Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl"

Transcription

1 Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic) Explain how some gain of function mutations in proto-oncogenes cause oncogenes Growth factors, receptors, Ras, cyclins Explain how loss of function of tumorsuppressor genes leads to cancer P53, Rb, regulators of Ras Karyotype analysis can reveal translocation Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Fig Cancers involve sequential mutations Cancer involves sequential accumulation of mutations in genes involved in normal cell growth and differentiation: cancer cells do not Fig respond to normal constraints cancer cells are immortal increasing abnormalities, lack attachment Can inherit one bad gene Damage to DNA can lead to mutaitons A. Chemical and physical agents can damage DNA: Break DNA chains Cause translocations Modify bases DNA damage can be repaired; mutations if not repaired Carcinogens are mutagens (see chapter 13) Fig nitrosoamine causes GC -> AT mutations 1

2 B. Gain-of-function mutations in Proto-ongogenes Proto-oncogenes have normal roles for cell growth, proliferation: Mutate to Oncogenes Mutate so function better. in absence of normal activating signals: Overexpress Hyperactive protein Fusion protein Controlled by other promoter (inappropriate) Fig Mutations in DNA repair enzymes can cause cancer: Mutations in DNA repair enzymes can cause cancer: DNA repair enzymes can correct damage They are tumor-suppressor genes (need to mutate both) Breast cancer linked to Brca1, Brca2 mutations Xeroderma pigmentosum to excision repair HNPCC (hereditary nonpolyposis colorectal cancer) linked to mutations in mismatch repair enzymes Table 1 examples of oncogenes Classes of oncogenes gene mechanism Growth factor platelet-derived growth factor sis overexpression Growth factor receptor platelet-derived gf receptor PDGFR translocation Signal transduction G-proteins Ras point mutation tyr kinase abl translocation Hormone receptors retinoid receptor RARa translocation Transcription factors Myc amplification Cell-cycle regulators cyclins cyclin D amplification cyclin-dependent kinase CDK4 point mutation Oncogenes and signal transduction pathways Growth factor signaling pathways provide sites for proto-oncogene transforming mutations: Only need to mutate one allele (one gene) Dominant effect See Table 1 Fig

3 Signal transduction proteins and phosphorylation cascade Phosphorylation cascade from activated Ras (Ras-GTP) Ras activates ser/thr kinase Raf Raf is a MAPKKK (mitogen-activated protein Kinase kinase kinase) Raf activates MEK (a MAPKK) MEK activates MAP kinase MAP kinase phosphorylates many proteins Transcription factors can mutate to oncogenes Mutations that keep proteins active cause cell proliferation Fig Oncogenes and the Cell cycle Cyclins and cyclin-dependent kinases (CDK) control passage through cell cycle: Different cyclins and CDKs control different points Cyclins transient; cdks persist Go is quiescent cell G 1 -> S transition is critical Commits to replication Responds to hormones G 2 -> M spindle check Fig Cyclin-CDK Cyclins are synthesized, function to bind CDK, and degraded CKIs are cyclin-dependent kinase inhibitors CDKs are also regulated: activated by PO 4 (by CAK cyclinactivating kinases) inhibited by additional PO 4 Oncogenes include: Overactive cyclins, mutant cdks Fig Control of G1/S transition in cell cycle: Fig Control of G1/S is critical: regulation of E2F by Rb, CDK, cyclin CKI include p21, p16 (INK) 3

4 IV. Tumor-suppressor genes Tumor-suppressor genes encode proteins that inhibit cell proliferation: mutate both copies Table 18.2 class protein location Adhesion protein E-cadherin cell surface Signal transduction NF-1 under membrane Transcription factor cell-cycle regulator p16 (INK4) nucleus Rb nucleus A. Some tumor suppressors regulate cell cycle directly Retinoblastoma (Rb) protein binds E2F, prevents transcription and G1/S until signal:(fig. 18.8) Mutate both copies Cell loses control Hereditary cancer tendency Fig Cell cycle/ apoptosis p53 nucleus DNA repair BRCA1 nucleus Phosphorylation controls transition G1 to S: cycd-cdk inactivates Rb ->E2F activates transcription Phosphorylation controls transition G1 to S: E2F activated transcription: cyclins A, E and Cdk2 activate prereplication complexes Genetics 15.12A Genetics Fig B 4

5 P53 is guardian of genome P53 responds to DNA damage: stops cell cycle to permit repair (or cell suicide apoptosis) P53 mutated in 50% of tumors Induction of p21 stops cyclin-cdk Induction of GADD stops replicaiton, permits repair Some tumor suppressors affect receptors, signal transduction 1. Regulators of Ras are tumor suppressors: GAP proteins (GTPase) bind active Ras, stop signal NF-1 (neurofibromin) is GAP for RAS in neuronal tissue Mutated NF-1 give neurofibromatosis Fig Fig Tumor suppressors and proto-oncogenes Tumor suppressors and proto-oncogenes in path: Patched inhibits Smoothened, coreceptor HH ligand binding releases inhibition, activating signal S is proto-oncogene; mutation can keep active P is tumor suppressor; mutations ruining keep S active Fig Tumor suppressor genes can affect cell adhesion Tumor cells metastasize, lose cell adhesion: Normal adhesion from cadherins, link cytoskeleton Mutated cadherins promote cell migration β-catenin also transcription factor; Bound by inhibitor APC APC is tumor suppressor Fig

6 Cancer involves sequential mutations Cancer involves sequential mutations that increase aberrant cell activity: 2-hit model: mutations in at least two different types of genes (tumor suppressor, oncogene) Cancer is many different diseases Cancer is many different diseases at the molecular level: not all colon cancers have same defect defects in particular signaling pathways can cause cancers in different tissues (also lack of apoptosis) Fig Fig Viruses can also cause cancer RNA retroviruses: HTLV-1 adult T cell luekemia HIV immunosuppression non-hodgkins lymphoma Hepatitis C liver DNA viruses: HPV: cervical cancer Epstein Barr (a herpesvirus) interfere apoptosis Review questions 2. The mechanism through which Ras becomes an oncogenic protein is which of the following? A. Ras remains bound to GAP B. Ras can no longer bind camp C. Ras has lost its GTPase activity D. Ras can no longer bind GTP E. Ras can no longer be phosphorylated by MAP kinase 6

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Chapter 18- Oncogenes, tumor suppressors & Cancer

Chapter 18- Oncogenes, tumor suppressors & Cancer Chapter 18- Oncogenes, tumor suppressors & Cancer - Previously we have talked about cancer which is an uncontrolled cell proliferation and we have discussed about the definition of benign, malignant, metastasis

More information

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes.

RAS Genes. The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. ۱ RAS Genes The ras superfamily of genes encodes small GTP binding proteins that are responsible for the regulation of many cellular processes. Oncogenic ras genes in human cells include H ras, N ras,

More information

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified?

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified? Dominant Acting Oncogenes Eugene E. Marcantonio, M.D. Ph.D. Oncogenes are altered forms of normal cellular genes called proto-oncogenes that are involved in pathways regulating cell growth, differentiation,

More information

Emerging" hallmarks of cancer, a. Reprogramming of energy metabolism b. Evasion of the immune system, Enabling characteristics, a.

Emerging hallmarks of cancer, a. Reprogramming of energy metabolism b. Evasion of the immune system, Enabling characteristics, a. HALLMARKS OF CANCER - Together dictate the malignant phenotype. 1. Self-sufficiency in growth signals 2. Insensitivity to growth inhibitory signals 3. Evasion of cell death 4. Limitless replicative potential

More information

Cell Cycle and Cancer

Cell Cycle and Cancer 142 8. Cell Cycle and Cancer NOTES CELL CYCLE G 0 state o Resting cells may re-enter the cell cycle Nondividing cells (skeletal and cardiac muscle, neurons) o Have left the cell cycle and cannot undergo

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS Summary of the regulation of cyclin/cdk complexes during celll cycle Cell cycle phase Cyclin-cdk complex inhibitor activation Substrate(s) G1 Cyclin D/cdk 4,6

More information

MOLECULAR BASIS OF ONCOGENESIS

MOLECULAR BASIS OF ONCOGENESIS MOLECULAR BASIS OF ONCOGENESIS MUDr. Jiří Vachtenheim, CSc. 1 Cell processes which result also in cell cycle effects. Differentiation. Differentiated cells are usually in the G0 phase of the cell cycle.

More information

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD Lecture 8 Neoplasia II Dr. Nabila Hamdi MD, PhD ILOs Understand the definition of neoplasia. List the classification of neoplasia. Describe the general characters of benign tumors. Understand the nomenclature

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

Genetics and Cancer Ch 20

Genetics and Cancer Ch 20 Genetics and Cancer Ch 20 Cancer is genetic Hereditary cancers Predisposition genes Ex. some forms of colon cancer Sporadic cancers ~90% of cancers Descendants of cancerous cells all cancerous (clonal)

More information

Cancer genetics

Cancer genetics Cancer genetics General information about tumorogenesis. Cancer induced by viruses. The role of somatic mutations in cancer production. Oncogenes and Tumor Suppressor Genes (TSG). Hereditary cancer. 1

More information

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis MUDr. Jiří Vachtenheim, CSc. CELL CYCLE - SUMMARY Basic terminology: Cyclins conserved proteins with homologous regions; their cellular

More information

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 MIT OpenCourseWare http://ocw.mit.edu HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

BL 424 Test pts name Multiple choice have one choice each and are worth 3 points.

BL 424 Test pts name Multiple choice have one choice each and are worth 3 points. BL 424 Test 3 2010 150 pts name Multiple choice have one choice each and are worth 3 points. 1. The plasma membrane functions as a a. selective barrier to the passage of molecules. b. sensor through which

More information

Chapter 4 Cellular Oncogenes ~ 4.6 -

Chapter 4 Cellular Oncogenes ~ 4.6 - Chapter 4 Cellular Oncogenes - 4.2 ~ 4.6 - Many retroviruses carrying oncogenes have been found in chickens and mice However, attempts undertaken during the 1970s to isolate viruses from most types of

More information

Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1

Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1 Mohammed El-Khateeb Tumor Genetics MGL-12 July 21 st 2013 台大農藝系遺傳學 601 20000 Chapter 22 slide 1 Cellular Basis of Cancer Cancer is a collection of diseases characterized by abnormal and uncontrolled growth

More information

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D Regulation of cell cycle Dr. SARRAY Sameh, Ph.D Control of cell cycle: Checkpoints Are the cell cycle controls mechanisms in eukaryotic cells. These checkpoints verify whether the processes at each phase

More information

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea TUMOR-SUPPRESSOR GENES Molecular Oncology 2011 Michael Lea TUMOR-SUPPRESSOR GENES - Lecture Outline 1. Summary of tumor suppressor genes 2. P53 3. Rb 4. BRCA1 and 2 5. APC and DCC 6. PTEN and PPA2 7. LKB1

More information

An adult human has somewhere around one hundred trillion (10 14 ) cells

An adult human has somewhere around one hundred trillion (10 14 ) cells 2/22/10 Cancer genetics Inside cancer web site http://www.insidecancer.org/ National Cancer Institute http://www.cancer.gov/cancerinfo/ An adult human has somewhere around one hundred trillion (10 14 )

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

Prof. R. V. Skibbens

Prof. R. V. Skibbens Prof. R. V. Skibbens September 8, 2017 BioScience in the 21 st Century Cell Cycle, Cell Division and intro to Cancer Cell growth and division What are the goals? I Cell Cycle what is this? response to

More information

Section D. Genes whose Mutation can lead to Initiation

Section D. Genes whose Mutation can lead to Initiation This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge The mutations that drive cancer Paul Edwards Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge Previously on Cancer... hereditary predisposition Normal Cell Slightly

More information

Prof. R. V. Skibbens. Cell Cycle, Cell Division and Cancer (Part 2)

Prof. R. V. Skibbens. Cell Cycle, Cell Division and Cancer (Part 2) Prof. R. V. Skibbens November 22, 2010 BIOS 10: BioScience in the 21 st Century Cell Cycle, Cell Division and Cancer (Part 2) Directionality - clocks go in only one direction G1 doesn t have replication-inducing

More information

A Genetic Program for Embryonic Development

A Genetic Program for Embryonic Development Concept 18.4: A program of differential gene expression leads to the different cell types in a multicellular organism During embryonic development, a fertilized egg gives rise to many different cell types

More information

- A cancer is an uncontrolled, independent proliferation of robust, healthy cells.

- A cancer is an uncontrolled, independent proliferation of robust, healthy cells. 1 Cancer A. What is it? - A cancer is an uncontrolled, independent proliferation of robust, healthy cells. * In some the rate is fast; in others, slow; but in all cancers the cells never stop dividing.

More information

THE EUKARYOTIC CELL CYCLE AND CANCER

THE EUKARYOTIC CELL CYCLE AND CANCER THE EUKARYOTIC CELL CYCLE AND CANCER ABOUT THIS WORKSHEET This worksheet complements the Click and Learn The Eukaryotic Cell Cycle and Cancer developed in conjunction with the 2013 Holiday Lectures on

More information

Chapter 9, Part 1: Biology of Cancer and Tumor Spread

Chapter 9, Part 1: Biology of Cancer and Tumor Spread PATHOPHYSIOLOGY Name Chapter 9, Part 1: Biology of Cancer and Tumor Spread I. Cancer Characteristics and Terminology Neoplasm new growth, involves the overgrowth of tissue to form a neoplastic mass (tumor).

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

Src-INACTIVE / Src-INACTIVE

Src-INACTIVE / Src-INACTIVE Biology 169 -- Exam 1 February 2003 Answer each question, noting carefully the instructions for each. Repeat- Read the instructions for each question before answering!!! Be as specific as possible in each

More information

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU 基醫所 The Cell Cycle Chi-Wu Chiang, Ph.D. IMM, NCKU 1 1 Introduction to cell cycle and cell cycle checkpoints 2 2 Cell cycle A cell reproduces by performing an orderly sequence of events in which it duplicates

More information

Early cell death (FGF) B No RunX transcription factor produced Yes No differentiation

Early cell death (FGF) B No RunX transcription factor produced Yes No differentiation Solution Key - Practice Questions Question 1 a) A recent publication has shown that the fat stem cells (FSC) can act as bone stem cells to repair cavities in the skull, when transplanted into immuno-compromised

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

Biochemistry of Cancer and Tumor Markers

Biochemistry of Cancer and Tumor Markers Biochemistry of Cancer and Tumor Markers The term cancer applies to a group of diseases in which cells grow abnormally and form a malignant tumor. It is a long term multistage genetic process. The first

More information

American Society of Cytopathology Core Curriculum in Molecular Biology

American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology American Society of Cytopathology Core Curriculum in Molecular Biology Chapter 1 Molecular Basis of Cancer Molecular Oncology Keisha

More information

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? Questions about cancer What is cancer? Cancer Gil McVean, Department of Statistics, Oxford What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? What are the steps in

More information

CARCINOGENESIS THE MOLECULAR BASIS OF CANCER

CARCINOGENESIS THE MOLECULAR BASIS OF CANCER CARCINOGENESIS THE MOLECULAR BASIS OF CANCER We know that cancer is a genetic disease and that it is a multi-step process, therefore multiple genetic events (mutations) will occur in tumors. Given that

More information

Genetics of Cancer Lecture 32 Cancer II. Prof. Bevin Engelward, MIT Biological Engineering Department

Genetics of Cancer Lecture 32 Cancer II. Prof. Bevin Engelward, MIT Biological Engineering Department Genetics of Cancer Lecture 32 Cancer II rof. Bevin Engelward, MIT Biological Engineering Department Why Cancer Matters New Cancer Cases in 1997 Cancer Deaths in 1997 Genetics of Cancer: Today: What types

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download:https://getbooksolutions.com/download/test-bank-for-robbinsand-cotran-pathologic-basis-of-disease-9th-edition-by-kumar Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th

More information

Asingle inherited mutant gene may be enough to

Asingle inherited mutant gene may be enough to 396 Cancer Inheritance STEVEN A. FRANK Asingle inherited mutant gene may be enough to cause a very high cancer risk. Single-mutation cases have provided much insight into the genetic basis of carcinogenesis,

More information

Present State of Gene Diagnosis and Future Prospects

Present State of Gene Diagnosis and Future Prospects Clinical Medicine: Cancer Present State of Gene Diagnosis and Future Prospects JMAJ 45(3): 118 124, 2002 Eiichi TAHARA Chairman, Hiroshima Cancer Seminar Foundation Abstract: The entire base sequence of

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

Genomic instability. Amin Mahpour

Genomic instability. Amin Mahpour Genomic instability Amin Mahpour 1 Some questions to ponder What is Genomic instability? What factors contribute to the genomic integrity? How we identify these aberrations? 2 PART I: MOLECULAR BIOLOGY

More information

Prof. R. V. Skibbens. BIOS 10 and BIOS 90: BioScience in the 21 st Century. Cell Cycle, Cell Division and intro to Cancer.

Prof. R. V. Skibbens. BIOS 10 and BIOS 90: BioScience in the 21 st Century. Cell Cycle, Cell Division and intro to Cancer. Prof. R. V. Skibbens August 31, 2015 BIOS 10 and BIOS 90: BioScience in the 21 st Century Cell Cycle, Cell Division and intro to Cancer Cell Cycle Why a cell cycle? What is the goal? trauma growth development

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

Basic tumor nomenclature

Basic tumor nomenclature Jonas Nilsson jonas.a.nilsson@surgery.gu.se Sahlgrenska Cancer Center Bilder gjorda av Per Holmfeldt och Jonas Nilsson Benign tumor Basic tumor nomenclature Malignant tumor = cancer Metastasis Carcinoma:

More information

Genetics of Oncology. Ryan Allen Roy MD July 8, 2004 University of Tennessee

Genetics of Oncology. Ryan Allen Roy MD July 8, 2004 University of Tennessee Genetics of Oncology Ryan Allen Roy MD July 8, 2004 University of Tennessee CREOG Objectives Describe the clinical relevance of viral oncogenes Describe the role of aneuploidy in the pathogenesis of neoplasia

More information

Lecture 14 - The cell cycle and cell death

Lecture 14 - The cell cycle and cell death 02.17.10 Lecture 14 - The cell cycle and cell death The cell cycle: cells duplicate their contents and divide The cell cycle may be divided into 4 phases The cell cycle triggers essential processes (DNA

More information

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology Neoplasia Dr Rodney Itaki Lecturer Anatomical Pathology Discipline University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology General Considerations Overview: Neoplasia uncontrolled,

More information

Chapter 9 Signal Transduction and Cell Growth

Chapter 9 Signal Transduction and Cell Growth Part II Principles of Individual Cell Function Chapter 9 One characteristic of organisms is that they exhibit various behaviors in response to changes in their environment (i.e., the outside world). Cells

More information

Cancer and sornat ic evolution

Cancer and sornat ic evolution Chapter 1 Cancer and sornat ic evolution 1.1 What is cancer? The development and healthy life of a human being requires the cooperation of more than ten million cells for the good of the organism. This

More information

Institute of Radiation Biology. Oncogenes and tumour suppressor genes DoReMi Course 2014

Institute of Radiation Biology. Oncogenes and tumour suppressor genes DoReMi Course 2014 Institute of Radiation Biology Oncogenes and tumour suppressor genes DoReMi Course 2014 Hippocrates: Cause is systemic excess of black humor. Paracelsus challenges the humor theory. Suggests external

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

Variations in Chromosome Structure & Function. Ch. 8

Variations in Chromosome Structure & Function. Ch. 8 Variations in Chromosome Structure & Function Ch. 8 1 INTRODUCTION! Genetic variation refers to differences between members of the same species or those of different species Allelic variations are due

More information

Protein kinases are enzymes that add a phosphate group to proteins according to the. ATP + protein OH > Protein OPO 3 + ADP

Protein kinases are enzymes that add a phosphate group to proteins according to the. ATP + protein OH > Protein OPO 3 + ADP Protein kinase Protein kinases are enzymes that add a phosphate group to proteins according to the following equation: 2 ATP + protein OH > Protein OPO 3 + ADP ATP represents adenosine trisphosphate, ADP

More information

EBV infection B cells and lymphomagenesis. Sridhar Chaganti

EBV infection B cells and lymphomagenesis. Sridhar Chaganti EBV infection B cells and lymphomagenesis Sridhar Chaganti How EBV infects B-cells How viral genes influence the infected B cell Differences and similarities between in vitro and in vivo infection How

More information

Review II: Cell Biology

Review II: Cell Biology Review II: Cell Biology Rajan Munshi BBSI @ Pitt 2006 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2006 Outline Cell Cycle Signal Transduction 1 Cell Cycle Four

More information

Chapter 9: Cell Division Proliferation and Reproduction

Chapter 9: Cell Division Proliferation and Reproduction Chapter 9: Cell Division Proliferation and Reproduction Lecture Outline Enger, E. D., Ross, F. C., & Bailey, D. B. (2012). Concepts in biology (14th ed.). New York: McGraw- Hill. 1 9-1 The Importance of

More information

Cell Cycle Control by Oncogenes and Tumor Suppressors: Driving the Transformation of Normal Cells into Cancerous Cells

Cell Cycle Control by Oncogenes and Tumor Suppressors: Driving the Transformation of Normal Cells into Cancerous Cells Cell Cycle Control by Oncogenes and Tumor Suppressors: Driving the Transformation of Normal Cells into Cancerous Cells By: Amy Y. Chow, Ph.D. (Division of Tumor Cell Biology, Beckman Research Institute,

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Viruses Tomasz Kordula, Ph.D.

Viruses Tomasz Kordula, Ph.D. Viruses Tomasz Kordula, Ph.D. Resources: Alberts et al., Molecular Biology of the Cell, pp. 295, 1330, 1431 1433; Lehninger CD Movie A0002201. Learning Objectives: 1. Understand parasitic life cycle of

More information

Chapter 16 Mutations. Practice Questions:

Chapter 16 Mutations. Practice Questions: Biology 234 J. G. Doheny Chapter 16 Mutations Practice Questions: Answer the following questions with one or two sentences. 1. List the name of one test that can be used to identify mutagens. 2. What is

More information

CARCINOGENESIS: THE MOLECULAR BASIS OF CANCER

CARCINOGENESIS: THE MOLECULAR BASIS OF CANCER CARCINOGENESIS: THE MOLECULAR BASIS OF CANCER Nonlethal genetic damage lies at the heart of carcinogenesis. Mutation may be acquired by the action of environmental agents, such as chemicals, radiation,

More information

Gene Regulation - 4. One view of the Lactose Operon

Gene Regulation - 4. One view of the Lactose Operon Gene Regulation - 1 Regulating Genes We have been discussing the structure of DNA and that the information stored in DNA is used to direct protein synthesis. We've studied how RNA molecules are used to

More information

Bihong Zhao, M.D, Ph.D Department of Pathology

Bihong Zhao, M.D, Ph.D Department of Pathology Bihong Zhao, M.D, Ph.D Department of Pathology 04-28-2009 Is tumor self or non-self? How are tumor antigens generated? What are they? How does immune system respond? Introduction Tumor Antigens/Categories

More information

Cancer DEREGULATION OF CELL CYCLE CONTROL IN ONCOGENESIS. D. Kardassis Division of Basic Sciences University of Crete Medical School and IMBB-FORTH

Cancer DEREGULATION OF CELL CYCLE CONTROL IN ONCOGENESIS. D. Kardassis Division of Basic Sciences University of Crete Medical School and IMBB-FORTH E6 2006-2007: 2007: Molecular Biology of Cancer DEREGULATION OF CELL CYCLE CONTROL IN ONCOGENESIS D. Kardassis Division of Basic Sciences University of Crete Medical School and IMBB-FORTH Literature *

More information

7.012 Quiz 3 Answers

7.012 Quiz 3 Answers MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Friday 11/12/04 7.012 Quiz 3 Answers A > 85 B 72-84

More information

TUMOR M ARKERS MARKERS

TUMOR M ARKERS MARKERS TUMOR MARKERS M.Shekarabi IUMS Definition Many cancers are associated with the abnormal production of some molecules l which h can be measured in plasma. These molecules are known as tumor markers. A good

More information

Howard Temin. Predicted RSV converted its genome into DNA to become part of host chromosome; later discovered reverse transciptase.

Howard Temin. Predicted RSV converted its genome into DNA to become part of host chromosome; later discovered reverse transciptase. Howard Temin Predicted RSV converted its genome into DNA to become part of host chromosome; later discovered reverse transciptase Nobel prize 1975 Figure 3.6 The Biology of Cancer ( Garland Science 2007)

More information

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION

KEY CONCEPT QUESTIONS IN SIGNAL TRANSDUCTION Signal Transduction - Part 2 Key Concepts - Receptor tyrosine kinases control cell metabolism and proliferation Growth factor signaling through Ras Mutated cell signaling genes in cancer cells are called

More information

Biol403 MAP kinase signalling

Biol403 MAP kinase signalling Biol403 MAP kinase signalling The mitogen activated protein kinase (MAPK) pathway is a signalling cascade activated by a diverse range of effectors. The cascade regulates many cellular activities including

More information

Cell Division and Cancer. By Dr. Carmen Rexach Physiology Mount San Antonio College

Cell Division and Cancer. By Dr. Carmen Rexach Physiology Mount San Antonio College Cell Division and Cancer By Dr. Carmen Rexach Physiology Mount San Antonio College The Cell Cycle Interphase: G 1, S, G 2, (G 0 ) Cell division and cytokinesis prophase metaphase anaphase telophase Interphase

More information

CELL DIVISION: MITOSIS AND MEIOSIS

CELL DIVISION: MITOSIS AND MEIOSIS Genetics and Information Transfer Big Idea 3 INVESTIGATION 7 CELL DIVISION: MITOSIS AND MEIOSIS How do eukaryotic cells divide to produce genetically identical cells or to produce gametes with half the

More information

SSN SBPM Workshop Exam One. Short Answer Questions & Answers

SSN SBPM Workshop Exam One. Short Answer Questions & Answers SSN SBPM Workshop Exam One Short Answer Questions & Answers 1. Describe the effects of DNA damage on the cell cycle. ANS : DNA damage causes cell cycle arrest at a G2 checkpoint. This arrest allows time

More information

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development.

Follicular Lymphoma. ced3 APOPTOSIS. *In the nematode Caenorhabditis elegans 131 of the organism's 1031 cells die during development. Harvard-MIT Division of Health Sciences and Technology HST.176: Cellular and Molecular Immunology Course Director: Dr. Shiv Pillai Follicular Lymphoma 1. Characterized by t(14:18) translocation 2. Ig heavy

More information

Signal Transduction Pathways in Human Diseases

Signal Transduction Pathways in Human Diseases Molecular Cell Biology Lecture. Oct 29, 2015 Signal Transduction Pathways in Human Diseases Ron Bose, MD PhD Biochemistry and Molecular Cell Biology Programs Washington University School of Medicine Introduction

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

Overview of the core ideas in cancer research

Overview of the core ideas in cancer research Overview of the core ideas in cancer research Paul Edwards Cancer Research UK Cambridge Institute and Department of Pathology, University of Cambridge This lecture Overview of the ideas that provide the

More information

The Hallmarks of Cancer

The Hallmarks of Cancer The Hallmarks of Cancer Theresa L. Hodin, Ph.D. Clinical Research Services Theresa.Hodin@RoswellPark.org Hippocrates Cancer surgery, circa 1689 Cancer Surgery Today 1971: Nixon declares War on Cancer

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

Colon Cancer and Hereditary Cancer Syndromes

Colon Cancer and Hereditary Cancer Syndromes Colon Cancer and Hereditary Cancer Syndromes Gisela Keller Institute of Pathology Technische Universität München gisela.keller@lrz.tum.de Colon Cancer and Hereditary Cancer Syndromes epidemiology models

More information

Genomic Instability. Kent Nastiuk, PhD Dept. Cancer Genetics Roswell Park Cancer Institute. RPN-530 Oncology for Scientist-I October 18, 2016

Genomic Instability. Kent Nastiuk, PhD Dept. Cancer Genetics Roswell Park Cancer Institute. RPN-530 Oncology for Scientist-I October 18, 2016 Genomic Instability Kent Nastiuk, PhD Dept. Cancer Genetics Roswell Park Cancer Institute RPN-530 Oncology for Scientist-I October 18, 2016 Previous lecturers supplying slides/notes/inspiration Daniel

More information

Answer ALL questions in Section A and ONE question from Section B.

Answer ALL questions in Section A and ONE question from Section B. UNIVERSITY OF EAST ANGLIA School of Biological Sciences Main Series UG Examination 2012-2013 CANCER BIOLOGY BIO-3C27 Time allowed: 3 hours Students are strongly advised to spend at least 30 minutes reading

More information

Cell Cycle. Cell Cycle the cell s life cycle that extends from one division to the next G1 phase, the first gap phase. S phase, synthesis phase

Cell Cycle. Cell Cycle the cell s life cycle that extends from one division to the next G1 phase, the first gap phase. S phase, synthesis phase Cell Cycle the cell s life cycle that extends from one division to the next G1 phase, the first gap phase Cell Cycle interval between cell division and DNA replication accumulates materials needed to replicate

More information

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Prokaryotes Have a Simpler Cell Cycle Cell division in prokaryotes takes place in two stages, which together make up a simple cell cycle 1. Copy

More information

Cell Cyc Cell Cy l c e

Cell Cyc Cell Cy l c e Mechanisms of Cell Proliferation 1 Cell Cycle G 2 S G 1 2 Multi-cellular organisms depend on cell division/proliferation; Each organism has a developmental plan that determines its behavior and properties;

More information

Chapter 11 How Genes Are Controlled

Chapter 11 How Genes Are Controlled Chapter 11 How Genes Are Controlled PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture by Mary

More information