinsignaling and caloric restriction, but the link is not yet clear Moderate Caloric Restriction Resveratrol (3,5,4 -trihydroxystilbene) mimics the effects of dietary restriction Reduced glycolysis and increased respiration during moderate DR raises the cellular NAD+/NADH ratio This elevated ratio activates Sir2 and its homologues, which drive increased lifespan Mechanism not well understood Hypothesized to activate Sir2, or SIRT1 in mammals Alternatively, hypothesized to upregulate AMPK, downregulate mtor (Mammalian target of rapamycin) 9

10 Resveratrol (3,5,4 -trihydroxystilbene) Effects of resveratrol on mouse survival and performance Increases lifespan in yeast, C. elegans, Drosophila, vertebrate fish, and mice; reduce obesity, increase mitochondria There might be no cost to reproduction Baur et al Nature 10

Convergent and Divergent Mechanisms in Aging and Cancer

Convergent and Divergent Mechanisms in Aging and Cancer Convergent and Divergent Mechanisms in Aging and Cancer Mariana S. De Lorenzo, PhD Department of Cell Biology & Molecular Medicine delorems@umdnj.edu LEARNING OBJECTIVES 1. To identify convergent and divergent

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

Epigenetic Inheritance

Epigenetic Inheritance (2) The role of Epigenetic Inheritance Lamarck Revisited Lamarck was incorrect in thinking that the inheritance of acquired characters is the main mechanism of evolution (Natural Selection more common)

More information

Eukaryotic Gene Regulation

Eukaryotic Gene Regulation Eukaryotic Gene Regulation Chapter 19: Control of Eukaryotic Genome The BIG Questions How are genes turned on & off in eukaryotes? How do cells with the same genes differentiate to perform completely different,

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#4:(October-0-4-2010) Cancer and Signals 1 2 1 2 Evidence in Favor Somatic mutations, Aneuploidy, Copy-number changes and LOH

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

Section 9. Junaid Malek, M.D.

Section 9. Junaid Malek, M.D. Section 9 Junaid Malek, M.D. Mutation Objective: Understand how mutations can arise, and how beneficial ones can alter populations Mutation= a randomly produced, heritable change in the nucleotide sequence

More information

Cancer. October is National Breast Cancer Awareness Month

Cancer. October is National Breast Cancer Awareness Month Cancer October is National Breast Cancer Awareness Month Objectives 1: Gene regulation Explain how cells in all the different parts of your body develop such different characteristics and functions. Contrast

More information

Mangifera indica activates key metabolic master switch enzymes The innovation for well-aging

Mangifera indica activates key metabolic master switch enzymes The innovation for well-aging Mangifera indica activates key metabolic master switch enzymes The innovation for well-aging Dr. S. Buchwald-Werner 6. May 2015 Vitafoods Europe Conference Healthy Aging Session Consumer demand for healthy-aging

More information

The Role of Protein Domains in Cell Signaling

The Role of Protein Domains in Cell Signaling The Role of Protein Domains in Cell Signaling Growth Factors RTK Ras Shc PLCPLC-γ P P P P P P GDP Ras GTP PTB CH P Sos Raf SH2 SH2 PI(3)K SH3 SH3 MEK Grb2 MAPK Phosphotyrosine binding domains: PTB and

More information

CELL BIOLOGY - CLUTCH CH CANCER.

CELL BIOLOGY - CLUTCH CH CANCER. !! www.clutchprep.com CONCEPT: OVERVIEW OF CANCER Cancer is a disease which is primarily caused from misregulated cell division, which form There are two types of tumors - Benign tumors remain confined

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3

Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3 Jayanti Tokas 1, Puneet Tokas 2, Shailini Jain 3 and Hariom Yadav 3 1 Department of Biotechnology, JMIT, Radaur, Haryana, India 2 KITM, Kurukshetra, Haryana, India 3 NIDDK, National Institute of Health,

More information

HOW AND WHY GENES ARE REGULATED HOW AND WHY GENES ARE REGULATED. Patterns of Gene Expression in Differentiated Cells

HOW AND WHY GENES ARE REGULATED HOW AND WHY GENES ARE REGULATED. Patterns of Gene Expression in Differentiated Cells HOW AND WHY GENES ARE REGULATED 5 HOW AND WHY GENES ARE REGULATED 6 Every somatic cell in an organism contains identical genetic instructions. They all share the same genome. So what makes cells different

More information

Human Genetics 542 Winter 2018 Syllabus

Human Genetics 542 Winter 2018 Syllabus Human Genetics 542 Winter 2018 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Jan 3 rd Wed Mapping disease genes I: inheritance patterns and linkage analysis

More information

Neoplasia 18 lecture 6. Dr Heyam Awad MD, FRCPath

Neoplasia 18 lecture 6. Dr Heyam Awad MD, FRCPath Neoplasia 18 lecture 6 Dr Heyam Awad MD, FRCPath ILOS 1. understand the role of TGF beta, contact inhibition and APC in tumorigenesis. 2. implement the above knowledge in understanding histopathology reports.

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

Cancer and Gene Alterations - 1

Cancer and Gene Alterations - 1 Cancer and Gene Alterations - 1 Cancer and Gene Alteration As we know, cancer is a disease of unregulated cell growth. Although we looked at some of the features of cancer when we discussed mitosis checkpoints,

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

R. Piazza (MD, PhD), Dept. of Medicine and Surgery, University of Milano-Bicocca EPIGENETICS

R. Piazza (MD, PhD), Dept. of Medicine and Surgery, University of Milano-Bicocca EPIGENETICS R. Piazza (MD, PhD), Dept. of Medicine and Surgery, University of Milano-Bicocca EPIGENETICS EPIGENETICS THE STUDY OF CHANGES IN GENE EXPRESSION THAT ARE POTENTIALLY HERITABLE AND THAT DO NOT ENTAIL A

More information

Human Genetics 542 Winter 2017 Syllabus

Human Genetics 542 Winter 2017 Syllabus Human Genetics 542 Winter 2017 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Module I: Mapping and characterizing simple genetic diseases Jan 4 th Wed Mapping

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

BIO360 Fall 2013 Quiz 1

BIO360 Fall 2013 Quiz 1 BIO360 Fall 2013 Quiz 1 1. Examine the diagram below. There are two homologous copies of chromosome one and the allele of YFG carried on the light gray chromosome has undergone a loss-of-function mutation.

More information

Deregulation of signal transduction and cell cycle in Cancer

Deregulation of signal transduction and cell cycle in Cancer Deregulation of signal transduction and cell cycle in Cancer Tuangporn Suthiphongchai, Ph.D. Department of Biochemistry Faculty of Science, Mahidol University Email: tuangporn.sut@mahidol.ac.th Room Pr324

More information

Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Prokaryotes and eukaryotes alter gene expression in response to their changing environment Chapter 18 Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences

More information

Chapter 11 Gene Expression

Chapter 11 Gene Expression Chapter 11 Gene Expression 11-1 Control of Gene Expression Gene Expression- the activation of a gene to form a protein -a gene is on or expressed when it is transcribed. -cells do not always need to produce

More information

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Are you the way you are because of the

Are you the way you are because of the EPIGENETICS Are you the way you are because of the It s my fault!! Nurture Genes you inherited from your parents? Nature Experiences during your life? Similar DNA Asthma, Autism, TWINS Bipolar Disorders

More information

Epigenetics: The Future of Psychology & Neuroscience. Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1

Epigenetics: The Future of Psychology & Neuroscience. Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1 Epigenetics: The Future of Psychology & Neuroscience Richard E. Brown Psychology Department Dalhousie University Halifax, NS, B3H 4J1 Nature versus Nurture Despite the belief that the Nature vs. Nurture

More information

Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture:

Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture: Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture: Spandana Baruah December, 2016 Cancer is defined as: «A disease caused

More information

Chapter 12. Regulation of Cell Division. AP Biology

Chapter 12. Regulation of Cell Division. AP Biology Chapter 12. Regulation of Cell Division Coordination of cell division! Multicellular organism " need to coordinate across different parts of organism! timing of cell division! rates of cell division "

More information

Regulation of Cell Division

Regulation of Cell Division Regulation of Cell Division Two HeLa cancer cells are just completing cytokinesis. Explain how the cell division of cancer cells like these is misregulated. Identify genetic and other changes that might

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Alternative splicing. Biosciences 741: Genomics Fall, 2013 Week 6

Alternative splicing. Biosciences 741: Genomics Fall, 2013 Week 6 Alternative splicing Biosciences 741: Genomics Fall, 2013 Week 6 Function(s) of RNA splicing Splicing of introns must be completed before nuclear RNAs can be exported to the cytoplasm. This led to early

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease) CANCER Affects 25% of US population Kills 19% of US population (2nd largest killer after heart disease) NOT one disease but 200-300 different defects Etiologic Factors In Cancer: Relative contributions

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

EVOLUTION. Reading. Research in my Lab. Who am I? The Unifying Concept in Biology. Professor Carol Lee. On your Notecards please write the following:

EVOLUTION. Reading. Research in my Lab. Who am I? The Unifying Concept in Biology. Professor Carol Lee. On your Notecards please write the following: Evolution 410 9/5/18 On your Notecards please write the following: EVOLUTION (1) Name (2) Year (3) Major (4) Courses taken in Biology (4) Career goals (5) Email address (6) Why am I taking this class?

More information

Regulation of Cell Division (Ch. 12)

Regulation of Cell Division (Ch. 12) Regulation of Cell Division (Ch. 12) Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development &

More information

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous Session8 Medical Genetics Cancer Genetics J avad Jamshidi F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, N o v e m b e r 2 0 1 7 What is Cancer? Uncontrolled growth of cells Not all tumors

More information

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions.

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. 5.1 The Cell Cycle KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. Objective: Cells have distinct phases of growth, reproduction and normal functions. APK: Why do

More information

General Biology 1004 Chapter 11 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 11 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 11 Gene Regulation PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Neil Campbell, Jane Reece,

More information

WHEN DO MUTATIONS OCCUR?

WHEN DO MUTATIONS OCCUR? WHEN DO MUTATIONS OCCUR? While most DNA replicates with fairly high accuracy, mistakes do happen. DNA polymerase sometimes inserts the wrong nucleotide or too many or too few nucleotides into a sequence.

More information

Regulation of Cell Division. AP Biology

Regulation of Cell Division. AP Biology Regulation of Cell Division 2006-2007 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development

More information

The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein

The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein THESIS BOOK The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein Orsolya Buzás-Bereczki Supervisors: Dr. Éva Bálint Dr. Imre Miklós Boros University of

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

Lecture 1: Carcinogenesis

Lecture 1: Carcinogenesis Lecture 1: Carcinogenesis Anti-cancer (oncology agents): These are perhaps the most dangerous of drugs, other than the narcotic analgesics. This is due to their toxicities. Killing or inhibiting cancer

More information

Part II The Cell Cell Division, Chapter 2 Outline of class notes

Part II The Cell Cell Division, Chapter 2 Outline of class notes Part II The Cell Cell Division, Chapter 2 Outline of class notes 1 Cellular Division Overview Types of Cell Division Chromosomal Number The Cell Cycle Mitoses Cancer Cells In Vitro Fertilization Infertility

More information

Cell Death and Cancer. SNC 2D Ms. Papaiconomou

Cell Death and Cancer. SNC 2D Ms. Papaiconomou Cell Death and Cancer SNC 2D Ms. Papaiconomou How do cells die? Necrosis Death due to unexpected and accidental cell damage. This is an unregulated cell death. Causes: toxins, radiation, trauma, lack of

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Regulation of Cell Division 2008-2009 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs u critical for normal growth, development

More information

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions.

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions. Cancer Cells Cancer, then, is a disease in which a single normal body cell undergoes a genetic transformation into a cancer cell. This cell and its descendants, proliferating across many years, produce

More information

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer VIII Curso Internacional del PIRRECV Some molecular mechanisms of cancer Laboratorio de Comunicaciones Celulares, Centro FONDAP Estudios Moleculares de la Celula (CEMC), ICBM, Facultad de Medicina, Universidad

More information

Determination Differentiation. determinated precursor specialized cell

Determination Differentiation. determinated precursor specialized cell Biology of Cancer -Developmental Biology: Determination and Differentiation -Cell Cycle Regulation -Tumor genes: Proto-Oncogenes, Tumor supressor genes -Tumor-Progression -Example for Tumor-Progression:

More information

MicroRNA dysregulation in cancer. Systems Plant Microbiology Hyun-Hee Lee

MicroRNA dysregulation in cancer. Systems Plant Microbiology Hyun-Hee Lee MicroRNA dysregulation in cancer Systems Plant Microbiology Hyun-Hee Lee Contents 1 What is MicroRNA? 2 mirna dysregulation in cancer 3 Summary What is MicroRNA? What is MicroRNA? MicroRNAs (mirnas) -

More information

Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure

Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure Biochemical Determinants Governing Redox Regulated Changes in Gene Expression and Chromatin Structure Frederick E. Domann, Ph.D. Associate Professor of Radiation Oncology The University of Iowa Iowa City,

More information

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II CELL CYCLE REGULATION AND CANCER Cellular Reproduction II THE CELL CYCLE Interphase G1- gap phase 1- cell grows and develops S- DNA synthesis phase- cell replicates each chromosome G2- gap phase 2- cell

More information

Genetics and Genomics in Medicine Chapter 6 Questions

Genetics and Genomics in Medicine Chapter 6 Questions Genetics and Genomics in Medicine Chapter 6 Questions Multiple Choice Questions Question 6.1 With respect to the interconversion between open and condensed chromatin shown below: Which of the directions

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

2015 AP Biology Unit #4 Test Cell Communication, Cancer, Heredity and The Cell Cycle Week of 30 November

2015 AP Biology Unit #4 Test Cell Communication, Cancer, Heredity and The Cell Cycle Week of 30 November Class: Date: 2015 AP Biology Unit #4 Test Cell Communication, Cancer, Heredity and The Cell Cycle Week of 30 November Multiple Choice 1 point each Identify the choice that best completes the statement

More information

Functional Limitations

Functional Limitations Regulation of the Cell Cycle Chapter 12 Pg. 228 245 Functional Limitations Various factors determine whether and when a cell divides. Two functional limitations for cell size limit growth or influence

More information

Cancer Biology How a cell responds to DNA Damage

Cancer Biology How a cell responds to DNA Damage 1 Cancer Biology How a cell responds to DNA Damage Jann Sarkaria Department of Oncology Mayo Clinic 2 EDUCATIONAL GOALS How proteins can transmit signals to each other. The definition of a tumor suppressor

More information

Module C CHEMISTRY & CELL BIOLOGY REVIEW

Module C CHEMISTRY & CELL BIOLOGY REVIEW Module C CHEMISTRY & CELL BIOLOGY REVIEW Note: This module is provided for A&P courses that do not have a prerequisite class which includes chemistry and cell biology. Content covered by required prerequisite

More information

Alternative Splicing and Genomic Stability

Alternative Splicing and Genomic Stability Alternative Splicing and Genomic Stability Kevin Cahill cahill@unm.edu http://dna.phys.unm.edu/ Abstract In a cell that uses alternative splicing, the total length of all the exons is far less than in

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

Transcription Regulation And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P Matthias & RG Clerc

Transcription Regulation And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P Matthias & RG Clerc Transcription Regulation And Gene Expression in Eukaryotes Cycle G2 (lecture 13709) FS 2014 P Matthias & RG Clerc P. Matthias, 16 April 2014 DNA methylation basics Acetylation Acetyltransferases/Deacetylases

More information

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015 Why do cells divide? The Cell Cycle: Cell Growth, Cell Division For reproduction asexual reproduction one-celled organisms For growth from fertilized egg to multi-celled organism For repair & renewal replace

More information

Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Matthew G. Vander Heiden, et al. Science 2010

Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Matthew G. Vander Heiden, et al. Science 2010 Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells Matthew G. Vander Heiden, et al. Science 2010 Introduction The Warburg Effect Cancer cells metabolize glucose differently Primarily

More information

Cell Division. non-mitotic cell. Dividing (mitotic) cell. (This movie has been sped up.) These chromosomes have been marked with RED fluorescence.

Cell Division. non-mitotic cell. Dividing (mitotic) cell. (This movie has been sped up.) These chromosomes have been marked with RED fluorescence. Cell Division These chromosomes have been marked with RED fluorescence. DNA is found in the cell nucleus Dividing (mitotic) cell non-mitotic cell (This movie has been sped up.) Cell Division and Cancer

More information

Problem Set 5 KEY

Problem Set 5 KEY 2006 7.012 Problem Set 5 KEY ** Due before 5 PM on THURSDAY, November 9, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You are studying the development

More information

Post-translational modifications of proteins in gene regulation under hypoxic conditions

Post-translational modifications of proteins in gene regulation under hypoxic conditions 203 Review Article Post-translational modifications of proteins in gene regulation under hypoxic conditions 1, 2) Olga S. Safronova 1) Department of Cellular Physiological Chemistry, Tokyo Medical and

More information

Ch 7 Mutation. A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral

Ch 7 Mutation. A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral Ch 7 Mutation A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral Mutation (+ sexual reproduction) + natural selection = evolution Types

More information

Gene Expression DNA RNA. Protein. Metabolites, stress, environment

Gene Expression DNA RNA. Protein. Metabolites, stress, environment Gene Expression DNA RNA Protein Metabolites, stress, environment 1 EPIGENETICS The study of alterations in gene function that cannot be explained by changes in DNA sequence. Epigenetic gene regulatory

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

September 20, Submitted electronically to: Cc: To Whom It May Concern:

September 20, Submitted electronically to: Cc: To Whom It May Concern: History Study (NOT-HL-12-147), p. 1 September 20, 2012 Re: Request for Information (RFI): Building a National Resource to Study Myelodysplastic Syndromes (MDS) The MDS Cohort Natural History Study (NOT-HL-12-147).

More information

BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A. Steve Thompson:

BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A. Steve Thompson: BIOL 1030 Introduction to Biology: Organismal Biology. Spring 2011 Section A Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 Let s quickly return to that siliconbased life form, since

More information

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter Chapter 12 How cells divide Reproduction living /non-living? growth repair renew based on cell division first mitosis - distributes identical sets of chromosomes cell cycle (life) Cell Division in Bacteria

More information

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular'

'''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Five'Levels'of'Organiza-on' Molecular' '''''''''''''''''Fundamental'Biology' BI'1101' ' an'interdisciplinary'approach'to'introductory'biology' Anggraini'Barlian,' Iriawa-' Tjandra'Anggraeni' SITH4ITB' Five'Levels'of'Organiza-on' Molecular'

More information

21ST CENTURY MEDICINE

21ST CENTURY MEDICINE 21ST CENTURY MEDICINE TODAY S RESEARCH, TOMORROW S HEALTHCARE SYDNEY MEDICAL SCHOOL CO-PRESENTED WITH SYDNEY IDEAS ROGER REDDEL CURING CANCER: ARE WE NEARLY THERE YET? 21ST CENTURY MEDICINE TODAY S RESEARCH,

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

A Genetic Program for Embryonic Development

A Genetic Program for Embryonic Development Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types

More information

Gene Regulation - 4. One view of the Lactose Operon

Gene Regulation - 4. One view of the Lactose Operon Gene Regulation - 1 Regulating Genes We have been discussing the structure of DNA and that the information stored in DNA is used to direct protein synthesis. We've studied how RNA molecules are used to

More information

An adult human has somewhere around one hundred trillion (10 14 ) cells

An adult human has somewhere around one hundred trillion (10 14 ) cells 2/22/10 Cancer genetics Inside cancer web site http://www.insidecancer.org/ National Cancer Institute http://www.cancer.gov/cancerinfo/ An adult human has somewhere around one hundred trillion (10 14 )

More information

Asingle inherited mutant gene may be enough to

Asingle inherited mutant gene may be enough to 396 Cancer Inheritance STEVEN A. FRANK Asingle inherited mutant gene may be enough to cause a very high cancer risk. Single-mutation cases have provided much insight into the genetic basis of carcinogenesis,

More information

Development of Carcinoma Pathways

Development of Carcinoma Pathways The Construction of Genetic Pathway to Colorectal Cancer Moriah Wright, MD Clinical Fellow in Colorectal Surgery Creighton University School of Medicine Management of Colon and Diseases February 23, 2019

More information

Molecular biology :- Cancer genetics lecture 11

Molecular biology :- Cancer genetics lecture 11 Molecular biology :- Cancer genetics lecture 11 -We have talked about 2 group of genes that is involved in cellular transformation : proto-oncogenes and tumour suppressor genes, and it isn t enough to

More information

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson:

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson: BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D Steve Thompson: stthompson@valdosta.edu http://www.bioinfo4u.net 1 The cell cycle and mitosis Now that we ve seen how DNA

More information

p53 and Apoptosis: Master Guardian and Executioner Part 2

p53 and Apoptosis: Master Guardian and Executioner Part 2 p53 and Apoptosis: Master Guardian and Executioner Part 2 p14arf in human cells is a antagonist of Mdm2. The expression of ARF causes a rapid increase in p53 levels, so what would you suggest?.. The enemy

More information

Big Idea: Cells Come from Other Cells (Reproduction) Credit: E+ ilexx Getty Images

Big Idea: Cells Come from Other Cells (Reproduction) Credit: E+ ilexx Getty Images Big Idea: Cells Come from Other Cells (Reproduction) Credit: E+ ilexx Getty Images The Importance of Cell Division Activity Cell Replacement You will draw two identical symbols on your left hand (right

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Genomic medicine and the insurance industry. Christoph Nabholz, CRO Assembly, 31 May 2018

Genomic medicine and the insurance industry. Christoph Nabholz, CRO Assembly, 31 May 2018 Genomic medicine and the insurance industry Christoph Nabholz, CRO Assembly, 31 May 2018 The risk for disease is multi-factorial and depends on genetic and environmental components Genome Genotype Environment

More information

Cancer and nutrition. ...another difficulty lies in the application of laboratory/animal model studies to human cancer prevention

Cancer and nutrition. ...another difficulty lies in the application of laboratory/animal model studies to human cancer prevention 1 Cancer and nutrition Part 1: Dietary factors in possible cancer prevention a major cause of death in Canada & other developing countries after CVD Part 2: Dietary changes to moderate the effects of therapy

More information

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko

Chapter 11. How Genes Are Controlled. Lectures by Edward J. Zalisko Chapter 11 How Genes Are Controlled PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey, and

More information

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information