Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17"

Transcription

1 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and dysfunction. - Knowledge of how genes work together and interact with the environment is very important - It will have a profound impact on the way many diseases are diagnosed, treated and prevented. It will bring about revolutionary changes in medicine. Indeed, such changes are already beginning. Currently, several hundred genetic tests are in clinical use: e.g., sickle-cell anemia, Huntington disease, cystic fibrosis Genetic tests are also available to detect predisposition to certain forms of cancer. - Approximately 4,000 genetic diseases afflict people. Many of these are the direct result of a mutation in one gene. - Genes also play roles in the development of diseases that have a complex pattern of inheritance e.g., Diabetes, asthma, mental illness and Cancer - Unraveling the complexities of these diseases will be a challenge for some time to come. GENETIC ANALYSIS OF HUMAN DISEASES - The study of human genetic diseases provides insights regarding our traits; e.g., by analyzing people with hemophilia, researchers have identified genes that participate in blood clotting - Thousands of human diseases have a genetic basis. This section focuses on the diseases that result from defects in single genes. The mutant genes that cause these diseases often obey simple Mendelian inheritance patterns. Pedigree Analysis: The pattern of inheritance of monogenic disorders, can be deduced by analyzing human pedigrees. To use this method, a geneticist must obtain data from large pedigrees with many affected individuals. Tay-Sachs Disease (TSD). TSD is inherited in an autosomal recessive manner Four common features of autosomal recessive inheritance are as follows: 1. Frequently, an affected offspring will have two unaffected parents 2. When two unaffected heterozygotes have children, the percentage of affected children is (on average) 25% 3. Two affected individuals will have 100% affected children 4. The trait occurs with the same frequency in both sexes - Disorders that involve defective enzymes typically have an autosomal recessive mode of inheritance. The heterozygote carrier has 50% of the normal enzyme. This is sufficient 1

2 for a normal phenotype. Hundreds of genetic diseases are inherited this way. In many cases, the mutant genes responsible have been cloned and mapped. (Table 24.1) Huntington Disease (HD) HD is inherited in an autosomal dominant manner. Five common features of autosomal dominant inheritance are as follows: 1. An affected offspring usually has one or both affected parents 2. An affected individual, with only one affected parent, is expected to produce (on average) 50% affected offspring 3. Two affected, heterozygous will have (on average) 25% unaffected offspring 4. The trait occurs with the same frequency in both sexes 5. For most dominant disease-casing alleles, the homozygote is more severely affected with the disorder. - Disorders that involve alteration in structural proteins typically have an autosomal dominant mode of inheritance. The heterozygote has 50% of the normal protein which is not sufficient for a normal phenotype. Numerous genetic diseases are inherited this way. In many cases, the mutant genes responsible have been cloned and mapped. (Table 24.2) A third mode of inheritance is X-linked recessive inheritance. This type of inheritance poses a special problems for males. Males have only a single copy of most X- linked genes. They are termed hemizygous.therefore a female heterozygous for an X- linked recessive gene will pass this trait to half her sons. Hemophilia Three common features of X-linked recessive inheritance are as follows: 1. Males are much more likely to exhibit the trait 2. The mothers of affected males often have brothers or fathers who are affected with the same trait 3. The daughters of affected males will produce (on average) 50% affected sons (Table 24.3) Many Genetic Disorders are Heterogeneous. Heterogeneity refers to the phenomenon that a disease is caused by mutations in different genes. Consider the disease hemophilia - Blood clotting involves a cellular cascade that involved several different proteins. Therefore, a defect in any of these proteins can cause the disease. - Hemophilia B is caused by a defect in the clotting factor IX. It is also an X-linked recessive disorder - Another mechanism that may lead to genetic heterogeneity occurs when proteins are composed of many different subunits. Consider the disease thalassemia. - This potentially life-threatening disease involves defects in hemoglobin. Hemoglobin is a tetrameric protein, composed of two α and two β chains 2

3 α-thalassemia: The defect is in the α-globin subunit β-thalassemia: The defect is in the β-globin subunit - Unfortunately, heterogeneity can greatly confound pedigree analysis - Genetic Testing: Genetic testing refers to the use of tests to discover if an individual has a genetic abnormality. Genetic screening refers to population-wide genetic testing (Table 24.4) - In many cases, single-gene mutations that affect proteins, can be examined at the protein level - Biochemical assays may be available for enzymes. - An alternative approach is to detect single-gene mutations at the DNA level. Researchers must have previously identified the mutant gene using molecular techniques e.g., Duchenne muscular dystrophy, Huntington disease. - The most common class of human genetic abnormality is the change in chromosome number. Most of these result in spontaneous abortions. However, about 1 in 200 live births are aneuploid or have unbalanced chromosomal alterations. Chromosomal abnormalities can be detected with a karyotype. (Table 24.4) In the U.S., genetic screening for certain disorders has become common medical practice. - Genetic testing has also been conducted on specific population in which a genetic disease is prevalent, e.g., Tay-Sachs disease in the Aschenazi Jews - - Genetic testing can be performed prior to birth. There are two main types of procedures: 1. Amniocentesis: Fetal cells are obtained from the amniotic fluid. 2. Chorionic villi sampling: Fetal cells are obtained from the chorion (fetal part of the placenta). Can be performed earlier during pregnancy than amniocentesis. However, it poses a slightly greater risk of miscarriage. Genetic testing and screening are medical practices with many social and ethical dimensions. Do people have the right to know about their genetic makeup? Does it do more harm than good? Another issue is privacy. In this century we will become more aware of our genetic makeup and the causes of genetic diseases. It will be necessary therefore, to establish guidelines for the uses of genetic testing. GENETIC BASIS OF CANCER - Cancer is a disease characterized by uncontrolled cell division. It is a genetic disease at the cellular level. More than 100 kinds of human cancers are known. These are classified according to the type of cell that has become cancerous. - Cancer characteristics 1. Most cancers originate in a single cell. In this regard, a cancerous growth can be considered to be clonal. 2. At the cellular and genetic levels, cancer is usually a multistep process. It begins with a precancerous genetic change (i.e., a benign growth). Following additional genetic changes, it progresses to cancerous cell growth. 3

4 3. Once a cellular growth has become malignant, the cells are invasive (i.e., they can invade healthy tissues). They are also metastatic (i.e., they can migrate to other parts of the body) % of cancers are inherited % are not. - A small subset of these is the result of spontaneous mutations and viruses - However, at least 80% of cancers are related to exposure to mutagens. These alter the structure and expression of genes. - An environmental agent that causes cancer is termed a carcinogen - A few viruses are known to cause cancer in plants, animals and humans. Spontaneous mutations can cause cancer, however, most cancers are caused by environmentally induced mutations. These mutations may involve two types of genes: oncogenes and tumor-suppressor genes. An oncogene, which is derived from a normal proto-oncogene, is an abnormally activated gene that stimulates cell growth. By comparison, a tumor-suppressor gene normally inhibits cell growth, but if rendered inactive, unconstrained cell growth may ensue. A master tumor-suppressor gene, called p53, plays a critical role in monitoring DNA damage and preventing the division of cells that have been damaged. Oncogenes and Their Effects on Cell Division: In eukaryotes, the cell cycle is regulated in part by polypeptide hormones known as growth factors. Growth factors bind to cell surface receptors and initiate a cascade of cellular events leading ultimately to cell division. Epidermal growth factor (EGF) is a growth hormone - An oncogene may promote cancer by keeping the cell growth signaling pathway permanently ON. This can occur in two ways: 1. The oncogene may be overexpressed. This yields too much of the encoded protein 2. The oncogene may produce an aberrant protein. Proto-Oncogenes Can Be Converted into Oncogenes: A proto-oncogene is a normal cellular gene that can incur a mutation to become an oncogene. How this occurs is a fundamental issue in cancer biology. By studying proto-oncogenes, researchers have found that this occurs in four main ways: 1. Missense mutations 2. Gene amplifications 3. Chromosomal translocations 4. Viral integration Tumor-Suppressor Genes and Their Effects on Cell Division: Tumor-suppressor genes prevent the proliferation of cancer cells. If they are inactivated by mutation, it becomes more likely that cancer will occur. The first identification of a human tumorsuppressor gene involved studies of retinoblastoma- a tumor of the retina of the eye - There are two types of retinoblastoma: 1. Inherited, which occurs in the first few years of life 2. Noninherited, which occurs later in life - Alfred Knudson proposed a two-hit model for retinoblastoma. 4

5 The p53 Gene: The Master Tumor-Suppressor Gene. The p53 gene was the second tumor-suppressor gene discovered. About 50% of all human cancers are associated with defects in the p53 gene. A primary role for the p53 protein is to determine if a cell has incurred DNA damage. If so, p53 will promote three types of cellular pathways to prevent the division of cells with damaged DNA. Other Types of Tumor-Suppressor Genes - During the past three decades, researchers have identified many tumor-suppressor genes. Some encode proteins that have direct effects on the regulation of cell division. Others play a role in the proper maintenance of the genome. Some tumor-suppressor genes encode proteins that function in the sensing of genome integrity. These proteins can detect abnormalities such as DNA breaks and improperly segregated chromosomes. Many of these proteins are called checkpoint proteins. They check the integrity of the genome and prevent cells from progressing past a certain point of the cell cycle if there is damage. Most Cancers Involve Multiple Genetic Changes - Many cancers begin with a benign mutation that, with time and more mutations leads to malignancy. Furthermore, a malignancy can continue to accumulate genetic changes that make it even more difficult to treat. Inherited Forms of Cancers - As mentioned earlier, about 5% to 10% of all cancers involve germ-line mutations. - People who have inherited such mutations have a predisposition to develop cancer - Genetic testing exists for certain types of cancer - Most inherited forms of cancer involve a defect in tumor-suppressor genes - Some inherited forms of cancer are due to the activation of an oncogene. - Other inherited forms of cancer are associated with defect in DNA repair enzymes 5

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS SHORT ANSWER QUESTIONS-Please type your awesome answers on a separate sheet of paper. 1. What is an X-linked inheritance pattern? Use a specific example to explain the role of the father and mother in

More information

Human inherited diseases

Human inherited diseases Human inherited diseases A genetic disorder that is caused by abnormality in an individual's DNA. Abnormalities can range from small mutation in a single gene to the addition or subtraction of a whole

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

Lesson Overview. Human Chromosomes. Lesson Overview. Human Chromosomes

Lesson Overview. Human Chromosomes. Lesson Overview. Human Chromosomes Lesson Overview Karyotypes A genome is the full set of genetic information that an organism carries in its DNA. A study of any genome starts with chromosomes, the bundles of DNA and protein found in the

More information

Human Genetic Diseases (Ch. 15)

Human Genetic Diseases (Ch. 15) Human Genetic Diseases (Ch. 15) 1 2 2006-2007 3 4 5 6 Genetic counseling Pedigrees can help us understand the past & predict the future Thousands of genetic disorders are inherited as simple recessive

More information

Human Genetic Diseases (non mutation)

Human Genetic Diseases (non mutation) mutation) Pedigrees mutation) 1. Autosomal recessive inheritance: this is the inheritance of a disease through a recessive allele. In order for the person to have the condition they would have to be homozygous

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Lab Activity Report: Mendelian Genetics - Genetic Disorders Name Date Period Lab Activity Report: Mendelian Genetics - Genetic Disorders Background: Sometimes genetic disorders are caused by mutations to normal genes. When the mutation has been in the population

More information

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity. MCAT Biology Problem Drill PS07: Mendelian Genetics Question No. 1 of 10 Question 1. The smallest unit of heredity is. Question #01 (A) Cell (B) Gene (C) Chromosome (D) Allele Cells contain the units of

More information

The passing of traits from parents to offspring. The scientific study of the inheritance

The passing of traits from parents to offspring. The scientific study of the inheritance Inheritance The passing of traits from parents to offspring Genetics The scientific study of the inheritance Gregor Mendel -Father of modern genetics -Used peas to successfully identify the laws of heredity

More information

Genetic Disorders. and. blood vessels the and. How many genes are affected by this deletion? Turner s Syndrome- An incomplete or missing chromosome

Genetic Disorders. and. blood vessels the and. How many genes are affected by this deletion? Turner s Syndrome- An incomplete or missing chromosome Genetic Disorders A genetic disorder is an abnormality in the. They can range for a deletion of a gene to the deletion of an entire chromosome. List the types of genetic disorders. Williams Syndrome- A

More information

Unit 3: DNA and Genetics Module 9: Human Genetics

Unit 3: DNA and Genetics Module 9: Human Genetics Unit 3: DNA and Genetics Module 9: Human Genetics NC Essential Standard: 3.2.3 Explain how the environment can influence expression of genetic traits 3.3.3 Evaluate ethical issues surrounding the use of

More information

Unit 3: DNA and Genetics Module 9: Human Genetics

Unit 3: DNA and Genetics Module 9: Human Genetics Unit 3: DNA and Genetics Module 9: Human Genetics NC Essential Standard: 3.2 Understand how the environment, and /or the interaction of alleles, influences the expression of genetic traits. 3.3.3 Evaluate

More information

Chromosome Theory. Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13

Chromosome Theory. Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13 Chromosomes, Mapping, and the Meiosis-Inheritance Connection Chapter 13 Chromosome Theory Chromosomal theory of inheritance - developed in 1902 by Walter Sutton - proposed that genes are present on chromosomes

More information

Human Genetic Diseases. AP Biology

Human Genetic Diseases. AP Biology Human Genetic Diseases 1 3 4 2 5 2006-2007 6 Pedigree analysis n Pedigree analysis reveals Mendelian patterns in human inheritance u data mapped on a family tree = male = female = male w/ trait = female

More information

SSN SBPM Workshop Exam One. Short Answer Questions & Answers

SSN SBPM Workshop Exam One. Short Answer Questions & Answers SSN SBPM Workshop Exam One Short Answer Questions & Answers 1. Describe the effects of DNA damage on the cell cycle. ANS : DNA damage causes cell cycle arrest at a G2 checkpoint. This arrest allows time

More information

Friday, January 4. Bell Work:

Friday, January 4. Bell Work: Friday, January 4 Bell Work: Red green colorblindness is an X linked trait and is recessive. A male who is normal marries a woman who is a carrier, what is the phenotypic ratio of their offspring? 1 Genetic

More information

NOTES: : HUMAN HEREDITY

NOTES: : HUMAN HEREDITY NOTES: 14.1-14.2: HUMAN HEREDITY Human Genes: The human genome is the complete set of genetic information -it determines characteristics such as eye color and how proteins function within cells Recessive

More information

Human Genetics Notes:

Human Genetics Notes: Human Genetics Notes: Human Chromosomes Cell biologists analyze chromosomes by looking at. Cells are during mitosis. Scientists then cut out the chromosomes from the and group them together in pairs. A

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

BIO113 Exam 2 Ch 4, 10, 13

BIO113 Exam 2 Ch 4, 10, 13 BIO113 Exam 2 Ch 4, 10, 13 See course outline for specific reading assignments Study notes and focus on terms and concepts The images in the textbook are useful CELLS (pg. 37) The basic unit of life living

More information

SEX-LINKED INHERITANCE. Dr Rasime Kalkan

SEX-LINKED INHERITANCE. Dr Rasime Kalkan SEX-LINKED INHERITANCE Dr Rasime Kalkan Human Karyotype Picture of Human Chromosomes 22 Autosomes and 2 Sex Chromosomes Autosomal vs. Sex-Linked Traits can be either: Autosomal: traits (genes) are located

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education

Essential Questions. Basic Patterns of Human Inheritance. Copyright McGraw-Hill Education Essential Questions How can genetic patterns be analyzed to determine dominant or recessive inheritance patterns? What are examples of dominant and recessive disorders? How can human pedigrees be constructed

More information

Chromosomes and Human Inheritance. Chapter 11

Chromosomes and Human Inheritance. Chapter 11 Chromosomes and Human Inheritance Chapter 11 11.1 Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomes and Sex Chromosomes

More information

Genomics and Genetics in Healthcare. By Mary Knutson, RN, MSN

Genomics and Genetics in Healthcare. By Mary Knutson, RN, MSN Genomics and Genetics in Healthcare By Mary Knutson, RN, MSN Clinical Objectives Understand the importance of genomics to provide effective nursing care Integrate genetic knowledge and skills into nursing

More information

Atlas of Genetics and Cytogenetics in Oncology and Haematology

Atlas of Genetics and Cytogenetics in Oncology and Haematology Atlas of Genetics and Cytogenetics in Oncology and Haematology Genetic Counseling I- Introduction II- Motives for genetic counseling requests II-1. Couple before reproduction II-2. Couple at risk III-

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

Human Heredity: The genetic transmission of characteristics from parent to offspring.

Human Heredity: The genetic transmission of characteristics from parent to offspring. Human Heredity: The genetic transmission of characteristics from parent to offspring. Karyotype : picture of the actual chromosomes arranged in pairs, paired and arranged from largest to smallest. Human

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Take a look at the three adult bears shown in these photographs:

Take a look at the three adult bears shown in these photographs: Take a look at the three adult bears shown in these photographs: Which of these adult bears do you think is most likely to be the parent of the bear cubs shown in the photograph on the right? How did you

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

Honors Biology Review Sheet to Chapter 9 Test

Honors Biology Review Sheet to Chapter 9 Test Honors Biology Review Sheet to Chapter 9 Test Name Per 1. Label the following flower: sepal, petal, anther, filament, style, ovary, stigma Draw in ovules and label. Color the female structure red and the

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

The Meaning of Genetic Variation

The Meaning of Genetic Variation Activity 2 The Meaning of Genetic Variation Focus: Students investigate variation in the beta globin gene by identifying base changes that do and do not alter function, and by using several CD-ROM-based

More information

Patterns in Inheritance. Chapter 10

Patterns in Inheritance. Chapter 10 Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his

More information

Review Packet for Genetics and Meiosis

Review Packet for Genetics and Meiosis Name: Date: Block: 1 Review Packet for Genetics and Meiosis Directions: Answer the questions and where indicated, draw a Punnett square and show all work! 1. Who was Gregor Mendel? Where did he live and

More information

Human Inheritance. Use Target Reading Skills. Patterns of Human Inheritance. Modern Genetics Guided Reading and Study

Human Inheritance. Use Target Reading Skills. Patterns of Human Inheritance. Modern Genetics Guided Reading and Study Human Inheritance This section explains some patterns of inheritance in humans. It also describes the functions of the sex chromosomes and the relationship between genes and the environment. Use Target

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Locating Genes on Chromosomes A century

More information

Chapter 11. Chromosomes and Human Inheritance

Chapter 11. Chromosomes and Human Inheritance Chapter 11 Chromosomes and Human Inheritance Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomesand Sex Chromosomes Paired

More information

Extra Review Practice Biology Test Genetics

Extra Review Practice Biology Test Genetics Mendel fill in the blanks: Extra Review Practice Biology Test Genetics Mendel was an Austrian monk who studied genetics primarily using plants. He started with plants that produced offspring with only

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

Problem set questions from Final Exam Human Genetics, Nondisjunction, and Cancer

Problem set questions from Final Exam Human Genetics, Nondisjunction, and Cancer Problem set questions from Final Exam Human Genetics, Nondisjunction, and ancer Mapping in humans using SSRs and LOD scores 1. You set out to genetically map the locus for color blindness with respect

More information

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms

More information

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York Mendelian Inheritance Jurg Ott Columbia and Rockefeller Universities New York Genes Mendelian Inheritance Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments

More information

Genetics Lecture 7 More Mendelian Genetics Continued

Genetics Lecture 7 More Mendelian Genetics Continued Genetics Lecture 7 More Mendelian Genetics Continued Novel Phenotypes Other cases of gene interaction yield novel, or new, phenotypes in the F2 generation, in addition to producing modified dihybrid ratios.

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.

Chapter 9. Patterns of Inheritance. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc. Chapter 9 Patterns of Inheritance Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc. 9.1 What Is The Physical Basis Of Inheritance? Inheritance occurs when genes

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

Single Gene Disorders - Student Edition (Human Biology)

Single Gene Disorders - Student Edition (Human Biology) Single Gene Disorders - Student Edition (Human Biology) The Program in Human Biology, Stanford Univ- ersity, (HumBio) CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign

More information

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko

Chapter 9. Patterns of Inheritance. Lectures by Chris C. Romero, updated by Edward J. Zalisko Chapter 9 Patterns of Inheritance Lectures by Chris C. Romero, updated by Edward J. Zalisko 2010 Pearson Education, Inc. PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

Chapter 7: Pedigree Analysis B I O L O G Y

Chapter 7: Pedigree Analysis B I O L O G Y Name Date Period Chapter 7: Pedigree Analysis B I O L O G Y Introduction: A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships.

More information

Chapter 16 Mutations. Practice Questions:

Chapter 16 Mutations. Practice Questions: Biology 234 J. G. Doheny Chapter 16 Mutations Practice Questions: Answer the following questions with one or two sentences. 1. List the name of one test that can be used to identify mutagens. 2. What is

More information

Non-Mendelian Genetics

Non-Mendelian Genetics Non-Mendelian Genetics Complete dominance Law of segregation Law of independent assortment One gene one trait Mendelian Genetics Codominance Incomplete dominance Multiple alleles Pleiotropy Epistasis Polygenic

More information

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 4 / 47. Slide 3 / 47. Slide 5 / 47.

Mendelian Genetics & Inheritance Patterns. Multiple Choice Review. Slide 1 / 47. Slide 2 / 47. Slide 4 / 47. Slide 3 / 47. Slide 5 / 47. Slide 1 / 47 Slide 2 / 47 New Jersey enter for Teaching and Learning Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of

More information

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination * Trait- a character/gene shape, * Monk in Austria at age 21 * At 30, went to University of Vienna to study science and math * After graduating he returned to the monastery and became a high school teacher

More information

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin Genetics Supplement (These supplementary modules, a Genetics Student Handout, and Teacher Preparation Notes with suggestions for implementation are available at http://serendip.brynmawr.edu/sci_edu/waldron/#genetics.

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Genetics Mutations 2 Teacher s Guide

Genetics Mutations 2 Teacher s Guide Genetics Mutations 2 Teacher s Guide 1.0 Summary Mutations II is an extension activity, which reviews and enhances the previous Core activities. We recommend that it follow Mutations and X-Linkage. This

More information

Pedigree Analysis. A = the trait (a genetic disease or abnormality, dominant) a = normal (recessive)

Pedigree Analysis. A = the trait (a genetic disease or abnormality, dominant) a = normal (recessive) Pedigree Analysis Introduction A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships. These diagrams make it easier to visualize

More information

HUMAN GENETICS. Mode of inheritance LECTURE : 3 EDITION FILE. Color index: Important Slides Drs notes Explanation New terminology

HUMAN GENETICS. Mode of inheritance LECTURE : 3 EDITION FILE. Color index: Important Slides Drs notes Explanation New terminology HUMAN GENETICS Color index: Important Slides Drs notes Explanation New terminology LECTURE : 3 Mode of inheritance EDITION FILE OBJECTIVES By the end of this lecture, students should be able to: 1. Assess

More information

Diploma in Equine Science

Diploma in Equine Science The process of meiosis is summarised in the diagram below, but it involves the reduction of the genetic material to half. A cell containing the full number of chromosomes (two pairs) is termed diploid,

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Downloaded from Chapter 5 Principles of Inheritance and Variation

Downloaded from  Chapter 5 Principles of Inheritance and Variation Chapter 5 Principles of Inheritance and Variation Genetics: Genetics is a branch of biology which deals with principles of inheritance and its practices. Heredity: It is transmission of traits from one

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Mutations. A2 Biology For WJEC

Mutations. A2 Biology For WJEC 12. Mutation is a change in the amount, arrangement or structure in the DNA of an organism. 13. There are two types of mutations, chromosome mutations and gene mutations. Mutations A2 Biology For WJEC

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes.

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes. Genetics Supplement (These supplementary modules, a Genetics Student Handout, and Teacher Preparation Notes with background information are available at http://serendip.brynmawr.edu/sci_edu/waldron/#genetics.

More information

Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS

Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS Chapter 15 - The Chromosomal Basis of Inheritance A. Bergeron +AP Biology PCHS Do Now - Predicting Unpredictable Genotypes As an inexperienced (albeit precocious) gardener, I am always looking to maximize

More information

Driving Question: What difference does it make if a gene is part of the X Chromosome?

Driving Question: What difference does it make if a gene is part of the X Chromosome? Genetics - X-linkage Teacher s Guide 1.0 Summary The X-Linkage Activity is the sixth core Genetics activity. This activity is comprised of three sections and designed to last one class period of approximately

More information

Guided Notes: Simple Genetics

Guided Notes: Simple Genetics Punnett Squares Guided Notes: Simple Genetics In order to determine the a person might inherit, we use a simple diagram called a o Give us of an offspring having particular traits Pieces of the Punnett

More information

Lesson Overview Human Chromosomes

Lesson Overview Human Chromosomes Lesson Overview 14.1 Human Chromosomes Human Genome To find what makes us uniquely human, we have to explore the human genome, which is the full set of genetic information carried in our DNA. This DNA

More information

Pedigree. Tracking Genetic Traits: How it s done!

Pedigree. Tracking Genetic Traits: How it s done! Pedigree Tracking Genetic Traits: How it s done! REVIEW Many traits in humans are controlled by genes. Some of these traits are common features like eye color, straight or curly hair, baldness, attached

More information

Chapter 15 The Chromosomal Basis of Inheritance. Fig. 15-1

Chapter 15 The Chromosomal Basis of Inheritance. Fig. 15-1 Chapter 15 The Chromosomal Basis of Inheritance Fig. 15-1 Overview: Locating Genes Along Chromosomes Mendel s hereditary factors were genes, though this wasn t known at the time Today we can show that

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

p and q can be thought of as probabilities of selecting the given alleles by

p and q can be thought of as probabilities of selecting the given alleles by Lecture 26 Population Genetics Until now, we have been carrying out genetic analysis of individuals, but for the next three lectures we will consider genetics from the point of view of groups of individuals,

More information

Chapter 11 Patterns of Chromosomal Inheritance

Chapter 11 Patterns of Chromosomal Inheritance Inheritance of Chromosomes How many chromosomes did our parents gametes contain when we were conceived? 23, 22 autosomes, 1 sex chromosome Autosomes are identical in both male & female offspring For the

More information

Proteins. Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids

Proteins. Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids Proteins Protein carbon, hydrogen, oxygen, nitrogen and often sulphur Length of protein varies from thousands of amino acids to only a few insulin only 51 amino acids During protein synthesis, amino acids

More information

A Lawyer s Perspective on Genetic Screening Performed by Cryobanks

A Lawyer s Perspective on Genetic Screening Performed by Cryobanks A Lawyer s Perspective on Genetic Screening Performed by Cryobanks As a lawyer practicing in the area of sperm bank litigation, I have, unfortunately, represented too many couples that conceived a child

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0 Genetics Unit Exam Question You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites meaning they can

More information

Cancer genetics

Cancer genetics Cancer genetics General information about tumorogenesis. Cancer induced by viruses. The role of somatic mutations in cancer production. Oncogenes and Tumor Suppressor Genes (TSG). Hereditary cancer. 1

More information

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD Lecture 8 Neoplasia II Dr. Nabila Hamdi MD, PhD ILOs Understand the definition of neoplasia. List the classification of neoplasia. Describe the general characters of benign tumors. Understand the nomenclature

More information

Chapter 02 Mendelian Inheritance

Chapter 02 Mendelian Inheritance Chapter 02 Mendelian Inheritance Multiple Choice Questions 1. The theory of pangenesis was first proposed by. A. Aristotle B. Galen C. Mendel D. Hippocrates E. None of these Learning Objective: Understand

More information

Chapter 4-1. Patterns of single-gene inheritance

Chapter 4-1. Patterns of single-gene inheritance Chapter 4-1. Patterns of single-gene inheritance Outline Pedigree Inheritance pattern Autosomal dominant inheritance, AD Autosomal recessive inheritance, AR X-linked dominant inheritance,xd X-linked recessive

More information

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so:

Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: Genetics 2 Genetic Diagrams and Mendelian Genetics: Genetic diagrams show the genotype and phenotype of the offspring of two organisms. The different generation are abbreviated like so: P parent generation

More information