The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D."

Transcription

1 The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D. OBJECTIVES 1. To understand how ordered Ig gene rearrangements lead to the development of monospecific B cells. 2. To know the role of developmental regulation of genes involved in Ig rearrangement in B cell development. 3. To know how aberrant gene rearrangements contribute to B cell tumor development. 4. To know the differences between B-1 and B-2 (conventional) B cells. 5. To know the mechanisms that prevent development of self-reactive B cells. 6. To know the stages of B cell development that occur in peripheral lymphoid tissue. 7. To know the normal counterparts of B cell tumors. READING Parham, The Immune System, Chapter 4, pp DEFINITIONS AND ABBREVIATIONS Apoptosis; programmed cell death Anergy; inability to respond oncogene; genes involved in cell growth. When they become defective in structure or expression, a cell can proliferate abnormally and form a tumor. Surrogate light chain; proteins that interact with μ (mu) heavy chain to form pre-b cell receptor CAM; cell adhesion molecule FDC; follicular dendritic cell HEV; high endothelial venule Key cytokines: SCF; stem cell factor which is produced by bone marrow stromal cells and interacts with kit receptor IL-7; critical cytokine in early B cell development Background B cells continue to develop throughout your life. New B cells are generated in bone marrow, and clones of B cells expand and mature in the periphery in response to invaders. The life of a B cell can be divided into four broad phases:

2 1. generation in the bone marrow, 2. elimination of self-reactive B cells in the bone marrow, 3. activation in secondary lymphoid tissue 4. differentiation to plasma or memory cells in secondary lymphoid tissue Part I: The Development of B Cells in the Bone Marrow 1. Contact with bone marrow stromal cells delivers signals that stimulate B cell development Immature stem cells or lymphoid progenitors are located in the subendosteum. These cells express surface molecules called cell adhesion molecules (CAMs) as well as integrins, e.g., VLA-4. Stromal cells in the bone marrow have ligands/counter-receptors for these molecules. The ligand-receptor interaction between the stem cells and the bone marrow delivers a signal that leads to expression of other receptors on the early pro-b cells. An important receptor is kit. Stromal cells make stem cell factor (SCF) which binds to kit. The early pro-b cells make begin to make the receptor for IL-7 (IL7R) as they develop into late pro- B cells. IL-7, which is also made by stromal cells, is a critical cytokine involved in B cell development. During this time the B cells are actually moving around the bone marrow. Ultimately they reach the immature B cell stage at which point development is no longer contact dependent. Figure 1. B cell development depends on interaction with bone marrow stromal cells. Note the key interactions: VLA-4-VCAM-1; Kit-SCF; IL7R-IL-7. The bottom panel a is a light micrograph of B cells in culture. It shows the intimate association between lymphocytes and stromal cells. The bottom panel B is an electron micrograph showing the same thing. Cell-cell interactions (a.k.a. cell contact, intimacy) are important in all stages of B cell development.

3 2. The stages of B cell development can be defined by the status of Ig genes Figure 2. The status of Ig genes in the different stages of B cell development. 3. The rearrangement of Ig genes occurs in a defined order Figure 3. The order of Ig gene rearrangements The first rearrangement is D-J joining on Ig heavy chains. This process can occur on both H chain alleles. The second rearrangement is V to DJ. You will recall from our discussion on the development of the antibody repertoire that joining is imprecise. Consequently, it is possible that a stop codon is introduced during joining. This event would make the generation of a H chain protein impossible and is referred to as a non(un)productive rearrangement.

4 Rearrangements that lead to generation of a functional H chain are called productive rearrangements. The light chains rearrange afterward heavy chains, κ (kappa) rearranges before λ (lambda). Since only two gene segments are involved in light chain rearrangements, it is possible for light chains to undergo a second rearrangement to rescue the B cell. Figure 4 A non-productive light chain rearrangement can be replaced by a second gene rearrangement. 4. Each gene rearrangement affects protein expression and subsequent gene rearrangements. A key feature of B cell development is the generation of monospecific cells, i.e., cells that recognize only one antigen. As we have discussed, both H chains can undergo rearrangement. So what stops the production of two H chains? When a productive H chain rearrangement occurs, that H chain associates with another protein called surrogate light chain and gets expressed on the membrane of the pre-b cell. The resulting tetramer is called the pre-bcr. The pre-bcr associates with Igα (Ig alpha) and Igβ (Ig beta). Although it is not clear what the ligand for the pre-bcr is, it is clear that ligation of the pre-bcr leads to both the

5 cessation of H chain rearrangement and the initiation of light chain rearrangement. Once productive light chains are made, a complete BCR is expressed. Expression of a BCR somehow tells a B cell to stop rearranging light chains. Figure 5. Productive rearrangements permit expression of receptors on the B cells. The receptors deliver signals to the B cells which induce the B cell to either rearrange or stop rearranging Ig genes.

6 5. B cell development depends on regulated expression of proteins involved in Ig gene rearrangement, signal transduction and transcription. Figure 6. Proteins involved in recombination, signaling and transcription are expressed at specific stages of B cell development. Some of the key proteins to take note of are: RAG-1 and RAG-2 expression correlates with the timing of gene rearrangement. TdT (the enzyme that adds N nucleotides) is only present when H chains rearrange Igα and Igβ are signaling proteins that are expressed once heavy chains are rearranged.

7 Btk or Bruton s tyrosine kinase is critical to B cell development. People who lack Btk have virtually no antibody. This syndrome is called X-linked agammaglobulinemia. 6. Aberrant gene rearrangements can lead to B cell tumors The cutting and splicing of Ig genes occasionally goes awry, and Ig genes end up spliced to genes on other chromosomes. This is called translocation. In B cell tumors Ig genes become spliced to genes that control cell growth. Proto-oncogenes are genes that cause cancer when regulation of their expression is altered. Burkitt s lymphoma is associated with translocations involving the myc protooncogene and either H or L chain genes. Another common translocation in B cell tumors occurs between the proto-oncogene BCL2 and Ig genes. Figure 7 Cryptic RSS in other genes occasionally results in aberrant recombinations that juxtapose Ig genes with proto-oncogenes.

8 Part II: Selection and Development in the Periphery 1. Elimination of self-reactive B cells occurs by two routes a. Immature B cells that recognize multivalent self antigens are eliminated To become a mature B cell, an immature migm expressing cell needs to express migd (remember...this is accomplished by alternative RNA splicing) and emigrate from the bone marrow. If an immature, migm only B cell recognizes a self antigen that is present on the surface of a cell (generally these are multivaltent glycoproteins, proteoglycan, and glycolipids ) it will apoptose (die by programmed cell death). Since a dead cell cannot encounter antigen and expand, this process is called clonal deletion. b. Immature B cells that recognize soluble self antigens are anergized If a migm only B cell is specific for a soluble self antigen, it will survive and migrate to the periphery expressing both migm and migd. When it re-encounters its antigen, it will not respond, i.e., proliferate mature to Ig secretion. The inability to respond is called anergy. Figure 8. B cell selection in the bone marrow. B cells that recognize self antigen are either eliminated or anergized.

9 2. CD5 B Cells: A second population of B cells that develops first a. A minority subset of B cells expressing the CD5 glycoprotein arises early in embryonic development. Since this population arises first, this subset of B cells is called B-1 The majority population, which is what we have been discussing is sometimes called B-2 B1/CD5 cells are the major B cell population in pleural and peritoneal cavities b. CD5 B cells come from a self-renewing stem cell that first appears in fetal life c. CD5 B cells are less diverse than conventional B cells TdT is not present during VDJ rearrangement in early CD5 B cells. The antibodies produced by this population are both less diverse and of lower affinity. Because they are of low affinity, they can bind to multiple similar antigenic determinants. B-1 B cells that develop later in life (when TdT is present) are more diverse. Ultimately they stop being made in the bone marrow, and in adult life are maintained by division of existing cells (self-renewal) d. CD5 B cells respond well to carbohydrates and poorly to protein antigens. Conventional B cells are just the opposite. e. CLL (chronic lymphocytic leukemia) is frequently a B-1 tumor

10 Figure 9. A comparison of B1 or CD5 and conventional or B2 B cells.

11 3. Activation in Secondary Lymphoid Tissue a. B cells leave the bone marrow and recirculate B cells move between blood, lymph and secondary lymphoid tissue, i.e., spleen, lymph nodes, and mucosal associated lymphoid tissue (MALT). They try to get into primary follicles which are organized structures containing B cells and follicular dendritic cells (FDCs). Figure 10. Circulating B cells enter the cortex of lymph nodes through the walls of HEV (high endothelial venules). If a B cell does not encounter antigen, it passes through the primary follicle and exits via the efferent lymphatics. Note: A large number of B cells congregate in MALT which is Peyer s patches, appendix and tonsil. You have more lymphoid tissue in your gut than anywhere else. The competition for entry into primary follicles is fierce. If a B cell doesn t get into a follicle, it dies. If it doesn t see antigen, it dies. b. B cells that find their antigen form a germinal center

12 If a B cell contacts its antigen when it enters lymphoid tissue, it will get momentarily trapped in the T cell zone providing that an antigen specific T cell is also present. It will form a primary focus or little cluster of B cells. When cells from the cluster move into the primary follicle, the primary follicle changes its morphology and becomes a secondary follicle which contains a germinal center (The antigen-activated B cells become the lymphoblasts that populate the germinal center). Figure 11. A circulating B cell encounters its antigen. Antigen enters lymph nodes through afferent lymphatic vesicles. The B cell encounters its antigen and receives help from a CD4 T cell that recognizes the same antigen. The activated B cell can either form a germinal center or mature to a plasma cell which will exit via the efferent lymphatics 4. Differentiation to plasma cells and memory cells in secondary lymphoid tissue a. In the germinal centers, the B lymphoblasts become plasma cells or memory cells. b. Some plasma cells are formed without the B cell entering a follicle. In spleen and lymph nodes, when they initially contact antigen, some of the B cells will mature to plasma cells. It isn t necessary to enter a follicle for this to occur.

13 Figure 12. Distinguishing features of B cells and plasma cells. 5. B cell tumors represent different stages of B cell development a. Tumors retain many characteristics of normal cells. b. The location of a B cell tumor is indicative of its normal counterpart. Follicular center cell lymphoma is derived from mature naive cells and grows in follicles Myeloma is derived from a plasma cell and grows in the bone marrow.

14 Figure 12. B cell tumors are derived from different stages of B cell development.

Introduction. Introduction. Lymphocyte development (maturation)

Introduction. Introduction. Lymphocyte development (maturation) Introduction Abbas Chapter 8: Lymphocyte Development and the Rearrangement and Expression of Antigen Receptor Genes Christina Ciaccio, MD Children s Mercy Hospital January 5, 2009 Lymphocyte development

More information

Development of B and T lymphocytes

Development of B and T lymphocytes Development of B and T lymphocytes What will we discuss today? B-cell development T-cell development B- cell development overview Stem cell In periphery Pro-B cell Pre-B cell Immature B cell Mature B cell

More information

Antigen-Independent B-Cell Development Bone Marrow

Antigen-Independent B-Cell Development Bone Marrow Antigen-Independent B-Cell Development Bone Marrow 1. DNA rearrangements establish the primary repertoire, creating diversity 2. Allelic exclusion ensures that each clone expresses a single antibody on

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

B Lymphocyte Development and Activation

B Lymphocyte Development and Activation Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai 09/26/05; 9 AM Shiv Pillai B Lymphocyte Development and Activation Recommended

More information

Introduction. Abbas Chapter 10: B Cell Activation and Antibody Production. General Features. General Features. General Features

Introduction. Abbas Chapter 10: B Cell Activation and Antibody Production. General Features. General Features. General Features Introduction Abbas Chapter 10: B Cell Activation and Antibody Production January 25, 2010 Children s Mercy Hospitals and Clinics Humoral immunity is mediated by secreted antibodies (Ab) Ab function to

More information

Stage I Stage II Stage III Stage IV

Stage I Stage II Stage III Stage IV Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Stage I Stage II Stage III Stage IV Receptor gene Rearrangement Elimination

More information

Lymphoid tissue. 1. Central Lymphoid tissue. - The central lymphoid tissue (also known as primary) is composed of bone morrow and thymus.

Lymphoid tissue. 1. Central Lymphoid tissue. - The central lymphoid tissue (also known as primary) is composed of bone morrow and thymus. 1. Central Lymphoid tissue Lymphoid tissue - The central lymphoid tissue (also known as primary) is composed of bone morrow and thymus. Bone Morrow - The major site of hematopoiesis in humans. - Hematopoiesis

More information

The development of T cells in the thymus

The development of T cells in the thymus T cells rearrange their receptors in the thymus whereas B cells do so in the bone marrow. The development of T cells in the thymus The lobular/cellular organization of the thymus Immature cells are called

More information

Innate immunity (rapid response) Dendritic cell. Macrophage. Natural killer cell. Complement protein. Neutrophil

Innate immunity (rapid response) Dendritic cell. Macrophage. Natural killer cell. Complement protein. Neutrophil 1 The immune system The immune response The immune system comprises two arms functioning cooperatively to provide a comprehensive protective response: the innate and the adaptive immune system. The innate

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development.

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Follicular Lymphoma 1. Characterized by t(14:18) translocation 2. Ig heavy

More information

Generation of post-germinal centre myeloma plasma B cell.

Generation of post-germinal centre myeloma plasma B cell. Generation of post-germinal centre myeloma. DNA DAMAGE CXCR4 Homing to Lytic lesion activation CD38 CD138 CD56 Phenotypic markers Naive Secondary lymphoid organ Multiple myeloma is a malignancy of s caused

More information

Introduction to Immunology Part 2 September 30, Dan Stetson

Introduction to Immunology Part 2 September 30, Dan Stetson Introduction to Immunology Part 2 September 30, 2016 Dan Stetson stetson@uw.edu 441 Lecture #2 Slide 1 of 26 CLASS ANNOUNCEMENT PLEASE NO TREE NUTS IN CLASS!!! (Peanuts, walnuts, almonds, cashews, etc)

More information

Prepared by: Dr.Mansour Al-Yazji

Prepared by: Dr.Mansour Al-Yazji C L L CLL Prepared by: Abd El-Hakeem Abd El-Rahman Abu Naser Ahmed Khamis Abu Warda Ahmed Mohammed Abu Ghaben Bassel Ziad Abu Warda Nedal Mostafa El-Nahhal Dr.Mansour Al-Yazji LEUKEMIA Leukemia is a form

More information

Lecture 9: T-cell Mediated Immunity

Lecture 9: T-cell Mediated Immunity Lecture 9: T-cell Mediated Immunity Questions to Consider How do T cells know where to go? Questions to Consider How do T cells know where to go? How does antigen get targeted to a T cell expressing the

More information

Allergy and Immunology Review Corner: Chapter 1 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti.

Allergy and Immunology Review Corner: Chapter 1 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti. Allergy and Immunology Review Corner: Chapter 1 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti. Chapter 1: Overview of Immunology Prepared by David Scott, MD, Scripps

More information

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues Allergy and Immunology Review Corner: Chapter 3, Part A (pages 37-45) of Cellular and Molecular Immunology (Seventh Edition), by Abul K. Abbas, Andrew H. Lichtman and Shiv Pillai. Chapter 3, Part A (Pages

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 16 THE ADAPTIVE IMMUNE RESPONSE WHY IS THIS IMPORTANT? The adaptive immune system protects us from many infections The adaptive immune system has memory so we are not infected by the same pathogen

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

T Cell Receptor & T Cell Development

T Cell Receptor & T Cell Development T Cell Receptor & T Cell Development Questions for the next 2 lectures: How do you generate a diverse T cell population with functional TCR rearrangements? How do you generate a T cell population that

More information

Chapter 2 (pages 22 33): Cells and Tissues of the Immune System. Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Chapter 2 (pages 22 33): Cells and Tissues of the Immune System. Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group Allergy and Immunology Review Corner: Cellular and Molecular Immunology, 8th Edition By Abul K. Abbas, MBBS; Andrew H. H. Lichtman, MD, PhD; and Shiv Pillai, MBBS, PhD. Chapter 2 (pages 22 33): Cells and

More information

T cell development October 28, Dan Stetson

T cell development October 28, Dan Stetson T cell development October 28, 2016 Dan Stetson stetson@uw.edu 441 Lecture #13 Slide 1 of 29 Three lectures on T cells (Chapters 8, 9) Part 1 (Today): T cell development in the thymus Chapter 8, pages

More information

Antibodies and T Cell Receptor Genetics Generation of Antigen Receptor Diversity

Antibodies and T Cell Receptor Genetics Generation of Antigen Receptor Diversity Antibodies and T Cell Receptor Genetics 2008 Peter Burrows 4-6529 peterb@uab.edu Generation of Antigen Receptor Diversity Survival requires B and T cell receptor diversity to respond to the diversity of

More information

White Blood Cells (WBCs)

White Blood Cells (WBCs) YOUR ACTIVE IMMUNE DEFENSES 1 ADAPTIVE IMMUNE RESPONSE 2! Innate Immunity - invariant (generalized) - early, limited specificity - the first line of defense 1. Barriers - skin, tears 2. Phagocytes - neutrophils,

More information

Acquired Immunity 2. - Vaccines & Immunological Memory - Wataru Ise. WPI Immunology Frontier Research Center (IFReC) Osaka University.

Acquired Immunity 2. - Vaccines & Immunological Memory - Wataru Ise. WPI Immunology Frontier Research Center (IFReC) Osaka University. Acquired Immunity 2 - Vaccines & Immunological Memory - Wataru Ise WPI Immunology Frontier Research Center (IFReC) Osaka University Outline 1. What is vaccine (vaccination)? 2. What is immunological memory?

More information

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally!

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally! MCMP422 Immunology and Biologics Immunology is important personally and professionally! Learn the language - use the glossary and index RNR - Reading, Note taking, Reviewing All materials in Chapters 1-3

More information

Lymphoid architecture & Leukocyte recirculation. Thursday Jan 26th, 2017

Lymphoid architecture & Leukocyte recirculation. Thursday Jan 26th, 2017 Lymphoid architecture & Leukocyte recirculation Thursday Jan 26th, 2017 Topics The life of immune cells Where are they born? Where are they educated? Where do they function? How do they get there? The

More information

MECHANISMS OF B-CELL LYMPHOMA PATHOGENESIS

MECHANISMS OF B-CELL LYMPHOMA PATHOGENESIS MECHANISMS OF B-CELL LYMPHOMA PATHOGENESIS Ralf Küppers Abstract Chromosomal translocations involving the immunoglobulin loci are a hallmark of many types of B-cell. Other factors, however, also have important

More information

The Adaptive Immune Response. T-cells

The Adaptive Immune Response. T-cells The Adaptive Immune Response T-cells T Lymphocytes T lymphocytes develop from precursors in the thymus. Mature T cells are found in the blood, where they constitute 60% to 70% of lymphocytes, and in T-cell

More information

Immune responses in autoimmune diseases

Immune responses in autoimmune diseases Immune responses in autoimmune diseases Erika Jensen-Jarolim Dept. of Pathophysiology Medical University Vienna CCHD Lecture January 24, 2007 Primary immune organs: Bone marrow Thymus Secondary: Lymph

More information

A second type of TCR TCR: An αβ heterodimer

A second type of TCR TCR: An αβ heterodimer How s recognize antigen: The T Cell Receptor (TCR) Identifying the TCR: Why was it so hard to do By the early 1980s, much about function was known, but the receptor genes had not been identified Recall

More information

Immunological aspects in chronic lymphocytic leukemia (CLL) development

Immunological aspects in chronic lymphocytic leukemia (CLL) development Ann Hematol (2012) 91:981 996 DOI 10.1007/s00277-012-1460-z REVIEW ARTICLE Immunological aspects in chronic lymphocytic leukemia (CLL) development Ricardo García-Muñoz & Verónica Roldan Galiacho & Luis

More information

SEVENTH EDITION CHAPTER

SEVENTH EDITION CHAPTER Judy Owen Jenni Punt Sharon Stranford Kuby Immunology SEVENTH EDITION CHAPTER 16 Tolerance, Autoimmunity, and Transplantation Copyright 2013 by W. H. Freeman and Company Immune tolerance: history * Some

More information

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? Abbas Chapter 2: Sarah Spriet February 8, 2015 Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? a. Dendritic cells b. Macrophages c. Monocytes

More information

Chapter 13 Lymphatic and Immune Systems

Chapter 13 Lymphatic and Immune Systems The Chapter 13 Lymphatic and Immune Systems 1 The Lymphatic Vessels Lymphoid Organs Three functions contribute to homeostasis 1. Return excess tissue fluid to the bloodstream 2. Help defend the body against

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

Antigen Presentation to Lymphocytes

Antigen Presentation to Lymphocytes Antigen Presentation to Lymphocytes Jiyang O Wang, Chiba Cancer Center Research Institute, Chiba, Japan Takeshi Watanabe, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan Antigen presentation

More information

LECTURE: 23 T-AND B-LYMPHOCYTES COOPERATIONS LEARNING OBJECTIVES: The student should be able to:

LECTURE: 23 T-AND B-LYMPHOCYTES COOPERATIONS LEARNING OBJECTIVES: The student should be able to: LECTURE: 23 Title T-AND B-LYMPHOCYTES COOPERATIONS LEARNING OBJECTIVES: The student should be able to: Enumerate the major types of T-helper cells surface molecules, and that expressed on the B-lymphocytes

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

LYMPHOID ORGANS. Dr. Iram Tassaduq

LYMPHOID ORGANS. Dr. Iram Tassaduq LYMPHOID ORGANS Dr. Iram Tassaduq COMPONENTS OF IMMUNE SYSTEM Lymphocytes Diffuse Lymphatic Tissue Lymphatic Nodules Lymph node Spleen Bone marrow Thymus Functions of Immune System Has the ability to distinguish

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Two categories of immune response. immune response. infection. (adaptive) Later immune response. immune response

Two categories of immune response. immune response. infection. (adaptive) Later immune response. immune response Ivana FELLNEROVÁ E-mail: fellneri@hotmail.com, mob. 732154801 Basic immunogenetic terminology innate and adaptive immunity specificity and polymorphism immunoglobuline gene superfamily immunogenetics MHC

More information

Page 4: Antigens: Self-Antigens The body has a vast number of its own antigens called self-antigens. These normally do not trigger immune responses.

Page 4: Antigens: Self-Antigens The body has a vast number of its own antigens called self-antigens. These normally do not trigger immune responses. Common Characteristics of B and T Lymphocytes Graphics are used with permission of Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com). Page 1: Introduction While B and T lymphocytes

More information

T Cell Effector Mechanisms I: B cell Help & DTH

T Cell Effector Mechanisms I: B cell Help & DTH T Cell Effector Mechanisms I: B cell Help & DTH Ned Braunstein, MD The Major T Cell Subsets p56 lck + T cells γ δ ε ζ ζ p56 lck CD8+ T cells γ δ ε ζ ζ Cα Cβ Vα Vβ CD3 CD8 Cα Cβ Vα Vβ CD3 MHC II peptide

More information

Biochemistry. Immunology. Principal Investigator. Dr. Sunil Kumar Khare,Professor Dept. of Chemistry, I.I.T. Delhi

Biochemistry. Immunology. Principal Investigator. Dr. Sunil Kumar Khare,Professor Dept. of Chemistry, I.I.T. Delhi Paper : 16 Module : 19 Principal Investigator Paper Coordinator and Content Writer Dr. Sunil Kumar Khare,Professor Dept. of Chemistry, I.I.T. Delhi Dr. M.N.Gupta, Emeritus Professor Dept. of Biochemical

More information

The Major Histocompatibility Complex (MHC)

The Major Histocompatibility Complex (MHC) The Major Histocompatibility Complex (MHC) An introduction to adaptive immune system before we discuss MHC B cells The main cells of adaptive immune system are: -B cells -T cells B cells: Recognize antigens

More information

Structure and Function of Antigen Recognition Molecules

Structure and Function of Antigen Recognition Molecules MICR2209 Structure and Function of Antigen Recognition Molecules Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will examine the major receptors used by cells of the innate and

More information

Lymph I: The Peripheral Lymph System

Lymph I: The Peripheral Lymph System Lymph I: The Peripheral Lymph System Peripheral = Secondary Primary Immune Organs = bone marrow, thymus Site of maturation of cells of the immune system Secondary Immune Organs = Nodes, MALT, spleen Filter

More information

The Lymphatic System

The Lymphatic System The Lymphatic System The Lymphatic Systems Overview General Functions Organization Components Lymphatic System General Functions Transportation Excess fluid from capillary exchange Fats & fat soluble vitamins

More information

Generation of antibody diversity October 18, Ram Savan

Generation of antibody diversity October 18, Ram Savan Generation of antibody diversity October 18, 2016 Ram Savan savanram@uw.edu 441 Lecture #10 Slide 1 of 30 Three lectures on antigen receptors Part 1 : Structural features of the BCR and TCR Janeway Chapter

More information

Review Questions: Janeway s Immunobiology 8th Edition by Kenneth Murphy

Review Questions: Janeway s Immunobiology 8th Edition by Kenneth Murphy Review Questions: Janeway s Immunobiology 8th Edition by Kenneth Murphy Chapter 11 (pages 429-460): Dynamics of Adaptive Immunity prepared by Kelly von Elten, Walter Reed National Military Medical Center,

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

Lymphoid Organs. Dr. Sami Zaqout. Dr. Sami Zaqout IUG Faculty of Medicine

Lymphoid Organs. Dr. Sami Zaqout. Dr. Sami Zaqout IUG Faculty of Medicine Lymphoid Organs Dr. Sami Zaqout Cells of the Immune System Lymphocytes Plasma cells Mast cells Neutrophils Eosinophils Cells of the mononuclear phagocyte system Distribution of cells of the immune system

More information

Chapter 5. Generation of lymphocyte antigen receptors

Chapter 5. Generation of lymphocyte antigen receptors Chapter 5 Generation of lymphocyte antigen receptors Structural variation in Ig constant regions Isotype: different class of Ig Heavy-chain C regions are encoded in separate genes Initially, only two of

More information

LYMPH GLAND. By : Group 1

LYMPH GLAND. By : Group 1 LYMPH GLAND By : Group 1 ANATOMY LYMPH NODE Lymphatic Organs Red bone marrow Thymus gland Lymph nodes Lymph nodules Spleen Primary organs Secondary organs Lymph Nodes Firm, smooth-surfaced, bean-shaped

More information

How plasma cells develop. Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft

How plasma cells develop. Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft How plasma cells develop Deutsches Rheuma Forschungs Zentrum, Berlin Institut der Leibniz Gemeinschaft 1 Plasma cells develop from activated B cells Toll Like Receptor B Cell Receptor B cell B cell microbia

More information

Prepared by Cyrus H. Nozad, MD, University of Tennessee and John Seyerle, MD, Ohio State University

Prepared by Cyrus H. Nozad, MD, University of Tennessee and John Seyerle, MD, Ohio State University Allergy and Immunology Review Corner: Chapter 21 of Middleton s Allergy Principles and Practice, Seventh Edition, edited by N. Franklin Adkinson, et al. Chapter 21: Antigen-Presenting Dendritic Cells (Pages

More information

Lymphatic System. Where s your immunity idol?

Lymphatic System. Where s your immunity idol? Lymphatic System Where s your immunity idol? Functions of the Lymphatic System Fluid Balance Drains excess fluid from tissues Lymph contains solutes from plasma Fat Absorption Lymphatic system absorbs

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

The Immune Response in Time and Space

The Immune Response in Time and Space The Immune Response in Time and Space Chapters 14 & 4 Sharon S. Evans, Ph.D. Department of Immunology 845-3421 sharon.evans@roswellpark.org September 18 & 23, 2014 Inflammation Inflammation Complex response

More information

4. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5 TH EDITION. Chapter 2. pg

4. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5 TH EDITION. Chapter 2. pg LECTURE: 03 Title: CELLS INVOLVED IN THE IMMUNE RESPONSE LEARNING OBJECTIVES: The student should be able to: Identify the organs where the process of the blood formation occurs. Identify the main cell

More information

8: Lymphatic vessels and lymphoid tissue. nur

8: Lymphatic vessels and lymphoid tissue. nur 8: Lymphatic vessels and lymphoid tissue nur Lymphatic vascular system Functions return to the blood extracellular fluid (Lymph) from connective tissue spaces. ensures the return of water, electrolytes

More information

Myeloproliferative Disorders - D Savage - 9 Jan 2002

Myeloproliferative Disorders - D Savage - 9 Jan 2002 Disease Usual phenotype acute leukemia precursor chronic leukemia low grade lymphoma myeloma differentiated Total WBC > 60 leukemoid reaction acute leukemia Blast Pro Myel Meta Band Seg Lymph 0 0 0 2

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

The Lymphoid System Pearson Education, Inc.

The Lymphoid System Pearson Education, Inc. 23 The Lymphoid System Introduction The lymphoid system consists of: Lymph Lymphatic vessels Lymphoid organs An Overview of the Lymphoid System Lymph consists of: Interstitial fluid Lymphocytes Macrophages

More information

Mucosal Immunology Sophomore Dental and Optometry Microbiology Section I: Immunology. Robin Lorenz

Mucosal Immunology Sophomore Dental and Optometry Microbiology Section I: Immunology. Robin Lorenz Mucosal Immunology Sophomore Dental and Optometry Microbiology Section I: Immunology Robin Lorenz rlorenz@uab.edu Why do we Need to Understand How the Mucosal Immune System Works? The mucosa is the major

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download:https://getbooksolutions.com/download/test-bank-for-robbinsand-cotran-pathologic-basis-of-disease-9th-edition-by-kumar Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th

More information

1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50%

1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50% BIOL2030 Huaman A&P II -- Exam 3 -- XXXX -- Form A Name: 1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50% 2. Special lymphatic vessels called

More information

Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD.

Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD. Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD. Chapter 19: Tolerance, Autoimmunity, and Autoinflammation Prepared

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

GENETIC MARKERS IN LYMPHOMA a practical overview. P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute

GENETIC MARKERS IN LYMPHOMA a practical overview. P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute GENETIC MARKERS IN LYMPHOMA a practical overview P. Heimann Dpt of Medical Genetics Erasme Hospital - Bordet Institute B and T cell monoclonalities Rearrangement of immunoglobin and TCR genes may help

More information

Chapter 4 Cellular Oncogenes ~ 4.6 -

Chapter 4 Cellular Oncogenes ~ 4.6 - Chapter 4 Cellular Oncogenes - 4.2 ~ 4.6 - Many retroviruses carrying oncogenes have been found in chickens and mice However, attempts undertaken during the 1970s to isolate viruses from most types of

More information

IMMU 7630 Fall 2011 ONTOGENY: DEVELOPMENT OF T AND B CELLS

IMMU 7630 Fall 2011 ONTOGENY: DEVELOPMENT OF T AND B CELLS ONTOGENY: DEVELOPMENT OF T AND B CELLS ORIGINS. The immune system is part of the hematopoietic 1 system, which comprises all the cells of the blood. This system, like the skin, is constantly renewed throughout

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

2/19/2018. Lymphatic System and Lymphoid Organs and Tissues. What is Lymph?

2/19/2018. Lymphatic System and Lymphoid Organs and Tissues. What is Lymph? Lymphatic System and Lymphoid Organs and Tissues Lymphatic system a transport system for tissue fluids 1. elaborate network of one-way drainage vessels returning lymph to systemic circulation 2. Lymph:

More information

MECHANISMS OF CELLULAR REJECTION IN ORGAN TRANSPLANTATION AN OVERVIEW

MECHANISMS OF CELLULAR REJECTION IN ORGAN TRANSPLANTATION AN OVERVIEW MECHANISMS OF CELLULAR REJECTION IN ORGAN TRANSPLANTATION AN OVERVIEW YVON LEBRANCHU Service Néphrologie et Immunologie Clinique CHU TOURS ANTIGEN PRESENTING CELL CD4 + T CELL CYTOKINE PRODUCTION CLONAL

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Immunity or Resistance Chapter 22: The Lymphatic System and Immunity Ability to ward off damage or disease through our defenses 2 types of immunity Innate or nonspecific immunity present at birth No specific

More information

Micro 204. Cytotoxic T Lymphocytes (CTL) Lewis Lanier

Micro 204. Cytotoxic T Lymphocytes (CTL) Lewis Lanier Micro 204 Cytotoxic T Lymphocytes (CTL) Lewis Lanier Lewis.Lanier@ucsf.edu Lymphocyte-mediated Cytotoxicity CD8 + αβ-tcr + T cells CD4 + αβ-tcr + T cells γδ-tcr + T cells Natural Killer cells CD8 + αβ-tcr

More information

Antigen Presentation and T Lymphocyte Activation. Shiv Pillai MD, PhD Massachusetts General Hospital Harvard Medical School. FOCiS

Antigen Presentation and T Lymphocyte Activation. Shiv Pillai MD, PhD Massachusetts General Hospital Harvard Medical School. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Shiv Pillai MD, PhD Massachusetts General Hospital Harvard Medical School FOCiS 2 Lecture outline Overview of T cell activation and the rules of adaptive

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 12 The Lymphatic System and Body Defenses Slides 12.1 12.22 Lecture Slides in PowerPoint by Jerry L. Cook The Lymphatic

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, Immunology T-Lymphocytes 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, karin.peters@rub.de The role of T-effector cells in the immune response against microbes cellular immunity humoral immunity

More information

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC

Lymphoma: What You Need to Know. Richard van der Jagt MD, FRCPC Lymphoma: What You Need to Know Richard van der Jagt MD, FRCPC Overview Concepts, classification, biology Epidemiology Clinical presentation Diagnosis Staging Three important types of lymphoma Conceptualizing

More information

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified?

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified? Dominant Acting Oncogenes Eugene E. Marcantonio, M.D. Ph.D. Oncogenes are altered forms of normal cellular genes called proto-oncogenes that are involved in pathways regulating cell growth, differentiation,

More information

Out of the IgM B cells that develop daily in the

Out of the IgM B cells that develop daily in the Published Online: 5 July, 1999 Supp Info: http://doi.org/10.1084/jem.190.1.75 Downloaded from jem.rupress.org on May 9, 2018 B Cell Development in the Spleen Takes Place in Discrete Steps and Is Determined

More information

Osteosclerotic Myeloma (POEMS Syndrome)

Osteosclerotic Myeloma (POEMS Syndrome) Osteosclerotic Myeloma (POEMS Syndrome) Osteosclerotic Myeloma (POEMS Syndrome) Synonyms Crow-Fukase syndrome Multicentric Castleman disease Takatsuki syndrome Acronym coined by Bardwick POEMS Scheinker,

More information

Bihong Zhao, M.D, Ph.D Department of Pathology

Bihong Zhao, M.D, Ph.D Department of Pathology Bihong Zhao, M.D, Ph.D Department of Pathology 04-28-2009 Is tumor self or non-self? How are tumor antigens generated? What are they? How does immune system respond? Introduction Tumor Antigens/Categories

More information