Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells"

Transcription

1 (2006) 20, & 2006 Nature Publishing Group All rights reserved /06 $ REVIEW Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells SD Turner 1 and DR Alexander 2 1 Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Lab Block Level 3, Addenbrooke s Hospital, Cambridge, UK and 2 Laboratory of Lymphocyte Signalling and Development, Babraham Research Campus, The Babraham Institute, Babraham, Cambridge, UK The fusion tyrosine kinases (FTKs) are generated by chromosomal translocations creating bipartite proteins in which the kinase is hyperactivated by an adjoining oligomerization domain. Autophosphorylation of the FTK generates a signalosome, an ensemble of signalling proteins that transduce signals to downstream pathways. At the earliest stages of oncogenesis, FTKs can mimic mitogenic cytokine signalling pathways involving the GAB-2 adaptor protein and signal transducers and activators of transcription (STAT) factors, generating replicative stress and thereby promoting a mutator phenotype. In parallel, FTKs couple to survival pathways that upregulate prosurvival proteins such as Bcl-x L, so preventing DNA-damage-induced apoptosis. Following transformation, FTKs induce resistance to genotoxic attack by upregulating DNA repair mechanisms such as STAT5-dependent RAD51 transcription. The phenomenon of oncogene addiction reflects the continued requirement of an active FTK signalosome to mediate survival and mitogenic signals involving the PI 3-kinase and mitogen-activated protein stress-activated protein kinase pathways, and the nuclear factor-kappa B, activator protein 1 and STAT transcription factors. The available data so far suggest that FTKs, with some possible exceptions, induce and maintain the transformed state using similar panoplies of signals, a finding with important therapeutic implications. The FTK signalling field has matured to an exciting phase in which rapid advances are facilitating rational drug design. (2006) 20, doi: /sj.leu ; published online 16 February 2006 Keywords: oncogene; tyrosine kinase; NPM-ALK; Bcr-Abl; Tel- PDGFbR; Tel-Jak2 Introduction About 30 of the 90 protein tyrosine kinases in the human genome have been implicated in cancer. 1 These oncogenic tyrosine kinases (OTKs) are thought to induce either directly or indirectly a critical repertoire of transforming events, namely, uncontrolled cell growth, genomic instability and protection of DNA-damaged cells from apoptosis. 1,2 It remains possible, although is not yet proven, that all OTKs induce this same ensemble of oncogenic cellular dysfunctions, albeit by somewhat different molecular routes. The lineage specificity of OTK expression, and their levels and timing of expression are, in addition, all likely to be critical in determining the heterogeneous clinical consequences that arise from the kinasemediated transforming events. Correspondence: Dr SD Turner, Department of Pathology, Division of Molecular Histopathology, University of Cambridge, Lab Block Level 3, Addenbrooke s Hospital, Box 231, Cambridge CB2 2QQ, UK. Received 13 October 2005; revised 6 December 2005; accepted 20 December 2005; published online 16 February 2006 The fusion tyrosine kinases (FTKs) are generated by chromosomal translocations and represent an important subclass of the kinases that transform haematopoietic lineages. In this review, we address the question as to whether different FTKs utilize essentially the same signalling pathways to transform haematopoietic cells and, in addition, to maintain tumour growth and survival following transformation. The answer to this latter question is critical in predicting the potential responsiveness of different tumour types to novel therapeutic interventions. We provide a brief overview of the major FTKs implicated in haematological malignancies, illustrated in Figure 1 and Table 1, before discussing the key oncogenic signals that they induce. FTKS that transform haematopoietic lineages Breakpoint cluster region-abelson leukaemia (Bcr-Abl) Bcr-Abl is the protein product of the Philadelphia chromosome (t(9;22)) and is present in alternatively spliced forms creating proteins of 230, 210 and 190 kda, the two larger versions containing more of the Bcr gene product than the p190 form 28 (Figure 1). Abl is a ubiquitously expressed non-receptor tyrosine kinase located in both the cytoplasm and the nucleus, although mainly in the cytoplasm. In the cytoplasm, Abl binds the actin cytoskeleton and is involved in cytoskeletal moulding, whereas the nuclear localization is associated with the regulation of the cell cycle. 1 The N-terminal portion of Abl is lost in the t(9;22) translocation resulting in constitutive activation of the kinase. 1 The Bcr gene encodes a protein with a ser/thr kinase domain, a Guanine nucleotide exchange factor (GEF) domain and also a Guanine nucleotide activating protein domain. The first exon containing the serine/threonine kinase is retained in all forms of Bcr-Abl and, in addition, the GEF domain is retained in the two larger forms (Figure 1). The p190 and p210 Bcr-Abl isoforms are best characterized for their association with leukaemias, including chronic myelogenous leukaemia (CML) and acute leukaemias which express Bcr-Abl in one form or another. 29 Bcr-Abl þ CML has a varied prognosis with survival after diagnosis ranging from one to more than 10 years. 29 The p230 form of Bcr-Abl is associated with a neutropenic leukaemia. 30 Different Abl fusion partners have been detected in human leukaemias (cf. Table 1), including Tel, also known as ETV6, described further below. 29 Nucelophosmin-anaplastic lymphoma kinase NPM-ALK is an 80 kda protein generated by a t(2;5) chromosomal translocation which results in the N-terminus of nucleophosmin (NPM) fusing with the cytoplasmic tail of the transmembrane receptor anaplastic lymphoma kinase (ALK) 4

2 S/T Kinase SH3 SH2 TYR Kinase DNA AB 573 P190 Bcr-Abl S/T Kinase Dbl PH P210 Bcr component S/T Kinase Dbl PH P230 Bcr component MB TYR Kinase NPM-ALK (80KDa) JH2 TYR Kinase TEL-JAK2 HLH TM TYR Kinase TEL-PDGFR TYR Kinase TEL-TRKC (leukemia) TYR Kinase TEL-TRKC (fibrosarcoma) Figure 1 The structure of fusion tyrosine kinases (FTKs). The Bcr-Abl FTK has three splice variants creating proteins of 190, 210 and 230 kda. All three variants share oligomerization domains (), serine/threonine kinase (S/T kinase), Src homology 3 (SH3), DNA binding (DNA), tyrosine kinase (TYR kinase) and acidic binding (AB) domains. In addition, the p210 and p230 isoforms have Pleckstrin homology (PH) and Dbl homology (Dbl) domains. The other FTKs have in common with Bcr-Abl the and TYR kinase domains and, in addition, nucelophosmin-anaplastic lymphoma kinase (NPM-ALK) has a metal binding (MB) domain; Tel-JAK2 a janus kinase homology 2 (JH2) domain; and Tel-PDGFR has a helixloop-helix (HLH) motif and a transmembrane domain (TM). The domain in each case is responsible for the oliogomerization and hence hyperactivation of the TYR kinase. (Figure 1). NPM-ALK locates to both cytoplasmic and nuclear compartments, although its cytoplasmic localization alone is sufficient for transformation. 31 NPM is a ubiquitously expressed ribonuclear shuttle protein involved in the regulation of centrosome duplication and p53 activity, 32,33 whereas ALK is a receptor of unknown function, restricted in expression to developing neuronal tissue, 34 with ligands recently identified as pleiotrophin and midkine. 35 The highly conserved ALK protein has a Drosophila homologue, alk, which is involved in visceral muscle formation. 36,37 The NPM-ALK fusion protein retains the oligomerization domain of NPM and the kinase domain of ALK, resulting in hyperactivation of the ALK kinase in lymphoid tissues. Other fusion partners besides NPM have been described but are relatively rare compared to NPM-ALK. 38 NPM-ALK expression characterizes a rare form of non- Hodgkin s lymphoma, anaplastic large-cell lymphoma (ALCL), typically of a T or null cell origin, presenting mainly in children and young adults and with a relatively good prognosis. 39 More recently ALK expression has been noted in plasmablastic lymphomas either in the form of NPM-ALK or fused to other activating partners. 40 ALK has also been detected in neuroblastomas and immunomyofibroblastic tumours, although the functional significance of this is not yet known. 20,41 Ets variant gene 6-janus kinase 2 (Tel(ETV6)-Jak2) Chromosomal translocations between chromosomes 9 and 12 have been detected in extremely rare cases of both acute lymphoblastic leukaemia (t(9;12)) and CML-like disease (t(9;15;12)) resulting in the fusion of the Tel protein to the JH1 domain of Janus kinase 2 (Jak 2). 5,6 Tel is a member of the Ets family of transcription factors and consists of an amino-terminal pointed domain (PNT) which is retained in the fusion protein. The PNT domain mediates homotypic oligomerization of the fusion protein, resulting in its activation. Ets variant gene 6-platelet-derived growth factor b receptor (Tel(ETV6)-PDGFbR) Tel-PDGFbR expression is associated with chronic myelomonocytic leukaemia (CMML). 7 The Tel-PDGFbR protein results from a t(5;12) chromosomal translocation and consists of the Tel

3 574 Table 1 Fusion tyrosine kinases involved in lymphoid and myeloid disorders (this list in not exhaustive) Fusion tyrosine kinase Translocation Associated disease References Bcr-Abl t(9;22) CML, AML NPM-ALK t(2;5) Anaplastic large cell lymphoma Tel-JAK2 t(9;12), t(9;15;12) ALL CML-like Tel-PDGFbR t(5;12) CMML Tel-FGFR3 t(4;12) Peripheral T cell lymphoma progressing to AML Tel-NTRK3 (ETV6-TRKC) t(12;15) AML Tel-ARG t(1;12) AML Tel-Syk t(9;12) MDS PCM1-Jak2 t(8;9) CML, AML TIF1-FGFR3 t(7;8) CML, AML, MDS ATIC-ALK Inv(2) ALCL TFG-ALK t(2;3) ALCL CLTCL-ALK t(2;17) ALCL, IMT TPM3-ALK t(1;2) ALCL, IMT MYH9-ALK t(2;22) ALCL CARS-ALK t(2;11;2) IMT ALO17-ALK t(2;7) ALCL Tel-Abl t(9;12) ALL Bcr-JAK2 t(9;22) CML Bcr-FGFR1 t(8;22) CML, dual lympho-, myelo-proliferative disease Abbreviations: ALCL, anaplastic large cell lymphoma; ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; Bcr-Abl, breakpoint cluster region-abelson leukaemia; CML, chronic myeloid leukaemia; CMML, chronic myelo-monocytic leukaemia; IMT, inflammatory myofibroblastic tumour; MDS, myelodysplastic syndrome , , , ,19 20, ,27 N-terminus fused to the transmembrane and intracellular kinase domains of the PDGFb receptor 7 (Figure 1). The physiological ligand for the PDGFbR in normal cells is PDGF-BB, which induces dimerization and hence activation of the kinase with subsequent autophosphorylation, thereby creating docking sites for SH2 domain-containing proteins. 42 In contrast, the fusion protein is activated independently of ligand by the PNT domain of Tel, is detected in the cytosol and does not appear in the nucleus as does full-length Tel, nor in the membrane as does full-length PDGFbR. 43 Generation of FTK Proliferative signals resulting in replicative stress Accumulation of DNA damage FTK blocks apoptosis of DNA-damaged cells Enhanced DNA repair error prone? Ets variant 6-neurotrophic growth factor receptor 3 (Tel-TRKC or Tel-NTRK3) Tel, as outlined above is also found juxtaposed to TRKC, a member of the neurotrophic growth factor receptor family, which acts as a receptor for neurotrophin 3 and is essential for normal neural development. 44,45 This fusion protein, like NPM-ALK, is detected not only in solid tumours (infantile fibrosarcoma) but also in acute myeloid leukaemia (AML), the former excluding exons 1 5 of Tel and incorporating a 42 bp exon of TRKC not included in the AML form. 9,46 Other FTKs The advent of better techniques to detect chromosomal translocations has resulted in the discovery of a number of additional FTKs implicated in the development of myelodysplasias, leukaemias and lymphomas, some of which are listed in Table 1. These include Tel-FGFR3, Tel-ARG, Tel-Syk, PCM1- Jak2 and TIF1-FGFR1. At present, there is very little information available regarding the transforming signals mediated by these fusion proteins. FTK-induced signalling pathways in transformation The universal retainment of an oligomerization domain in each of the FTKs provides a common mechanism for activation. Genomic instability Selective pressure for accumulation of mutations/genomic aberrations Figure 2 Mechanisms of transformation induced by fusion tyrosine kinases (FTKs) in haemopoietic cells. The majority of data so far pertains to the breakpoint cluster region-abelson leukaemia (Bcr-Abl) FTK and demonstrates that the induction of mitogenic signals are central to the transforming process. The hypothesized replicative stress induced leads to the induction of a status of genomic instability and the acquisition of additional mutations and chromosomal aberrations, which may result in the production/expression of other oncogenes and/or the inactivation of tumour suppressor genes. Homotypic oligomerization induces fusion protein autophosphorylation, generating docking sites for SH2 domain-containing proteins, hence activating a plethora of downstream signalling pathways that lead to the transforming events illustrated in Figure 2. Investigation of FTK-induced oncogenic signals in primary non-transformed cells has been restricted largely to transgenic mouse models, adoptive transfer systems and transduction of genes of interest directly into primary cells. The rapidly growing literature using these approaches is helping to elucidate the very earliest events in the transforming process.

4 575 Akt PI 3-Kinase FTK Shc Grb-2 Sos Ras P Bad p27 kip1 P P FKHD STAT 3/5 NFκB p38 Erk Jnk Bcl-2 Bax Bcl-x L Bak AP-1 P27 kip1 Bcl2 Bcl-x L nucleus mitochondria Figure 3 Survival and mitogenic pathways induced in fusion tyrosine kinase (FTK)-transformed cells. FTK-transformed cells survive despite high levels of DNA damage as a result of the upregulation of survival pathways as described in the text. In addition, FTK-transformed cells proliferate and overcome cell cycle blocks as a result of the mitogenic signals induced. The signal transducers and activators of transcription factors upregulate the prosurvival Bcl-2 and Bcl-x L proteins in the majority of cases. The transcriptional targets of the nuclear factor-kappa B transcription factor in survival remain poorly characterized. These pathways are activated by the majority of FTKs in which they have been studied with some exceptions as detailed in the text. PI-3 kinase appears to be consistently upregulated by the FTKs, although the mechanism of activation may vary. The phosphorylation of Forkhead (FKHD) transcription factors and the p27 Kip1 cell cycle inhibitor by Akt relegates them to the cytoplasm where they are inactive. FKHD can then no longer induce transcription of p27 Kip1, whereas activator protein 1 transcription factors are transcribed in response to active mitogen-activated protein kinase pathways. These pathways are activated by the majority of FTKs in which they have been studied with some exceptions as detailed in the text. The signalosomes generated by the FTKs (illustrated in Figure 3) suggest that mitogenic pathways are central to the transforming process. FTK-regulated mitogenic pathways in transformation A sine qua non of the transformed state is that the normal constraints on cell cycle regulation are subverted, promoting unrestricted mitogenesis. But for an FTK this leaves open important questions: does the kinase promote cell cycle progression in primary cells upon its first expression and hence cause replicative stress? 47,48 or does it only subvert the cell cycle in collaboration with other oncogenes that become dysregulated following an initial wave of DNA damage? And, if that is the case, most important of all from a clinical perspective, does the activity and/or expression of the FTK remain critical for the maintenance of the transformed phenotype? In this section, we will focus on the first of these questions, although providing unambiguous answers is difficult due to our current lack of understanding of some of the signalling pathways that participate in FTK-mediated transformation. A good example of this ambiguity is provided by recent findings on GAB-2, a scaffolding adaptor protein expressed ubiquitously in lymphoid cells, which was originally identified by its binding to the SHP-2 tyrosine phosphatase. 49 Remarkably, bone marrow myeloid progenitors from Gab-2 / mice are completely resistant to transformation by Bcr-Abl, pointing to a critical role for Gab-2 in its transforming actions, whereas transformation by the TEL-Jak2 FTK in the same system was only slightly reduced. 50 The PI 3-kinase/AKT and extracellular signalregulated kinase (ERK) signalling pathways were inhibited in the Gab-2 / compared to wild-type cells, suggesting that these signals might be particularly important in transformation. 50 Furthermore, the Bcr-Abl Y177F mutant was less efficient at transforming myeloid progenitors in this system than normal Bcr-Abl, consistent with the finding that Y177F mutants lose their leukaemogenic potential when expressed in transgenic mice It is known that the Bcr-Abl Y177 site binds Grb-2, which in turn can couple the FTK to transforming pathways such as Shc/Ras/mitogen-activated protein (MAP) kinase. 53 However, Bcr-Abl can also stimulate Ras by other mechanisms, at least in haematopoietic cell lines, so it is not yet certain which Y177- dependent signal is most important. GAB-2 is thought to mediate cytokine signalling in haematopoietic cells and it therefore seems a reasonable inference from present data to suggest that GAB-2 is important in mediating Bcr-Abl-induced mitogenesis, the FTK providing a persistent repertoire of signals that would, in the wild-type context, be provided in a regulated way via cytokine receptors. 49 Consideration of the normal repertoire of cytokine-induced mitogenic signals provides further insights into the mechanisms whereby FTKs subvert the regulation of mitogenesis. It is well established that cytokines induce JAK-mediated activation of signal transducers and activators of transcription (STAT) proteins leading to the transcription of target genes associated with the regulation of cellular proliferation. 54 Of the seven STAT family members, STATs 3 and 5 have been implicated in transformation following the expression of FTKs. 52,55 61 Interestingly, these same two STAT proteins are also activated in response to IL-2, IL-7, IL-9 and IL-15, 54 consistent with the idea that FTKs can

5 576 mimic aspects of cytokine-induced signalling. In fact, STAT5 is essential for the development of lymphoid malignancy following expression of either NPM-ALK 52 or Tel-Jak2 62 in murine bone marrow transplanted into recipient mice. Furthermore, Tel-Jak2- mediated transformation is blocked following expression of SOCS-1, a negative regulator of Jak/STAT signalling that inhibits the actions of Jak2, so preventing phosphorylation and activation of both STATs 3 and 5, 63 further highlighting the actions of these critical players in the transforming process. However, NPM-ALK transgenic mice when back-crossed to mice lacking STAT3 still developed T-cell malignancies even though STAT3 ablation could inhibit the transformation of murine embryonic fibroblasts. 64 These data suggest some redundancy between the roles of STATs 3 and 5 in transformation, although STAT5 was not detected in the tumour tissues of NPM-ALK transgenic mice. 49 Likewise, STAT5 is apparently not essential for Bcr-Ablinduced transformation, although there is evidence that it does play some role: thus transfection of STAT5-deficient cells with Bcr-Abl followed by transfer to irradiated mice still results in a myeloproliferative disorder, but this develops at a slower rate than in STAT5 þ cells. 65 The somewhat conflicting literature on the relative contributions of STAT3 and STAT5 to transformation no doubt reflect the variety of experimental models under investigation, but there is little doubt that STAT transcription factors per se are critical. An important consequence of FTK-induced mitogenesis during the early stages of transformation may be replicative stress, leading to genomic instability and the consequent accumulation of mutations promoting cancer progression, as suggested by study of the pre-neoplastic lesions of a variety of cancers, including lung hyperplasia. 47,48 Nevertheless, the presence of cdna encoding NPM-ALK and Bcr-Abl in healthy individuals suggests that expression of these proteins alone is necessary but not sufficient for the development of malignancy, 66,67 so replicative stress induced by mitogenesis is unlikely to be the only mechanism involved, pointing to a role for secondary mutations independent of FTK expression. In addition, some results point to a more direct role for the FTKs in promoting genomic instability, as discussed below. Regulation of DNA repair and promotion of genomic instability Some CML patients acquire a complex karyotype during disease evolution from the chronic phase to blast crisis, suggesting the continual emergence of new mutations and raising the question as to whether Bcr-Abl promotes genomic instability by mechanisms independent of replicative stress. 68 In the context of primary transforming events, it is debatable whether the genetic abnormalities observed are a consequence or cause of transformation. Mice transgenic for the p190 form of Bcr-Abl develop karyotypic abnormalities in later stages of leukaemic development, suggesting that these are caused by the transformed state, 69 but in the same mice, a 2 3-fold steady-state increase in the frequency of point mutations was observed in pre-leukaemic cells, 70 pointing to a causal role for the fusion protein in promoting genetic instability. Further examination revealed an increased frequency of insertions and deletions in the precursor tissues. 71 Both types of DNA damage could be partially prevented by administration of the c-abl-specific inhibitor STI ,72 These results are consistent with earlier cell line studies in which murine Ba/F3 cells were transfected with the p190 and p210 Bcr-Abl species leading to a 3 5-fold increase in the mutation frequency at two separate gene loci. 73 Similarly, retroviral transduction of the p210 form of Bcr-Abl into 32D myeloid cells caused a rapid increase in chromosomal abnormalities. 74,75 It remains to be determined whether Bcr-Abl has direct effects on the DNA repair machinery or is itself a protein with mutagenic properties. The former hypothesis has been examined by Dierov et al. 76 who showed that Bcr-Abl-inducible Ba/F3 cells respond to DNA damage by re-localization of the Bcr-Abl protein to the nucleus. Once in the nucleus, Bcr-Abl binds to the ataxia-telangiectasia and rad 3-related protein (ATR), blocking its actions in phosphorylating Chk1 and inducing the DNA repair process, resulting in a radio-resistant DNA synthesis phenotype. 76 The idea that Bcr-Abl is more directly mutagenic is supported by experiments in which transfection of Bcr-Abl resulted in increased expression and activity of DNA polymerase b, the most inaccurate of the mammalian DNA polymerases, thereby suggesting a possible mechanism for the mutator phenotype. 73 This may be the cause of the 2 3-fold increase in the levels of point mutations observed in the transgenic mouse models already mentioned. 72 It would therefore be of interest to examine the DNA repair processes following exposure of the p190 transgenic mice to point mutagens and clastogens. Despite the results obtained using mouse models and cell lines, point mutations have not often been detected in CML cells, and common cytogenetic abnormalities are few, suggesting that a mutator phenotype may not be induced by Bcr-Abl in CML. Further work will be necessary to clarify whether these contrasting data represent genuine species differences, or perhaps simply the difficulties of obtaining human cells at the earliest stages of transformation. FTK-mediated survival of DNA-damaged cells Normally DNA-damaged cells die by apoptosis following induction of the p53 and related pathways, thereby eliminating those potentially lethal cells that are marked by genomic instability. But FTK-expressing cells subvert this process by triggering powerful survival signals that block DNA-damageinduced apoptosis (Figure 2). Much of the molecular analysis of the FTK-mediated survival signals has been performed using transformed cells and these data are discussed in the following section. However, once again mouse models are facilitating dissection of these pathways in pre-leukaemic primary cells, and we first briefly review these findings. Transgenic mice expressing the p190 form of Bcr-Abl, in which pre-b cell leukaemias develop, provide useful models for investigation. B lineage cells normally undergo extensive apoptotic cell death as they develop in the mouse bone marrow. However, apoptosis is markedly reduced in bone marrow pre-b cells expressing Bcr-Abl, suggesting that the DNA-damageinduced response is suppressed. 77 In addition, there is good evidence that Bcr-Abl reverses the apoptosis caused by cytokine deprivation and that this is relevant to the process of transformation in primary cells. 78,79 Early haematopoietic progenitors from normal mice undergo rapid apoptosis in the absence of cytokines, an event associated with upregulation of the proapoptotic protein Bim. However, in a mouse CML model in which Bcr-Abl is expressed under the control of the tec tyrosine kinase promoter, immature myeloid progenitors resist apoptosis upon cytokine withdrawal without the normal induction of Bim expression, effects that can be reversed by an Abl kinase inhibitor. 79 In summary, it is a reasonable working model that FTKs exert their earliest transforming effects by inducing mitogenesis, causing replicative stress while subverting the normal processes

6 of DNA repair and simultaneously inducing survival signals that prevent DNA-damage-triggered apoptosis and/or apoptosis arising from cytokine deprivation (Figure 2). The same, or parallel, survival signals may also promote the lineage progression of cells that might otherwise have died at critical stages of cytokine deprivation. The precise order of these events remains to be determined and to be confirmed in relevant models as a result of expression of the other FTKs. FTK-induced signalling pathways in transformed cells Much of the detailed biochemical analysis of FTK-induced signalling pathways has been carried out using cancer cell lines and, increasingly, primary tumour tissue from human or rodent. This has generated a large body of valuable data, reviewed below, and having particular relevance to clinical prognosis and therapeutic intervention. However, dysfunctional signalling pathways in cancer cells may, or may not, reproduce the initial FTK-induced events that caused transformation. In fact, in some cases it is clear that the biochemical signals measured in cancer cells are quite different, quantitatively and/or qualitatively, from those responsible for the initiation of transformation in pretumourigenic lineages. Regulation of DNA repair Fully transformed cells upregulate DNA repair mechanisms to promote survival, particularly in response to DNA-damaging agents used therapeutically. Details of the various pathways that mediate drug-resistance are not discussed here as they have been reviewed fully elsewhere. 2,80 The best defined action of the FTKs is to induce resistance to DNA-damaging compounds via upregulation of RAD51, an enzyme involved in rejoining of homologous ends. This involves dual transcriptional and post-translational control mechanisms, both mediated via STAT5, whereby the FTK increases RAD51 transcription as well as inducing increased RAD51 activity by direct phosphorylation of the enzyme. 2,80 This mechanism is common to all of the FTKs examined so far with the exception of Tel-TRKC which does not activate STAT5. 80,81 Cells transformed by Bcr-Abl also accumulate p53 in response to DNA damage, activating p21waf-1 and GADD45, so inducing a delay in the G2 to M transition of the cell cycle. 82 This delay is thought to allow time for DNA repair. In addition, the p210 isoform of Bcr- Abl has been reported to use an additional mechanism of DNA damage repair following genotoxic insult in which the fidelity of repair is affected. Thus, the CDC24 homology domain of Bcr retained in the p210 isoform binds the xeroderma pigmentosum B (XPB) protein, disabling its function. 83 The helicase and ATPase activities of XPB in particular are affected and hence DNA repair by this mechanism is abrogated. It is this kind of mechanism which may underlie the genomic instability seen in the later blast crisis phase of the associated disease, consistent with the elevated level of reactive oxygen species (ROS) detected in Bcr-Abl-transformed cells, 84,85 an increase associated with double-strand breaks, transitions and transversions. Recently, the increase in ROS has been reported to be downstream of PI 3-kinase, which causes overactivity of the mitochondrial electron transport chain, thereby increasing glucose metabolism. 85 Enhanced DNA damage combined with a lack of fidelity of repair mechanisms may contribute to the maintenance of the transformed phenotype and perhaps even progression to advanced disease status (e.g., blast crisis in the case of CML). Notably, such transformed cells are still able to escape apoptosis and survive with an unstable genome. Survival and mitogenic pathways FTK-transformed cells maintain their unrestricted growth by the continued activation of survival pathways that counteract the proapoptotic signals triggered by their own genomic DNA damage (Figure 3). For example, the Bcr-Abl kinase inhibitor STI571 causes apoptosis of the K562 cell line, 86 thereby illustrating the phenomenon of oncogene addiction. It appears that even though the transformed cells have acquired multiple chromosomal aberrations, which might have been expected to generate alternative antiapoptotic mechanisms, in the few cases studied so far the cancer cells remain dependent on the FTK for survival. As a consequence, point mutations in the ATP binding pocket of the Bcr-Abl kinase enables escape of leukaemic cells from Gleevec-mediated kinase activity inhibition. 87 Survival and mitogenic signals driven by the kinase are therefore essential for continued cell growth. Elucidation of both types of signalling pathway is critical in the design of new therapeutic strategies, and since the same molecules are often implicated in both types of pathway, they are discussed together below in the context of the key players involved: The phosphoinositide 3-kinase family The signalosomes formed by the Bcr-Abl, NPM-ALK, Tel-Jak2, Tel-TRKC (fibrosarcoma variant) and Tel-PDGFRbR FTKs include PI 3-kinase, which binds via an SH2 domain within its p85 subunit, resulting in the phosphorylation and activation of the ser/thr kinase protein kinase B (PKB/Akt). 81,88 94 The binding sites of PI 3-kinase to the FTKs have been identified and the bridging proteins Cbl, Shc and Gab-2 are involved. 95 Once activated, Akt phosphorylates a plethora of downstream targets altering their activation status. The antiapoptotic functions of PI 3-kinase-mediated pathways have received particular attention (Figure 3). For example, PI 3-kinase mediates the phosphorylation and hence inactivation of the proapoptotic protein Bad, as demonstrated in NPM-ALK-transformed cells. 88 Phosphorylated Bad is sequestered by proteins in the cytoplasm, thereby downregulating its proapoptotic effects. PI 3-kinase activation also leads to upregulation of the Bcl-2 family members, including Bcl-2 itself, 90,96 although this does not appear to be the case in NPM-ALK-expressing cells, despite the expression of active PI 3-kinase. 97 In addition to its role in mediating survival signals, it is also clear that FTK signalosome-associated PI 3-kinase is involved in regulating mitogenesis (Figure 3). For example, PI 3-kinase activation results in the phosphorylation of p27 kip1 relegating it to the cytoplasm where it cannot exert its negative effects on cell-cycle-dependent kinase 2 (CDK2), which regulates entry into the S phase of the cell cycle. 98 Using Ba/F3 and 32D cell lines as model systems, it has been shown that Tel-PDGFbR, NPM-ALK and Bcr-Abl expression results in inhibition of p27 kip1 as a result of PI 3-kinase activation. 94,99,100 These effects are most likely mediated by Forkhead transcription factors that are activated by Akt downstream of PI 3-kinase, thereby inhibiting the transcription of p27 kip1. 100,101 STAT transcription factors As discussed above in the context of transforming events, FTKs activate the STAT transcription factors, in some cases via Jak phosphorylation and activation and in others by direct phosphorylation. 59,60,63,102,103 STATs 3 and 5 are phosphorylated as a result of NPM-ALK, Bcr-Abl and Tel-Jak2 expression 49,52,59,61 65, (Figure 3). However, active STAT5 could only be seen in NPM-ALK-transformed cells following 577

7 578 preincubation with the tyrosine phosphatase inhibitor sodium orthovanadate, suggesting that STAT5 dephosphorylation is a rapid event in these cells, whereas STAT3 was consistently phosphorylated in the absence of such phosphatase inhibitors. 52 In addition, the p210 and p190 isoforms of Bcr-Abl activate STAT1 and the p190 isoform activates STAT Importantly, STAT 5 initiates the transcription of the antiapoptotic protein Bcl-x L in FTK-transformed cells. 104,108 Bcl-2 family proteins such as Bcl-x L sequester proapoptotic BH3-only proteins such as Bim and PUMA, maintaining mitochondrial membrane integrity, preventing release of cytochrome c and activation of the caspase execution cascade. The nuclear factor-kappa B transcription factor FTK-mediated signals commonly activate the nuclear factorkappa B (NF-kB) transcription factor (Figure 3). In an inactive state, NF-kB is sequestered in the cytoplasm, bound to IkB proteins, which are ubiquitinated and subsequently degraded following phosphorylation, releasing NF-kB and promoting its translocation to the nucleus. 109 Inhibition of NF-kB activity in Tel-PDGFbR and Tel-Jak2-transformed cells results in the induction of apoptotic cell death, 110,111 indicating a prosurvival role for NF-kB and consistent with the NF-kB activation observed in Bcr-Abl-transformed cells. 111,112 Antisense oligos against the predominant p65 subunit (RelA) prevented IL3 independence in these cells, suggesting a role for NF-kB in the panoply of signals whereby Bcr-Abl mediates cell growth and survival. 112 Conversely, NF-kB is apparently not active in NPM-ALK-expressing patient-derived cell lines, even though the TNFR superfamily member CD30, usually associated with NF-kB activation, is expressed on the surface of these cells. 113 Normally, the recruitment of TRAF proteins to CD30 (as in Hodgkin s Reed Sternberg cells) leads to NF-kB activation, but in NPM-ALK positive cells this is blocked by an NPM-dependent mechanism, thereby preventing stimulation of the NF-kB pathway. 113 However, p50 homodimers do form and these are associated with Bcl3 activity, a protein thought to be involved in protection from apoptosis 114,115 MAP/SAP kinase pathway The FTKs contain binding sites for the adaptor proteins Grb- 2 63,116,117 and Shc, 81,117,118 generally associated with binding the exchange factor Sos, thereby activating Ras and downstream MAP kinase pathways. 119 The ERK MAP kinase pathway is often associated with mitogenic signalling, whereas the stressactivated JNK and p38 SAP-kinase pathways have been implicated in apoptotic end points, although more recent data suggest additional roles in tumour cell proliferation. 120 Thus, activation of all three MAP kinase pathways, ERK, JNK and p38, has been noted in Bcr-Abl-transformed haemopoietic progenitor cells 121 and ERK MAP kinase is active in Tel-Jak2 and Tel-TRKCtransformed cells. 81,113,122 In addition, Tel-PDGFbR-transformed Ba/F3 cells contain active JNK 123 and all three MAP kinase pathways are active in the tumour tissues of NPM-ALK transgenic mice. 49,124 On the other hand, the ERK, JNK and p38 kinase pathways appear not to be activated in NPM-ALKexpressing human ALCL cell lines 115 and likewise no ERK activation was detectable in Bcr-Abl-transformed Ba/F3 cell lines 125 or Tel-PDGFbR-transformed 32D or Ba/F3 cells. 126 The disparities in these data may reflect genuine differences in the signals induced by different FTKs; in addition, it seems likely that the disparate results reflect variations in the materials under investigation. Transformed cell lines are often not completely representative of the primary cancers as they are produced from patients who are generally in advanced stages of disease. These lines are then selected for growth in vitro, in this context perhaps rendering them independent of the MAP kinase pathways for activation of downstream transcription factors. The contradictory data in the literature on the role of the MAP kinase pathways in FTK-transformed cells therefore require further elucidation using murine models or transformed primary cells more representative of the cancer cell phenotype. Activator protein 1 transcription factors The three MAP kinase pathways induce a wide range of transcription factors implicated in mitogenic regulation, such as those which bind to the CRE, TRE and SRE response elements found within cytokine promoter regions. The combinatorial actions of the MAP/SAP kinase pathways are thereby integrated at this level of transcription factor regulation. For example, the activator protein 1 (AP-1) components fos and c-jun are active in Bcr-Abl; 127 c-jun, JunB and Fra-2 in NPM-ALK; 113,115,123 and c-jun in Tel-PDGFbR-transformed cells. 123 Conversely, neither c-jun or c-fos were detected in Tel-Jak2-transformed BaF3 cells. 105 The AP-1 components form heterodimers which bind to TPA response elements and induce transcription of proteins usually associated with a proliferative response. 128 Conclusions The literature describing transforming pathways induced by FTKs in primary cells is relatively sparse at present and is mainly based on studies investigating the actions of Bcr-Abl. However, initial studies have shown that FTKs may be involved in the induction of mitogenesis with, presumably, its associated replicative stress, and are certainly involved in preventing the elimination of DNA-damaged cells. The net outcome is the acquisition of genomic instability, coupled with inhibition of DNA repair and potentially error-prone DNA repair, promoting the next stages in the transforming process and, in the case of CML, progression to blast crisis. Once transformation has occurred, a number of FTK-driven signalling pathways maintain cell proliferation and growth, generating the phenomenon of oncogene addiction. FTK signalosomes couple directly to survival and mitogenic signalling pathways that involve PI 3-kinase, MAP/SAP kinase pathways and STAT, AP-1 and NF-kB transcription factors, although the precise composition of this repertoire of signalling molecules does vary somewhat depending on the FTK. Whether in the end the differences will out-number the similarities remains to be seen, but with the available data it is the commonalities between the FTK-induced signalling pathways that impress. Our increasing understanding of the FTK signalling pathways does provide important insights into the potential therapeutic use of inhibitor compounds. The success of the Bcr-Abl inhibitor, STI571, has set a precedent for the use of kinase inhibitors in the treatment of those cancers expressing hyperactive kinases. However, relapses associated with the emergence of mutant forms of Bcr-Abl resistant to therapy highlight the need for additional therapies. The data presented in this review point to the importance of combination therapies targeting not only the FTK but, in addition, common FTKstimulated signals, in particular the PI 3-kinase and MAP kinase pathways.

8 Research into FTKs has reached an exciting phase of development. Most of the work carried out so far has focused on the well-known Bcr-Abl kinase, but with the discovery of new hyperactive fusion kinases and the development of better models, further rapid progress is expected in understanding the molecular actions of FTKs in tumorigenesis and cancer progression. Acknowledgements We thank the Leukaemia Research Fund, the Leukaemia and Lymphoma Society, and the British Biological Sciences Research Council for their financial support, and also apologise to those authors whose work has not been cited due to space constraints. SDT is supported by funding from the Leukaemia Research Fund (UK) and DRA from the Biotechnology and Biological Sciences Research Council. References 1 Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001; 411: Skorski T. Oncogenic tyrosine kinases and the DNA-damage response. Nat Rev Cancer 2002; 2: Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-hodgkin s lymphoma. Science 1994; 263: Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukaemia. Science 1997; 278: Pittaluga S, Wlodarska I, Pulford K, Campo E, Morris SW, Van den Berghe H et al. The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am J Pathol 1997; 151: Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C et al. An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet 2005; 37: Maeda T, Yagasaki F, Ishikawa M, Takahashi N, Bessho M. Transforming property of TEL-FGFR3 mediated through PI3-K in a T-cell lymphoma that subsequently progressed to AML. Blood 2005; 105: Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukaemia with t(12;15)(p13;q25). Blood 1999; 93: Cazzaniga G, Dell oro MG, Mecucci C, Giarin E, Masetti R, Rossi V et al. Nucleophosmin mutations in childhood acute myelogenous leukaemia with normal karyotype. Blood 2005; 106: Kuno Y, Abe A, Emi N, Iida M, Yokozawa T, Towatari M et al. Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood 2001; 97: Reiter A, Walz C, Watmore A, Schoch C, Blau I, Schlegelberger B et al. The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukaemia that fuses PCM1 to JAK2. Cancer Res 2005; 65: Bousquet M, Quelen C, De Mas V, Duchayne E, Roquefeuil B, Delsol G et al. The t(8;9)(p22;p24) translocation in atypical chronic myeloid leukaemia yields a new PCM1-JAK2 fusion gene. Oncogene 2005; 24: Belloni E, Trubia M, Gasparini P, Micucci C, Tapinassi C, Confalonieri S et al. 8p11 myeloproliferative syndrome with a novel t(7;8) translocation leading to fusion of the FGFR1 and TIF1 genes. Genes Chromosomes Cancer 2005; 42: Colleoni GW, Bridge JA, Garicochea B, Liu J, Filippa DA, Ladanyi M. ATIC-ALK: a novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am J Pathol 2000; 156: Trinei M, Lanfrancone L, Campo E, Pulford K, Mason DY, Pelicci PG et al. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large cell lymphoma. Cancer Res 2000; 60: Hernandez L, Pinyol M, Hernandez S, Bea S, Pulford K, Rosenwald A et al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 1999; 94: Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000; 95: Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W et al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumour. Am J Pathol 2001; 159: Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL et al. TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumours. Am J Pathol 2000; 157: Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999; 93: Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003; 37: Cools J, Wlodarska I, Somers R, Mentens N, Pedeutour F, Maes B et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumour. Genes Chromosomes Cancer 2002; 34: Papadopoulos P, Ridge SA, Boucher CA, Stocking C, Wiedemann LM. The novel activation of ABL by fusion to an ets-related gene, TEL. Cancer Res 1995; 55: Basecke J, Griesinger F, Trumper L, Brittinger G. Leukaemia- and lymphoma-associated genetic aberrations in healthy individuals. Ann Hematol 2002; 81: Murati A, Arnoulet C, Lafage-Pochitaloff M, Adelaide J, Derre M, Slama B et al. Dual lympho-myeloproliferative disorder in a patient with t(8;22) with BCR-FGFR1 gene fusion. Int J Oncol 2005; 26: Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL et al. The t(8;22) in chronic myeloid leukaemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 2001; 98: Sattler M, Griffin JD. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol 2003; 40: Deininger M, Lehmann T, Krahl R, Hennig E, Muller C, Niederwieser D. No evidence for persistence of BCR-ABLpositive cells in patients in molecular remission after conventional allogenic transplantation for chronic myeloid leukaemia. Blood 2000; 96: Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al. Neutrophilic-chronic myeloid leukaemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 88: Mason DY, Pulford KA, Bischof D, Kuefer MU, Butler LH, Lamant L et al. Nucleolar localization of the nucleophosmin-anaplastic lymphoma kinase is not required for malignant transformation. Cancer Res 1998; 58: Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: Okuda M. The role of nucleophosmin in centrosome duplication. Oncogene 2002; 21: Pulford K, Lamant L, Morris SW, Butler LH, Wood KM, Stroud D et al. Detection of anaplastic lymphoma kinase (ALK) and 579

9 580 nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 1997; 89: Stoica GE, Kuo A, Powers C, Bowden ET, Sale EB, Riegel AT et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J Biol Chem 2002; 277: Lee HH, Norris A, Weiss JB, Frasch M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 2003; 425: Englund C, Loren CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 2003; 425: Duyster J, Bai RY, Morris SW. Translocations involving anaplastic lymphoma kinase (ALK). Oncogene 2001; 20: Benharroch D, Meguerian-Bedoyan Z, Lamant L, Amin C, Brugieres L, Terrier-Lacombe MJ et al. ALK-positive lymphoma: a single disease with a broad spectrum of morphology. Blood 1998; 91: Onciu M, Behm FG, Raimondi SC, Moore S, Harwood EL, Pui CH et al. ALK-positive anaplastic large cell lymphoma with leukemic peripheral blood involvement is a clinicopathologic entity with an unfavorable prognosis. Report of three cases and review of the literature. Am J Clin Pathol 2003; 120: Lamant L, Pulford K, Bischof D, Morris SW, Mason DY, Delsol G et al. Expression of the ALK tyrosine kinase gene in neuroblastoma. Am J Pathol 2000; 156: Claesson-Welsh L. Platelet-derived growth factor receptor signals. J Biol Chem 1994; 269: Jousset C, Carron C, Boureux A, Quang CT, Oury C, Dusanter- Fourt I et al. A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBO J 1997; 16: Lamballe F, Klein R, Barbacid M. The trk family of oncogenes and neurotrophin receptors. Princess Takamatsu Symp 1991; 22: Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R, Bryant S et al. Disruption of the neurotrophin-3 receptor gene trkc eliminates la muscle afferents and results in abnormal movements. Nature 1994; 368: Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH. A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 1998; 18: Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumourigenesis. Nature 2005; 434: Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J et al. NPM- ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumours. Blood 2003; 101: Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: Million RP, Van Etten RA. The Grb2 binding site is required for the induction of chronic myeloid leukaemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 2000; 96: Nieborowska-Skorska M, Slupianek A, Xue L, Zhang Q, Raghunath PN, Hoser G et al. Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res 2001; 61: Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 1995; 15: Leonard WJ, O Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol 1998; 16: de Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L. STAT5 activation by BCR-Abl contributes to transformation of K562 leukaemia cells. Blood 1999; 94: Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: Spiekermann K, Pau M, Schwab R, Schmieja K, Franzrahe S, Hiddemann W. Constitutive activation of STAT3 and STAT5 is induced by leukemic fusion proteins with protein tyrosine kinase activity and is sufficient for transformation of hematopoietic precursor cells. Exp Hematol 2002; 30: Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD. STAT5 activation contributes to growth and viability in Bcr/Abltransformed cells. Blood 2000; 95: Wilbanks AM, Mahajan S, Frank DA, Druker BJ, Gilliland DG, Carroll M. TEL/PDGFbetaR fusion protein activates STAT1 and STAT5: a common mechanism for transformation by tyrosine kinase fusion proteins. Exp Hematol 2000; 28: Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002; 21: Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 2002; 168: Borisch B, Yerly S, Cerato C, Schwaller J, Wacker P, Ozsahin AH et al. ALK-positive anaplastic large-cell lymphoma: strong T and B anti-tumour responses may cause hypocellular aspects of lymph nodes mimicking inflammatory lesions. Eur J Haematol 2003; 71: Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG. Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol 2001; 21: Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005; 11: Sexl V, Piekorz R, Moriggl R, Rohrer J, Brown MP, Bunting KD et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of stat5. Blood 2000; 96: Biernaux C, Loos M, Sels A, Huez G, Stryckmans P. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: Trumper L, Pfreundschuh M, Bonin FV, Daus H. Detection of the t(2;5)-associated NPM/ALK fusion cdna in peripheral blood cells of healthy individuals. Br J Haematol 1998; 103: Ilaria Jr R. Bcr/Abl, leukemogenesis, and genomic instability: a complex partnership. Leuk Res 2002; 26: Voncken JW, Morris C, Pattengale P, Dennert G, Kikly C, Groffen J et al. Clonal development and karyotype evolution during leukemogenesis of BCR/ABL transgenic mice. Blood 1992; 79: Salloukh HF, Laneuville P. Increase in mutant frequencies in mice expressing the BCR-ABL activated tyrosine kinase. Leukaemia 2000; 14: Brain JM, Goodyer N, Laneuville P. Measurement of genomic instability in preleukemic P190BCR/ABL transgenic mice using inter-simple sequence repeat polymerase chain reaction. Cancer Res 2003; 63: Brain J, Saksena A, Laneuville P. The kinase inhibitor STI571 reverses the Bcr-Abl induced point mutation frequencies observed in pre-leukemic P190(Bcr-Abl) transgenic mice. Leuk Res 2002; 26: Canitrot Y, Lautier D, Laurent G, Frechet M, Ahmed A, Turhan AG et al. Mutator phenotype of BCR-ABL transfected Ba/F3 cell lines and its association with enhanced expression of DNA polymerase beta. Oncogene 1999; 18: Laneuville P, Sun G, Timm M, Vekemans M. Clonal evolution in a myeloid cell line transformed to interleukin-3 independent growth by retroviral transduction and expression of p210bcr/abl. Blood 1992; 80:

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes.

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. ۱ RAS Genes The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. Oncogenic ras genes in human cells include H ras, N ras,

More information

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION Signal Transduction - Part 2 Key Concepts - Receptor tyrosine kinases control cell metabolism and proliferation Growth factor signaling through Ras Mutated cell signaling genes in cancer cells are called

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

Megan S. Lim MD PhD. Translating Mass Spectrometry-Based Proteomics of Malignant Lymphoma into Clinical Application

Megan S. Lim MD PhD. Translating Mass Spectrometry-Based Proteomics of Malignant Lymphoma into Clinical Application Translating Mass Spectrometry-Based Proteomics of Malignant Lymphoma into Clinical Application Megan S. Lim MD PhD FRCPC Department of Pathology, University of Michigan, Ann Arbor, MI Proteomics is a multi-faceted

More information

Lecture 7: Signaling Through Lymphocyte Receptors

Lecture 7: Signaling Through Lymphocyte Receptors Lecture 7: Signaling Through Lymphocyte Receptors Questions to Consider After recognition of its cognate MHC:peptide, how does the T cell receptor activate immune response genes? What are the structural

More information

Can we classify cancer using cell signaling?

Can we classify cancer using cell signaling? Can we classify cancer using cell signaling? Central hypotheses (big ideas) Alterations to signaling genes would cause leukemic cells to react in an inappropriate or sensitized manner to environmental

More information

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis MUDr. Jiří Vachtenheim, CSc. CELL CYCLE - SUMMARY Basic terminology: Cyclins conserved proteins with homologous regions; their cellular

More information

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

Signal transducer and activator of transcription proteins in leukemias

Signal transducer and activator of transcription proteins in leukemias Review article Signal transducer and activator of transcription proteins in leukemias Mustafa Benekli, Maria R. Baer, Heinz Baumann, and Meir Wetzler Introduction Signal transducer and activator of transcription

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive LL - LL-ROHINI (NATIONAL REFERENCE 135091534 Age 36 Years Gender Female 1/9/2017 120000AM 1/9/2017 105316AM 2/9/2017 104147AM Ref By Final LEUKEMIA GENETIC ROFILE ANY SIX MARKERS, CR QUALITATIVE AML ETO

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Myeloproliferative Disorders - D Savage - 9 Jan 2002

Myeloproliferative Disorders - D Savage - 9 Jan 2002 Disease Usual phenotype acute leukemia precursor chronic leukemia low grade lymphoma myeloma differentiated Total WBC > 60 leukemoid reaction acute leukemia Blast Pro Myel Meta Band Seg Lymph 0 0 0 2

More information

Src-INACTIVE / Src-INACTIVE

Src-INACTIVE / Src-INACTIVE Biology 169 -- Exam 1 February 2003 Answer each question, noting carefully the instructions for each. Repeat- Read the instructions for each question before answering!!! Be as specific as possible in each

More information

Case #16: Diagnosis. T-Lymphoblastic lymphoma. But wait, there s more... A few weeks later the cytogenetics came back...

Case #16: Diagnosis. T-Lymphoblastic lymphoma. But wait, there s more... A few weeks later the cytogenetics came back... Case #16: Diagnosis T-Lymphoblastic lymphoma But wait, there s more... A few weeks later the cytogenetics came back... 46,XY t(8;13)(p12;q12)[12] Image courtesy of Dr. Xinyan Lu Further Studies RT-PCR

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive LL - LL-ROHINI (NATIONAL REFERENCE 135091533 Age 28 Years Gender Male 1/9/2017 120000AM 1/9/2017 105415AM 4/9/2017 23858M Ref By Final LEUKEMIA DIAGNOSTIC COMREHENSIVE ROFILE, ANY 6 MARKERS t (1;19) (q23

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

Biol403 MAP kinase signalling

Biol403 MAP kinase signalling Biol403 MAP kinase signalling The mitogen activated protein kinase (MAPK) pathway is a signalling cascade activated by a diverse range of effectors. The cascade regulates many cellular activities including

More information

Quality in Control ALK-Lung Analyte Control (EML4-ALK) ALK-Lymphoma Analyte Control (NPM-ALK)

Quality in Control ALK-Lung Analyte Control (EML4-ALK) ALK-Lymphoma Analyte Control (NPM-ALK) Quality in Control ALK-Lung Analyte Control (EML4-ALK) ALK-Lymphoma Analyte Control (NPM-ALK) 10 Product Codes: HCL007, HCL008 and HCL009 HCL010, HCL011 and HCL012 Page 1 of Contents 1. What is ALK?...

More information

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED Acute Myeloid Leukemia Firstly we ll start with this introduction then enter the title of the lecture, so be ready and let s begin by the name of Allah : We

More information

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? Questions about cancer What is cancer? Cancer Gil McVean, Department of Statistics, Oxford What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? What are the steps in

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Anaplastic Large Cell Lymphoma (of T cell lineage)

Anaplastic Large Cell Lymphoma (of T cell lineage) Anaplastic Large Cell Lymphoma (of T cell lineage) Definition T-cell lymphoma comprised of large cells with abundant cytoplasm and pleomorphic, often horseshoe-shaped nuclei CD30+ Most express cytotoxic

More information

Interpretation Guide. Product Name: ALK Cell Line Analyte Control Product Codes: ALK2/CS and ALK2/CB. Page 1 of 9

Interpretation Guide. Product Name: ALK Cell Line Analyte Control Product Codes: ALK2/CS and ALK2/CB. Page 1 of 9 Interpretation Guide Product Name: ALK Cell Line Analyte Control Product Codes: ALK2/CS and ALK2/CB ALK2/CS/CB_IG_V_001 www.histocyte.com Page 1 of 9 Contents 1. What is ALK?... 2 2. Role of ALK in Cancer...

More information

Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18

Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18 Introduction to pathology lecture 5/ Cell injury apoptosis Dr H Awad 2017/18 Apoptosis = programmed cell death = cell suicide= individual cell death Apoptosis cell death induced by a tightly regulated

More information

EBV infection B cells and lymphomagenesis. Sridhar Chaganti

EBV infection B cells and lymphomagenesis. Sridhar Chaganti EBV infection B cells and lymphomagenesis Sridhar Chaganti How EBV infects B-cells How viral genes influence the infected B cell Differences and similarities between in vitro and in vivo infection How

More information

Principles of cell signaling Lecture 4

Principles of cell signaling Lecture 4 Principles of cell signaling Lecture 4 Johan Lennartsson Molecular Cell Biology (1BG320), 2014 Johan.Lennartsson@licr.uu.se 1 Receptor tyrosine kinase-induced signal transduction Erk MAP kinase pathway

More information

Prepared by: Dr.Mansour Al-Yazji

Prepared by: Dr.Mansour Al-Yazji C L L CLL Prepared by: Abd El-Hakeem Abd El-Rahman Abu Naser Ahmed Khamis Abu Warda Ahmed Mohammed Abu Ghaben Bassel Ziad Abu Warda Nedal Mostafa El-Nahhal Dr.Mansour Al-Yazji LEUKEMIA Leukemia is a form

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

Haematology Probes for Multiple Myeloma

Haematology Probes for Multiple Myeloma Haematology Probes for Multiple Myeloma MULTIPLE MYELOMA Multiple myeloma (MM) is a plasma cell neoplasm, characterised by the accumulation of clonal plasma cells in the bone marrow and by very complex

More information

JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis

JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis (2004) 18, 189 218 & 2004 Nature Publishing Group All rights reserved 0887-6924/04 $25.00 www.nature.com/leu REVIEW JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis

More information

Growth and Differentiation Phosphorylation Sampler Kit

Growth and Differentiation Phosphorylation Sampler Kit Growth and Differentiation Phosphorylation Sampler Kit E 0 5 1 0 1 4 Kits Includes Cat. Quantity Application Reactivity Source Akt (Phospho-Ser473) E011054-1 50μg/50μl IHC, WB Human, Mouse, Rat Rabbit

More information

SH A CASE OF PERSISTANT NEUTROPHILIA: BCR-ABL

SH A CASE OF PERSISTANT NEUTROPHILIA: BCR-ABL SH2017-0124 A CASE OF PERSISTANT NEUTROPHILIA: BCR-ABL NEGATIVE John R Goodlad 1, Pedro Martin-Cabrera 2, Catherine Cargo 2 1. Department of Pathology, NHS Greater Glasgow & Clyde, QEUH, Glasgow 2. Haematological

More information

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS Summary of the regulation of cyclin/cdk complexes during celll cycle Cell cycle phase Cyclin-cdk complex inhibitor activation Substrate(s) G1 Cyclin D/cdk 4,6

More information

Lecture 14 - The cell cycle and cell death

Lecture 14 - The cell cycle and cell death 02.17.10 Lecture 14 - The cell cycle and cell death The cell cycle: cells duplicate their contents and divide The cell cycle may be divided into 4 phases The cell cycle triggers essential processes (DNA

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1 Frequency of DNMT3A mutations in hematologic disorders and their associated clinical phenotypes. Disease Patient population Frequency (%) Associated Clinical Characteristics

More information

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D.

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. OBJECTIVES 1. To understand how ordered Ig gene rearrangements lead to the development

More information

RUNX1 and FPD/AML Translational Research. The Leukemia and Lymphoma Society / Babich Family Foundation Partnership. September 2016

RUNX1 and FPD/AML Translational Research. The Leukemia and Lymphoma Society / Babich Family Foundation Partnership. September 2016 www.lls.org www.runx1.com RUNX1 and FPD/AML Translational Research The Leukemia and Lymphoma Society / Babich Family Foundation Partnership September 2016 Prepared by L. Greenberger, PhD Chief Scientific

More information

Phospho-AKT Sampler Kit

Phospho-AKT Sampler Kit Phospho-AKT Sampler Kit E 0 5 1 0 0 3 Kits Includes Cat. Quantity Application Reactivity Source Akt (Ab-473) Antibody E021054-1 50μg/50μl IHC, WB Human, Mouse, Rat Rabbit Akt (Phospho-Ser473) Antibody

More information

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development.

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Follicular Lymphoma 1. Characterized by t(14:18) translocation 2. Ig heavy

More information

Chapter 4 Cellular Oncogenes ~ 4.6 -

Chapter 4 Cellular Oncogenes ~ 4.6 - Chapter 4 Cellular Oncogenes - 4.2 ~ 4.6 - Many retroviruses carrying oncogenes have been found in chickens and mice However, attempts undertaken during the 1970s to isolate viruses from most types of

More information

Role of Bcl-2 family proteins in apoptosis

Role of Bcl-2 family proteins in apoptosis Role of Bcl-2 family proteins in apoptosis The bcl-2 family proteins are involved in the response to apoptosis * pro-apoptotic: Bad, Bax or Bid cell death * anti-apoptotic: Bcl-2 and Bcl-XL cell survival

More information

Graduate Theses and Dissertations

Graduate Theses and Dissertations University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2009 STAT3 contributes to resistance towards BCR-ABL inhibitors in a bone marrow microenvironment model of

More information

Genetics and Cancer Ch 20

Genetics and Cancer Ch 20 Genetics and Cancer Ch 20 Cancer is genetic Hereditary cancers Predisposition genes Ex. some forms of colon cancer Sporadic cancers ~90% of cancers Descendants of cancerous cells all cancerous (clonal)

More information

Current status of treatment of chronic myeloid leukaemia

Current status of treatment of chronic myeloid leukaemia Current status of treatment of chronic myeloid leukaemia Prof. Dr. Enamul Karim MBBS,FCPS,FACP Professor of Medicine Dhaka Medical College 05.03.2012 Leukaemias What are Leukemias Neoplasm of white blood

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the author to give readers additional information about his work. Supplement to: Croce CM. Oncogenes and cancer. N Engl J Med 2008;358:502-11.

More information

Acute Myeloid Leukemia with Recurrent Cytogenetic Abnormalities

Acute Myeloid Leukemia with Recurrent Cytogenetic Abnormalities Acute Myeloid Leukemia with Recurrent Cytogenetic Abnormalities Acute Myeloid Leukemia with recurrent cytogenetic Abnormalities -t(8;21)(q22;q22)(aml/eto) -inv(16) or t(16;16) -t(15;17) -11q23 Acute Myeloid

More information

Programmed Cell Death (apoptosis)

Programmed Cell Death (apoptosis) Programmed Cell Death (apoptosis) Stereotypic death process includes: membrane blebbing nuclear fragmentation chromatin condensation and DNA framentation loss of mitochondrial integrity and release of

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

WHO Classification of Myeloid Neoplasms with Defined Molecular Abnormalities

WHO Classification of Myeloid Neoplasms with Defined Molecular Abnormalities WHO Classification of Myeloid Neoplasms with Defined Molecular Abnormalities Robert W. McKenna, M.D. 1/2009 WHO Classification of Myeloid Neoplasms (4th Edition)--2008 Incorporates new information that

More information

Corporate Medical Policy. Policy Effective February 23, 2018

Corporate Medical Policy. Policy Effective February 23, 2018 Corporate Medical Policy Genetic Testing for FLT3, NPM1 and CEBPA Mutations in Acute File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_flt3_npm1_and_cebpa_mutations_in_acute_myeloid_leukemia

More information

Case 1. Sa A.Wang, MD UT MD Anderson Cancer Center Houston, TX

Case 1. Sa A.Wang, MD UT MD Anderson Cancer Center Houston, TX Case 1 Sa A.Wang, MD UT MD Anderson Cancer Center Houston, TX Disclosure of Relevant Financial Relationships The USCAP requires that anyone in a position to influence or control the content of all CME

More information

Map kinase signaling pathways and hematologic malignancies

Map kinase signaling pathways and hematologic malignancies Review in translational hematology Map kinase signaling pathways and hematologic malignancies Leonidas C. Platanias Introduction Mitogen-activated protein (Map) kinases are widely expressed serine-threonine

More information

Prof. R. V. Skibbens

Prof. R. V. Skibbens Prof. R. V. Skibbens September 8, 2017 BioScience in the 21 st Century Cell Cycle, Cell Division and intro to Cancer Cell growth and division What are the goals? I Cell Cycle what is this? response to

More information

Protein kinases are enzymes that add a phosphate group to proteins according to the. ATP + protein OH > Protein OPO 3 + ADP

Protein kinases are enzymes that add a phosphate group to proteins according to the. ATP + protein OH > Protein OPO 3 + ADP Protein kinase Protein kinases are enzymes that add a phosphate group to proteins according to the following equation: 2 ATP + protein OH > Protein OPO 3 + ADP ATP represents adenosine trisphosphate, ADP

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture 6 Notes: Control Systems in Gene Expression Pulling it all together: coordinated control of transcriptional regulatory molecules Simple Control:

More information

Development of B and T lymphocytes

Development of B and T lymphocytes Development of B and T lymphocytes What will we discuss today? B-cell development T-cell development B- cell development overview Stem cell In periphery Pro-B cell Pre-B cell Immature B cell Mature B cell

More information

GENETIC MARKERS IN LYMPHOMA a practical overview. P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute

GENETIC MARKERS IN LYMPHOMA a practical overview. P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute GENETIC MARKERS IN LYMPHOMA a practical overview P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute B and T cell monoclonalities Rearrangement of immunoglobin and TCR genes may help

More information

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified?

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified? Dominant Acting Oncogenes Eugene E. Marcantonio, M.D. Ph.D. Oncogenes are altered forms of normal cellular genes called proto-oncogenes that are involved in pathways regulating cell growth, differentiation,

More information

Signal Transduction Pathways in Human Diseases

Signal Transduction Pathways in Human Diseases Molecular Cell Biology Lecture. Oct 29, 2015 Signal Transduction Pathways in Human Diseases Ron Bose, MD PhD Biochemistry and Molecular Cell Biology Programs Washington University School of Medicine Introduction

More information

Apoptosis Chapter 9. Neelu Yadav PhD

Apoptosis Chapter 9. Neelu Yadav PhD Apoptosis Chapter 9 Neelu Yadav PhD Neelu.Yadav@Roswellpark.org 1 Apoptosis: Lecture outline Apoptosis a programmed cell death pathway in normal homeostasis Core Apoptosis cascade is conserved Compare

More information

Chapter 16 Mutations. Practice Questions:

Chapter 16 Mutations. Practice Questions: Biology 234 J. G. Doheny Chapter 16 Mutations Practice Questions: Answer the following questions with one or two sentences. 1. List the name of one test that can be used to identify mutagens. 2. What is

More information

BL-8040: BEST-IN-CLASS CXCR4 ANTAGONIST FOR TREATMENT OF ONCOLOGICAL MALIGNANCIES. Overview and Mechanism of Action Dr.

BL-8040: BEST-IN-CLASS CXCR4 ANTAGONIST FOR TREATMENT OF ONCOLOGICAL MALIGNANCIES. Overview and Mechanism of Action Dr. BL-8040: BEST-IN-CLASS CXCR4 ANTAGONIST FOR TREATMENT OF ONCOLOGICAL MALIGNANCIES Overview and Mechanism of Action Dr. Leah Klapper, CSO 88 BL-8040: Novel CXCR4 Antagonist For Hematological Cancers Indications:

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

Template for Reporting Results of Monitoring Tests for Patients With Chronic Myelogenous Leukemia (BCR-ABL1+)

Template for Reporting Results of Monitoring Tests for Patients With Chronic Myelogenous Leukemia (BCR-ABL1+) Template for Reporting Results of Monitoring Tests for Patients With Chronic Myelogenous Leukemia (BCR-ABL1+) Version: CMLBiomarkers 1.0.0.2 Protocol Posting Date: June 2017 This biomarker template is

More information

ETP - Acute Lymphoblastic Leukaemia

ETP - Acute Lymphoblastic Leukaemia ETP - Acute Lymphoblastic Leukaemia Dr Sally Campbell - Royal Children s Hospital Melbourne 24 February 2017 T-ALL 12-15% of all newly diagnosed ALL cases in pediatrics are T-ALL T-ALL behaves differently

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

The biology of chronic myeloid leukaemia

The biology of chronic myeloid leukaemia The biology of chronic myeloid leukaemia Graduate Program Course: Biology of cancer April 2007 Myeloproliferative disorders Clonal disorders of haemopoiesis that arise in a haemopoietic stem cell or early

More information

RXDX-101 & RXDX-102. Justin Gainor, MD February 20 th, 2014

RXDX-101 & RXDX-102. Justin Gainor, MD February 20 th, 2014 RXDX-101 & RXDX-102 Justin Gainor, MD February 20 th, 2014 Background Chromosomal fusions are important oncogenic drivers in NSCLC - ALK Rearrangements (4-6%) - ROS1 Rearrangements (1-2%) - RET Rearrangements

More information

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU 基醫所 The Cell Cycle Chi-Wu Chiang, Ph.D. IMM, NCKU 1 1 Introduction to cell cycle and cell cycle checkpoints 2 2 Cell cycle A cell reproduces by performing an orderly sequence of events in which it duplicates

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017 LEUKEMIA FORMS The guidelines and figures below are specific to Leukemia studies. The information in this manual does NOT represent a complete set of required forms for any leukemia study. Please refer

More information

BL 424 Chapter 15: Cell Signaling; Signal Transduction

BL 424 Chapter 15: Cell Signaling; Signal Transduction BL 424 Chapter 15: Cell Signaling; Signal Transduction All cells receive and respond to signals from their environments. The behavior of each individual cell in multicellular plants and animals must be

More information

Retroviral oncogenesis. Human retroviruses

Retroviral oncogenesis. Human retroviruses Retroviral oncogenesis Two major mechanisms identified in animals Retroviral Transduction mediated by the acutely-transforming retroviruses Abelson Murine Leukemia Virus (A-MuLV) Rous Sarcoma Virus (RSV)

More information

Generation of antibody diversity October 18, Ram Savan

Generation of antibody diversity October 18, Ram Savan Generation of antibody diversity October 18, 2016 Ram Savan savanram@uw.edu 441 Lecture #10 Slide 1 of 30 Three lectures on antigen receptors Part 1 : Structural features of the BCR and TCR Janeway Chapter

More information

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge The mutations that drive cancer Paul Edwards Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge Previously on Cancer... hereditary predisposition Normal Cell Slightly

More information

Cell Cell Communication

Cell Cell Communication IBS 8102 Cell, Molecular, and Developmental Biology Cell Cell Communication January 29, 2008 Communicate What? Why do cells communicate? To govern or modify each other for the benefit of the organism differentiate

More information

MOLECULAR BASIS OF ONCOGENESIS

MOLECULAR BASIS OF ONCOGENESIS MOLECULAR BASIS OF ONCOGENESIS MUDr. Jiří Vachtenheim, CSc. 1 Cell processes which result also in cell cycle effects. Differentiation. Differentiated cells are usually in the G0 phase of the cell cycle.

More information

Life Science 1A Final Exam. January 19, 2006

Life Science 1A Final Exam. January 19, 2006 ame: TF: Section Time Life Science 1A Final Exam January 19, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use non-erasable

More information

Prof. R. V. Skibbens. BIOS 10 and BIOS 90: BioScience in the 21 st Century. Cell Cycle, Cell Division and intro to Cancer.

Prof. R. V. Skibbens. BIOS 10 and BIOS 90: BioScience in the 21 st Century. Cell Cycle, Cell Division and intro to Cancer. Prof. R. V. Skibbens August 31, 2015 BIOS 10 and BIOS 90: BioScience in the 21 st Century Cell Cycle, Cell Division and intro to Cancer Cell Cycle Why a cell cycle? What is the goal? trauma growth development

More information

Determination of the temporal pattern and importance of BALF1 expression in Epstein-Barr viral infection

Determination of the temporal pattern and importance of BALF1 expression in Epstein-Barr viral infection Determination of the temporal pattern and importance of BALF1 expression in Epstein-Barr viral infection Melissa Mihelidakis May 6, 2004 7.340 Research Proposal Introduction Apoptosis, or programmed cell

More information

Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD

Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD Mind Map Notes: Farooqui, I. S., et. al. (2002) J. Clin. Invest 110:1093 1103 Farooqui, I. S., et. al. (2002) J. Clin. Invest 110:1093

More information

Concise Reference. HER2 Testing in Breast Cancer. Mary Falzon, Angelica Fasolo, Michael Gandy, Luca Gianni & Stefania Zambelli

Concise Reference. HER2 Testing in Breast Cancer. Mary Falzon, Angelica Fasolo, Michael Gandy, Luca Gianni & Stefania Zambelli Concise Reference Testing in Breast Cancer Mary Falzon, Angelica Fasolo, Michael Gandy, Luca Gianni & Stefania Zambelli Extracted from Handbook of -Targeted Agents in Breast Cancer ublished by Springer

More information

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms LQB383 Testbank Week 8 Cell Communication and Signaling Mechanisms Terms to learn match the terms to the definitions --------------------------------------------------------------------------------------------------------------------------

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

2017 WHO Classification of Hematolymphoid Neoplasms

2017 WHO Classification of Hematolymphoid Neoplasms 2017 WHO Classification of Hematolymphoid Neoplasms Practical highlights Joseph Khoury, MD Executive Director, MD Anderson Cancer Network, Pathology and Laboratory Medicine Director, Immunohistochemistry

More information

Hematologic and cytogenetic responses of Imatinib Mesylate and significance of Sokal score in chronic myeloid leukemia patients

Hematologic and cytogenetic responses of Imatinib Mesylate and significance of Sokal score in chronic myeloid leukemia patients ORIGINAL ALBANIAN MEDICAL RESEARCH JOURNAL Hematologic and cytogenetic responses of Imatinib Mesylate and significance of Sokal score in chronic myeloid leukemia patients Dorina Roko 1, Anila Babameto-Laku

More information

Cancer genetics

Cancer genetics Cancer genetics General information about tumorogenesis. Cancer induced by viruses. The role of somatic mutations in cancer production. Oncogenes and Tumor Suppressor Genes (TSG). Hereditary cancer. 1

More information

Variations in Chromosome Structure & Function. Ch. 8

Variations in Chromosome Structure & Function. Ch. 8 Variations in Chromosome Structure & Function Ch. 8 1 INTRODUCTION! Genetic variation refers to differences between members of the same species or those of different species Allelic variations are due

More information

By Malgorzata Nieborowska-Skorska,* Mariusz A. Wasik, Artur Slupianek,* Paolo Salomoni,* Toshio Kitamura, Bruno Calabretta,* and Tomasz Skorski*

By Malgorzata Nieborowska-Skorska,* Mariusz A. Wasik, Artur Slupianek,* Paolo Salomoni,* Toshio Kitamura, Bruno Calabretta,* and Tomasz Skorski* Signal Transducer and Activator of Transcription (STAT)5 Activation by BCR/ABL Is Dependent on Intact Src Homology (SH)3 and SH2 Domains of BCR/ABL and Is Required for Leukemogenesis By Malgorzata Nieborowska-Skorska,*

More information

Molecular Medicine: Gleevec and Chronic Myelogenous Leukemia. Dec 14 & 19, 2006 Prof. Erin O Shea Prof. Dan Kahne

Molecular Medicine: Gleevec and Chronic Myelogenous Leukemia. Dec 14 & 19, 2006 Prof. Erin O Shea Prof. Dan Kahne Molecular Medicine: Gleevec and Chronic Myelogenous Leukemia Dec 14 & 19, 2006 Prof. Erin Shea Prof. Dan Kahne 1 Cancer, Kinases and Gleevec: 1. What is CML? a. Blood cell maturation b. Philadelphia Chromosome

More information