RUNX1 and FPD/AML Translational Research. The Leukemia and Lymphoma Society / Babich Family Foundation Partnership. September 2016

Size: px
Start display at page:

Download "RUNX1 and FPD/AML Translational Research. The Leukemia and Lymphoma Society / Babich Family Foundation Partnership. September 2016"

Transcription

1 RUNX1 and FPD/AML Translational Research The Leukemia and Lymphoma Society / Babich Family Foundation Partnership September 2016 Prepared by L. Greenberger, PhD Chief Scientific Officer, LLS Background Inherited predisposition to hematological malignancies associated with germ line mutations has been reported in select families (Tawana and Fitzgibbon, 2016). Mutations involve RUNX1, GATA2, ANKRD26, or ETV6, which have been associated with hematological disorders manifesting as cytopenias or platelet dysfunction that can lead to acute myeloid leukemia (AML). In the case of RUNX1 (known as acute leukemia 1 protein [AML1] or core-binding factor alpha-2 [CBFA2]), one copy of the gene is mutated. It is believed that this can create a pre-leukemic state that typically manifests as a familial platelet disorder (FPD) leading to AML upon acquisition of a second mutation, sometimes in the second RUNX1 allele. Approximately 50% of patients with familial RUNX1 mutations will develop myelodysplastic syndrome (MDS) or AML in their lifetime (Liew and Owen, 2011). Although most pedigrees have a propensity to develop MDS/AML, which is of myeloid lineage, a small fraction of family members develop T-cell acute lymphoblastic leukemia (T-ALL), which is clearly relevant since RUNX1 also plays a role in T-ALL (Della Gatta et al., 2012). Currently, it is poorly understood how RUNX1 can mediate platelet defects or lead to AML. However, it is established that RUNX1 encodes a subunit of a heterodimeric transcription factor that controls the expression of genes essential for hematopoiesis. Therefore, RUNX1 mutations impair the protein, reduce the expression of RUNX1-targeted genes and ultimately impair differentiation to normal blood cells. When RUNX1 is mutated in the presence of other mutations, progenitor cells do not differentiate and nonfunctional, leukemic cells can increase. Within the limited number of families with FPD/AML that have been examined, it has been found that mutations in RUNX1 manifest as missense, nonsense, frameshifts, duplications, or deletion mutations scattered across the coding region for the protein (Nickels et al., 2013). Although only approximately forty pedigrees have been reported in the United States in the scientific literature, it is important to note that RUNX1 mutations are not limited to patients with FPD/AML. RUNX1 mutations are found in approximately 15% of all AML patients (Papaemmanuil et al., 2016; Metzeler et 1

2 al., 2016). Within subtypes of AML, approximately 10% and 30% of patients with de novo and secondary AML, respectively, have RUNX1 mutations (Lindsley et al., 2015). Mutations in RUNX1 are also found in patients with MDS (Papaemmanuil et al., 2013). In patients with de novo or secondary AML, the RUNX1 mutation is typically found in patients who have mutations in other AML-promoting genes such as MLL (which may promote RUNX1 protein degradation; Zhao et al., 2014; MLL can also act as a co-factor of RUNX1; Huang et al., 2011) and IDH (which may promote gene repression through DNA methylation; Kernytsky et al., 2015). Both MLL and IDH mutations are associated with poor prognosis and response to chemotherapy (Gaidzik et al., 2011; Gaidzik et al., 2016). Overall, it has been suggested that RUNX1 may play a role in more than 50% of all AML patients, since the protein is mutated and / or works in conjunction with other transcriptional factors that mediate pre-leukemic states and AML (Huang et al., 2008; Ito et al. 2015; Lam et al., 2011; CGARN, 2013; Will et al., 2015). This suggests that unravelling the role of RUNX1 in leukemogenesis is likely to benefit patients with AML in general. Key Areas of Investigation There are many important features of RUNX1 biology that need to be studied in order to improve treatment for pre- and post-leukemic FPD/AML patients. Research strategies to be funded include: A. Translational Research that includes, or can lead to, clinical trials Discover and develop novel therapeutics that re-activate RUNX1 or downstream pathways or provide synthetic lethality via collateral pathways to restore impaired (mutated) RUNX1 function Develop gene editing or gene therapy methods to correct RUNX1 mutations, thereby allowing allogeneic transplantations Develop new prognostic assays to determine if or when to treat with such new therapeutics B. Laboratory research that supports Translational Research Develop a deeper understanding of the interaction of RUNX1 with other transcription factor regulators or other relevant biology related to disease progression Develop experimental systems either in vitro or in vivo that mimic FPD (or other RUNX1-mediated pre-leukemic conditions) that lead to AML. LLS Proposed Plan The overarching goal for The Babich Family Foundation and LLS is to build a team of researchers focused on RUNX1 biology with the hope that novel diagnostics and therapeutic agents can be developed. The Babich Family Foundation has created the RUNX1 Research Program ( in order to fund research into RUNX1 biology and to help educate patients with FPD/AML. A research program focused on FPD/AML has already been initiated with The Babich Family Foundation and Alex s Lemonade Stand Foundation (ALSF) in April This work will develop knowledge that will provide a better understanding of the disease through retrospective or prospective analysis of FPD/AML family members and identify ways to block the transition of a preleukemic state to leukemia in patients with familial RUNX1 2

3 disorders. The partnership between The Babich Family Foundation and LLS is intended to further enhance this effort and focus on translational research that can bring laboratory findings to the clinic. The understanding of RUNX1 biology, and in fact most transcription factors, is at an early stage. Moreover, therapeutic manipulation of transcription factors, which typically involve protein-protein or protein-dna interaction are typically difficult drug targets (in contrast to kinases, which are enzymes). The development of new model systems in the laboratory will be required to achieve an understanding of how the germ line RUNX1 mutation progresses to AML and to test prospective therapeutics. Therefore, LLS and The Babich Family Foundation will build a broad-based team of researchers to address the major issues stated above. The team will likely include members with the following expertise: leukemia (with special interest in FPD and/or AML), transcription factor structure and function, animal models of blood cancer, transplantation, genetics, drug development and computational biology. Two key features of the plan are the sharing of data among researchers in the field and an annual conference to present and discuss research results. Implementation of the Plan The proposed strategy to fund this work will be by the Translational Research Program (TRP) by LLS. The TRP program provides $600,000 to each grantee over a 3 year period. It is designed to fund laboratory research that could translate to experimental clinical programs. The plan calls for funding up to three TRPs related to RUNX1 biology. In September 2016, LLS re-opened the Translational Research Program (TRP). A Request for Proposal (RFP) outlines the intent of the RUNX1-related TRP program (see The announcement of the RFP for this specific program has occurred simultaneously with a broad RFP request for the entire LLS TRP program (covering leukemia, myeloma, and lymphoma). Applications for the RUNX1 program will be permitted after the letter of intent is reviewed to ensure they meet the intent of the RFP. This is followed by full application. Evaluation of the full application for the RUNX1-related grants will be done by primary and secondary reviewers selected by LLS and The Babich Family Foundation. Scoring of the grant applications (using the NIH system) will be done by the entire TRP leukemia review panel, although further consideration of RUNX1-related TRP applications will be done separately from the general leukemia TRP grant applications. Decisions for funding will be made in June 2017 and the grants activated October 1, LLS and The Babich Family Foundation believe that it is highly likely that TRP grant applications of exceptional quality will be identified during this process since two applications related to RUNX1 biology were identified in the last round of TRP applications in 2015 to LSS (Lucy Godley, University of Chicago in conjunction with Nancy Speck of U Pennsylvania and Paul Gadue/Deborah French/Mortimer Poncz of CHOP and an undisclosed investigator). During this same time period, one of the canonical downstream targets of RUNX1, the transcription factor PU.1, has been shown to be critically involved in the formation of pre-leukemic stem cells and their progression to AML (Will et al., 2015). There is also a report on a small molecule inhibitor of the transcription factor fusion, core factor beta smooth muscle myosin, which can reactivate RUNX1 (Illendula et al., 2015). Beyond this, the role of cohesion mutations in the faulty regulation of RUNX1 and other transcription factors leading to AML has received considerable attention in the published literature (Mazumdar et al., 2015) as well as in emerging work examining the utility of epigenetic regulators controlling cohesion-mediated progression of hematopoietic stem cell to MDS and 3

4 AML. It is also important to note that, in general, the TRP grant program is highly competitive with approximately 10% of all grants applications being funded in In sum, the goal of this program is to activate up to three TRPs on October 1, Awardees will be brought together to discuss their findings, along with other current LLS grantees and members of the ALSF / The Babich Family Foundation partnership, as well as experts in RUNX1-related biology to review progress on an annual basis. The total cost for the program is up to $1.8 M for grants, which is shared equally between LLS and The Babich Family Foundation. LLS will administer the grant program. Conclusion This grant program aims to fund cutting-edge research with the potential to transform therapeutic options for pre- and post-leukemic FPD/AML patients as well as to contribute to current science s limited understanding of the role RUNX1 plays in leukemogenesis. LLS and The Babich Family Foundation believe an opportunity exists to apply other technological advances in the study of cancers and inherited diseases to the study of AML, where there has been a very limited advancement in therapies over the last several decades. We believe this opportunity will have a direct and significant clinical impact for patients, and we encourage applications to this endpoint. References Cancer Genome Atlas Research Network Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 368: Della Gatta, G et al., Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nature Med. 18: Gaidzik, V RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Onc. 29: Gaidzik, V RUNX1 mutations in acute myeloid leukemia are associated with distinct clinic-pathologic and genetic features. Leukemia. E-pub ahead of print. Huang, G. et al PU.1 is a major downstream target of AML1 (RUNX1) in adult mouse hematopoiesis. Nat Genet. 40, Huang, G. et al The ability of MLL to bind RUNX1 and methylate H3K4 at PU.1 regulatory regions is impaired by MDS/AML-associated RUNX1/AML1 mutations. Blood. 118, Illendula, A. et al., A small-molecule inhibitor of the aberrant transcription factor CBFβ-SMMHC delays leukemia in mice. Science. 347: Metzeler, K. et al., Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 128: Ito, Y. et al The RUNX family: developmental regulators in cancer. Nat. Rev. Cancer 15: Liew, E and Owen, C Familial myelodysplastic syndromes: a review of the literature. Hematologica. 96: Kernytsky, A. et al IDH2 mutation-induced histone and DNA hypermethylation is progressively 4

5 reversed by small-molecule inhibition. Blood 125, Lam, K. & Zhang, D.-E RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Frontiers in Bioscience Mazumdar, M. et al., Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell. 17: Nickels, E. et al., Recognizing familial myeloid leukemia in adults. Ther Adv Hematol. 4: Lewinsohn, M. et al Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 127: Papaemmanuil, E. et al., Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 122: Papaemmanuil, E. et al., Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374: Rao R. and Dou, Y Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nature Cancer Rev. 15: Tawana, K. and Fitzgibbon, J Inherited DDX4 mutations: 11 genes and counting. Blood. 127: Wang, F. et al., Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science 340: Will, B. et al, Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med. 21: Zhao, X. et al Downregulation of RUNX1/CBFβ by MLL fusion proteins enhances hematopoietic stem cell self-renewal. Blood 123,

A Familial Bleeding Disorder: Revised Diagnosis after 30 Years

A Familial Bleeding Disorder: Revised Diagnosis after 30 Years A Familial Bleeding Disorder: Revised Diagnosis after 30 Years Abdullah Kutlar MD-Medical College of Georgia, Augusta, GA Allison Spellman MD-Summit Cancer Care, Savannah, GA Case Presentation 44y/o WF

More information

Genetic Predisposition Syndromes in Myeloid Malignancies

Genetic Predisposition Syndromes in Myeloid Malignancies Genetic Predisposition Syndromes in Myeloid Malignancies Lucy A. Godley, M.D., Ph.D. Section of Hematology/Oncology Departments of Medicine and Human Genetics The University of Chicago My patients and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1 Frequency of DNMT3A mutations in hematologic disorders and their associated clinical phenotypes. Disease Patient population Frequency (%) Associated Clinical Characteristics

More information

September 20, Submitted electronically to: Cc: To Whom It May Concern:

September 20, Submitted electronically to: Cc: To Whom It May Concern: History Study (NOT-HL-12-147), p. 1 September 20, 2012 Re: Request for Information (RFI): Building a National Resource to Study Myelodysplastic Syndromes (MDS) The MDS Cohort Natural History Study (NOT-HL-12-147).

More information

Acute leukemia and myelodysplastic syndromes

Acute leukemia and myelodysplastic syndromes 11/01/2012 Post-ASH meeting 1 Acute leukemia and myelodysplastic syndromes Peter Vandenberghe Centrum Menselijke Erfelijkheid & Afdeling Hematologie, UZ Leuven 11/01/2012 Post-ASH meeting 2 1. Acute myeloid

More information

Molecular Markers in Acute Leukemia. Dr Muhd Zanapiah Zakaria Hospital Ampang

Molecular Markers in Acute Leukemia. Dr Muhd Zanapiah Zakaria Hospital Ampang Molecular Markers in Acute Leukemia Dr Muhd Zanapiah Zakaria Hospital Ampang Molecular Markers Useful at diagnosis Classify groups and prognosis Development of more specific therapies Application of risk-adjusted

More information

Acute Myeloid Leukemia with RUNX1 and Several Co-mutations

Acute Myeloid Leukemia with RUNX1 and Several Co-mutations Case SH2017-0281 Acute Myeloid Leukemia with RUNX1 and Several Co-mutations James Bauer, MD, PhD David Yang, MD Erik Ranheim, MD, PhD Catherine Leith, MB, Bchir Clinical History Chief Complaint: 72 year

More information

The Molecular Basis of Leukemia

The Molecular Basis of Leukemia The Molecular Basis of Leukemia D. Gary Gilliland, Craig T. Jordan, and Carolyn A. Felix Major strides have been made in our understanding of the molecular basis of adult and pediatric leukemias. More

More information

Corporate Medical Policy. Policy Effective February 23, 2018

Corporate Medical Policy. Policy Effective February 23, 2018 Corporate Medical Policy Genetic Testing for FLT3, NPM1 and CEBPA Mutations in Acute File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_flt3_npm1_and_cebpa_mutations_in_acute_myeloid_leukemia

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive LL - LL-ROHINI (NATIONAL REFERENCE 135091534 Age 36 Years Gender Female 1/9/2017 120000AM 1/9/2017 105316AM 2/9/2017 104147AM Ref By Final LEUKEMIA GENETIC ROFILE ANY SIX MARKERS, CR QUALITATIVE AML ETO

More information

New drugs in Acute Leukemia. Cristina Papayannidis, MD, PhD University of Bologna

New drugs in Acute Leukemia. Cristina Papayannidis, MD, PhD University of Bologna New drugs in Acute Leukemia Cristina Papayannidis, MD, PhD University of Bologna Challenges to targeted therapy in AML Multiple subtypes based upon mutations/cytogenetic aberrations No known uniform genomic

More information

MicroRNA-29a Reveals Oncogenic Role on Myeloid Malignancies by Regulating DNMT3A

MicroRNA-29a Reveals Oncogenic Role on Myeloid Malignancies by Regulating DNMT3A MicroRNA-29a Reveals Oncogenic Role on Myeloid Malignancies by Regulating DNMT3A Heba Alkhatabi, PhD Assistant Professor Department of Medical Laboratory Collage of Applied Medical science King Abdul Aziz

More information

Molecular profiling in confirming the diagnosis of early myelodysplastic syndrome

Molecular profiling in confirming the diagnosis of early myelodysplastic syndrome Molecular profiling of early MDS Hematopathology - March 2016 Article Molecular profiling in confirming the diagnosis of early myelodysplastic syndrome Maya Thangavelu 1,*, Ryan Olson 2, Li Li 2, Wanlong

More information

Heterogeneity of Abnormal RUNX1 Leading to Clinicopathological Variations in Childhood B-Lymphoblastic Leukemia

Heterogeneity of Abnormal RUNX1 Leading to Clinicopathological Variations in Childhood B-Lymphoblastic Leukemia Heterogeneity of Abnormal RUNX1 Leading to Clinicopathological Variations in Childhood B-Lymphoblastic Leukemia Xiayuan Liang, MD Department of Pathology University of Colorado School of Medicine Children

More information

Leukemia Research Foundation Scientific Research Grant Recipients

Leukemia Research Foundation Scientific Research Grant Recipients Page 1 of 5 NEW INVESTIGATOR AWARDS Richard Dahl, Ph.D. University of New Mexico $75,000.00 - Ets and Gfi1 family interactions in T cell development T and B cells comprise the adaptive arm of the vertebrate

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive LL - LL-ROHINI (NATIONAL REFERENCE 135091533 Age 28 Years Gender Male 1/9/2017 120000AM 1/9/2017 105415AM 4/9/2017 23858M Ref By Final LEUKEMIA DIAGNOSTIC COMREHENSIVE ROFILE, ANY 6 MARKERS t (1;19) (q23

More information

ADVANCES IN CHILDHOOD ACUTE LEUKEMIAS : GENERAL OVERVIEW

ADVANCES IN CHILDHOOD ACUTE LEUKEMIAS : GENERAL OVERVIEW ADVANCES IN CHILDHOOD ACUTE LEUKEMIAS : GENERAL OVERVIEW Danièle SOMMELET European Scientific Seminar Luxemburg, 3.11.2009 1 Definition of acute leukemias Malignant process coming from lymphoid (85 %)

More information

The RUNX1 Research Program Quarterly Newsletter

The RUNX1 Research Program Quarterly Newsletter The RUNX1 Research Program Quarterly Newsletter Dear Friends, In this newsletter, you will find an update on our joint grant offering with the Leukemia and Lymphoma Society (LLS). Grants have been awarded

More information

Structure and Function of Fusion Gene Products in. Childhood Acute Leukemia

Structure and Function of Fusion Gene Products in. Childhood Acute Leukemia Structure and Function of Fusion Gene Products in Childhood Acute Leukemia Chromosomal Translocations Chr. 12 Chr. 21 der(12) der(21) A.T. Look, Science 278 (1997) Distribution Childhood ALL TEL-AML1 t(12;21)

More information

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED Acute Myeloid Leukemia Firstly we ll start with this introduction then enter the title of the lecture, so be ready and let s begin by the name of Allah : We

More information

Haematopoietic stem cells

Haematopoietic stem cells Haematopoietic stem cells Neil P. Rodrigues, DPhil NIH Centre for Biomedical Research Excellence in Stem Cell Biology Boston University School of Medicine neil.rodrigues@imm.ox.ac.uk Haematopoiesis: An

More information

Myelodysplastic syndrome (MDS) & Myeloproliferative neoplasms

Myelodysplastic syndrome (MDS) & Myeloproliferative neoplasms Myelodysplastic syndrome (MDS) & Myeloproliferative neoplasms Myelodysplastic syndrome (MDS) A multipotent stem cell that can differentiate into any of the myeloid lineage cells (RBCs, granulocytes, megakaryocytes)

More information

«Adverse Prognosis» Acute Myeloid Leukemia

«Adverse Prognosis» Acute Myeloid Leukemia 23. Fortbildungskurs Lausanne, 11.11.2017 «Adverse Prognosis» Acute Myeloid Leukemia Markus G. Manz Zentrum für Hämatologie und Onkologie UniversitätsSpital Zürich Content AML Update on current definition

More information

Novità nelle MDS. Matteo G Della Porta. Cancer Center IRCCS Humanitas Research Hospital & Humanitas University Rozzano Milano, Italy

Novità nelle MDS. Matteo G Della Porta. Cancer Center IRCCS Humanitas Research Hospital & Humanitas University Rozzano Milano, Italy Novità nelle MDS Matteo G Della Porta Cancer Center IRCCS Humanitas Research Hospital & Humanitas University Rozzano Milano, Italy matteo.della_porta@hunimed.eu Outline ARCH Predictive value of somatic

More information

Development and Characterization of Tool Compounds Targeting the Runt Domain s interaction With Cbfβ

Development and Characterization of Tool Compounds Targeting the Runt Domain s interaction With Cbfβ University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 1-1-215 Development and Characterization of Tool Compounds Targeting the Runt Domain s interaction With Cbfβ Zaw Min Oo

More information

Next Generation Sequencing Panel for Familial Myelodysplastic Syndrome/Acute Leukemia (MDS/AL)

Next Generation Sequencing Panel for Familial Myelodysplastic Syndrome/Acute Leukemia (MDS/AL) Next Generation Sequencing Panel for Familial Myelodysplastic Syndrome/Acute Leukemia (MDS/AL) Clinical Features and Molecular Genetics: The familial occurrence of myelodysplastic syndrome (MDS) and/or

More information

Concomitant WT1 mutations predicted poor prognosis in CEBPA double-mutated acute myeloid leukemia

Concomitant WT1 mutations predicted poor prognosis in CEBPA double-mutated acute myeloid leukemia Concomitant WT1 mutations predicted poor prognosis in CEBPA double-mutated acute myeloid leukemia Feng-Ming Tien, Hsin-An Hou, Jih-Luh Tang, Yuan-Yeh Kuo, Chien-Yuan Chen, Cheng-Hong Tsai, Ming Yao, Chi-Cheng

More information

Review Article The Epigenetic Landscape of Acute Myeloid Leukemia

Review Article The Epigenetic Landscape of Acute Myeloid Leukemia Advances in Hematology, Article ID 103175, 15 pages http://dx.doi.org/10.1155/2014/103175 Review Article The Epigenetic Landscape of Acute Myeloid Leukemia Emma Conway O Brien, Steven Prideaux, and Timothy

More information

News Release. Title Integrated molecular profiling of juvenile myelomonocytic leukemia

News Release. Title Integrated molecular profiling of juvenile myelomonocytic leukemia News Release Title Integrated molecular profiling of juvenile myelomonocytic leukemia Key Points We identified ALK/ROS1 tyrosine kinase fusions (DCTN1-ALK, RANBP2-ALK, and TBL1XR1-ROS1) in patients with

More information

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013 Molecular Markers in Hematologic Malignancy: Ways to locate the needle in the haystack. Objectives Review the types of testing for hematologic malignancies Understand rationale for molecular testing Marcie

More information

MicroRNAs: the primary cause or a determinant of progression in leukemia?

MicroRNAs: the primary cause or a determinant of progression in leukemia? MicroRNAs: the primary cause or a determinant of progression in leukemia? The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier/Additional Provider TEST DISEASE/CONDITION POPULATION TRIAD Submitting laboratory: Birmingham RGC Approved: September 2012

More information

Personalized Therapy for Acute Myeloid Leukemia. Patrick Stiff MD Loyola University Medical Center

Personalized Therapy for Acute Myeloid Leukemia. Patrick Stiff MD Loyola University Medical Center Personalized Therapy for Acute Myeloid Leukemia Patrick Stiff MD Loyola University Medical Center 708-327-3216 Major groups of Mutations in AML Targets for AML: Is this Achievable? Chronic Myeloid Leukemia:

More information

SUPPLEMENTARY INFORMATION doi: /nature12026

SUPPLEMENTARY INFORMATION doi: /nature12026 doi:1.138/nature1226 a 4 35 3 MCSF level (pg/ml) 25 2 15 1 5 1h3 3h 5h 7h 15h 24h b MPP (CD135 KSL) HSC (CD34 CD15 KSLF) c % 4 ** LPS 3 GFP pos cells 2 PU.1 GFP LPS 1 FSCA Ctl NI 24h LPS Sup.Fig.1 Effect

More information

Session 6: Integration of epigenetic data. Peter J Park Department of Biomedical Informatics Harvard Medical School July 18-19, 2016

Session 6: Integration of epigenetic data. Peter J Park Department of Biomedical Informatics Harvard Medical School July 18-19, 2016 Session 6: Integration of epigenetic data Peter J Park Department of Biomedical Informatics Harvard Medical School July 18-19, 2016 Utilizing complimentary datasets Frequent mutations in chromatin regulators

More information

GENETIC ANALYSIS OF FAMILIAL MYELOID DISORDERS. PhD Thesis. Dr. Péter Attila Király. Semmelweis University Doctoral School of Pathological Sciences

GENETIC ANALYSIS OF FAMILIAL MYELOID DISORDERS. PhD Thesis. Dr. Péter Attila Király. Semmelweis University Doctoral School of Pathological Sciences GENETIC ANALYSIS OF FAMILIAL MYELOID DISORDERS PhD Thesis Dr. Semmelweis University Doctoral School of Pathological Sciences Supervisor: Csaba Bödör, PhD Official reviewers: Laura Horváth, MD, PhD Alizadeh

More information

MDS 101. What is bone marrow? Myelodysplastic Syndrome: Let s build a definition. Dysplastic? Syndrome? 5/22/2014. What does bone marrow do?

MDS 101. What is bone marrow? Myelodysplastic Syndrome: Let s build a definition. Dysplastic? Syndrome? 5/22/2014. What does bone marrow do? 101 May 17, 2014 Myelodysplastic Syndrome: Let s build a definition Myelo bone marrow Gail J. Roboz, M.D. Director, Leukemia Program Associate Professor of Medicine What is bone marrow? What does bone

More information

Clinical Policy: Donor Lymphocyte Infusion

Clinical Policy: Donor Lymphocyte Infusion Clinical Policy: Reference Number: PA.CP.MP.101 Effective Date: 01/18 Last Review Date: 11/16 Coding Implications Revision Log This policy describes the medical necessity requirements for a donor lymphocyte

More information

INHERITED THROMBOCYTOPAENIAS: BEYOND THE BLEEDING

INHERITED THROMBOCYTOPAENIAS: BEYOND THE BLEEDING INHERITED THROMBOCYTOPAENIAS: BEYOND THE BLEEDING *Patrizia Noris Department of Internal Medicine, IRCCS San Matteo Foundation; University of Pavia, Pavia, Italy *Correspondence to p.noris@smatteo.pv.it

More information

How do novel molecular genetic markers influence treatment decisions in acute myeloid leukemia?

How do novel molecular genetic markers influence treatment decisions in acute myeloid leukemia? ACUTE MYELOID LEUKEMIA: NEWLY DISCOVERED GENES, SCREENS (FOR MINIMAL RESIDUAL DISEASE), AND THERAPEUTIC MEANS How do novel molecular genetic markers influence treatment decisions in acute myeloid leukemia?

More information

Corrigenda. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run

Corrigenda. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run Corrigenda WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run In addition to corrections of minor typographical errors, corrections

More information

Examining Genetics and Genomics of Acute Myeloid Leukemia in 2017

Examining Genetics and Genomics of Acute Myeloid Leukemia in 2017 Examining Genetics and Genomics of Acute Myeloid Leukemia in 2017 Elli Papaemmanuil, PhD Memorial Sloan Kettering Cancer Center New York, New York, United States Today s Talk Cancer genome introduction

More information

When Cancer Looks Like Something Else: How Does Mutational Profiling Inform the Diagnosis of Myelodysplasia?

When Cancer Looks Like Something Else: How Does Mutational Profiling Inform the Diagnosis of Myelodysplasia? Transcript Details This is a transcript of a continuing medical education (CME) activity accessible on the ReachMD network. Additional media formats for the activity and full activity details (including

More information

Section D: The Molecular Biology of Cancer

Section D: The Molecular Biology of Cancer CHAPTER 19 THE ORGANIZATION AND CONTROL OF EUKARYOTIC GENOMES Section D: The Molecular Biology of Cancer 1. Cancer results from genetic changes that affect the cell cycle 2. Oncogene proteins and faulty

More information

The role of DNMT3A and HOXA9 hypomethylation in acute myeloid leukemia (AML)

The role of DNMT3A and HOXA9 hypomethylation in acute myeloid leukemia (AML) Campbell Drohan BIOL 463 December 2016 The role of DNMT3A and HOXA9 hypomethylation in acute myeloid leukemia (AML) Introduction Epigenetic modifications of DNA and histones are key to gene regulation

More information

Juan Ma 1, Jennifer Dunlap 2, Lisong Shen 1, Guang Fan 2 1

Juan Ma 1, Jennifer Dunlap 2, Lisong Shen 1, Guang Fan 2 1 Juan Ma 1, Jennifer Dunlap 2, Lisong Shen 1, Guang Fan 2 1 Xin Hua Hospital, Shanghai, China 2 Oregon Health & Science University, Portland, OR, United States AML is a hematopoietic neoplasms characterized

More information

Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases. Dr. M. Sabloff October 16 th 2010

Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases. Dr. M. Sabloff October 16 th 2010 Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases Dr. M. Sabloff October 16 th 2010 Normal Marrow knee joint white is articular cartilage Adjacent to this is the red marrow

More information

Fluorescence in-situ Hybridization (FISH) ETO(RUNX1T1)/AML1(RUNX1) or t(8;21)(q21.3;q22)

Fluorescence in-situ Hybridization (FISH) ETO(RUNX1T1)/AML1(RUNX1) or t(8;21)(q21.3;q22) PML/RARA t(15;17) Translocation Assay Result : nuc ish(pml 2)(RARA 2)[200] : 200/200(100%) interphase nuclei show normal 2O 2G signals for PML/RARA : is Negative for t(15;17)(q22;q21.1) 2 Orange 2 Green

More information

REVIEW. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis

REVIEW. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis DOI:10.22034/APJCP.2018.19.2.325 REVIEW Editorial Process: Submission:10/03/2017 Acceptance:12/16/2017 Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis Mahdi Jalili 1,2, Marjan Yaghmaie 1, Mohammad

More information

The role of mutations in epigenetic regulators in myeloid malignancies

The role of mutations in epigenetic regulators in myeloid malignancies Brittany A. Woods Ross L. Levine The role of mutations in epigenetic regulators in myeloid malignancies Authors addresses Brittany A. Woods 1,2, Ross L. Levine 1,2,3 1 Louis V. Gerstner Sloan Kettering

More information

The Hierarchical Organization of Normal and Malignant Hematopoiesis

The Hierarchical Organization of Normal and Malignant Hematopoiesis The Hierarchical Organization of Normal and Malignant Hematopoiesis NORMAL Hematopoie2c Stem Cell (HSC) Leukemia Stem Cells (LSC) MPP MLP CMP Leukemic Progenitors MEP GMP B/NK ETP Leukemic Blasts Erythrocytes

More information

Peking University People's Hospital, Peking University Institute of Hematology

Peking University People's Hospital, Peking University Institute of Hematology Qian Jiang, M.D. Peking University People's Hospital, Peking University Institute of Hematology No. 11 Xizhimen South Street, Beijing, 100044, China. Phone number: 86-10-66583802 Mobile: 86-13611115100

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

* University of Pennsylvania +Kaiser Permanente, California

* University of Pennsylvania +Kaiser Permanente, California SH2017-0144: Differential response to FLT3 inhibition (using quizartinib/ac220) in acute myeloid leukemia is affected by baseline molecular genetics and cytogenetics Siddharth Bhattacharyya, MD*, Grant

More information

APPROACH TO MYELODYSPLASTIC SYNDROMES IN THE ERA OF PRECISION MEDICINE

APPROACH TO MYELODYSPLASTIC SYNDROMES IN THE ERA OF PRECISION MEDICINE APPROACH TO MYELODYSPLASTIC SYNDROMES IN THE ERA OF PRECISION MEDICINE Rashmi Kanagal-Shamanna, MD Assistant Professor Hematopathology & Molecular Diagnostics Department of Hematopathology The University

More information

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz Cancer and Oncogenes Bioscience in the 21 st Century Linda Lowe-Krentz December 1, 2010 Just a Few Numbers Becoming Cancer Genetic Defects Drugs Our friends and family 25 More mutations as 20 you get older

More information

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified?

Activation of cellular proto-oncogenes to oncogenes. How was active Ras identified? Dominant Acting Oncogenes Eugene E. Marcantonio, M.D. Ph.D. Oncogenes are altered forms of normal cellular genes called proto-oncogenes that are involved in pathways regulating cell growth, differentiation,

More information

Myelodyplastic Syndromes Paul J. Shami, M.D.

Myelodyplastic Syndromes Paul J. Shami, M.D. Myelodyplastic Syndromes Paul J. Shami, M.D. Professor of Hematology, University of Utah Member, Huntsman Cancer Institute Objectives Define Myelodysplastic Syndromes (MDS) Explain how MDS are diagnosed

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

Molecular Markers. Marcie Riches, MD, MS Associate Professor University of North Carolina Scientific Director, Infection and Immune Reconstitution WC

Molecular Markers. Marcie Riches, MD, MS Associate Professor University of North Carolina Scientific Director, Infection and Immune Reconstitution WC Molecular Markers Marcie Riches, MD, MS Associate Professor University of North Carolina Scientific Director, Infection and Immune Reconstitution WC Overview Testing methods Rationale for molecular testing

More information

Epigene.cs: What is it and how it effects our health? Overview. Dr. Bill Stanford, PhD OFawa Hospital Research Ins.tute University of OFawa

Epigene.cs: What is it and how it effects our health? Overview. Dr. Bill Stanford, PhD OFawa Hospital Research Ins.tute University of OFawa Epigene.cs: What is it and how it effects our health? Dr. Bill Stanford, PhD OFawa Hospital Research Ins.tute University of OFawa Overview Basic Background Epigene.cs in general Epigene.cs in cancer Epigene.cs

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation

Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation Hematopathology / CD7 Expression and FLT3/ITD Mutation in AML Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation Veronica Rausei-Mills,

More information

Addressing the challenges of genomic characterization of hematologic malignancies using microarrays

Addressing the challenges of genomic characterization of hematologic malignancies using microarrays Addressing the challenges of genomic characterization of hematologic malignancies using microarrays Sarah South, PhD, FACMG Medical Director, ARUP Laboratories Department of Pediatrics and Pathology University

More information

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment Overview: Conducting the Genetic Orchestra Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development

More information

Therapeutic and Prognostic Role of Epigenetic Abnormalities in MDS. Stephen D. Nimer, MD Sylvester Comprehensive Cancer Center December 5, 2014

Therapeutic and Prognostic Role of Epigenetic Abnormalities in MDS. Stephen D. Nimer, MD Sylvester Comprehensive Cancer Center December 5, 2014 Therapeutic and Prognostic Role of Epigenetic Abnormalities in MDS Stephen D. Nimer, MD Sylvester Comprehensive Cancer Center December 5, 2014 DISCLOSURE I have no relevant financial relationships to disclose.

More information

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Evolving Targeted Management of Acute Myeloid Leukemia

Evolving Targeted Management of Acute Myeloid Leukemia Evolving Targeted Management of Acute Myeloid Leukemia Jessica Altman, MD Robert H. Lurie Comprehensive Cancer Center of Northwestern University Learning Objectives Identify which mutations should be assessed

More information

Epigenetics DNA methylation. Biosciences 741: Genomics Fall, 2013 Week 13. DNA Methylation

Epigenetics DNA methylation. Biosciences 741: Genomics Fall, 2013 Week 13. DNA Methylation Epigenetics DNA methylation Biosciences 741: Genomics Fall, 2013 Week 13 DNA Methylation Most methylated cytosines are found in the dinucleotide sequence CG, denoted mcpg. The restriction enzyme HpaII

More information

Molecular Hematopathology Leukemias I. January 14, 2005

Molecular Hematopathology Leukemias I. January 14, 2005 Molecular Hematopathology Leukemias I January 14, 2005 Chronic Myelogenous Leukemia Diagnosis requires presence of Philadelphia chromosome t(9;22)(q34;q11) translocation BCR-ABL is the result BCR on chr

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Next Generation Sequencing in Haematological Malignancy: A European Perspective. Wolfgang Kern, Munich Leukemia Laboratory

Next Generation Sequencing in Haematological Malignancy: A European Perspective. Wolfgang Kern, Munich Leukemia Laboratory Next Generation Sequencing in Haematological Malignancy: A European Perspective Wolfgang Kern, Munich Leukemia Laboratory Diagnostic Methods Cytomorphology Cytogenetics Immunophenotype Histology FISH Molecular

More information

HEMATOLOGIC MALIGNANCIES BIOLOGY

HEMATOLOGIC MALIGNANCIES BIOLOGY HEMATOLOGIC MALIGNANCIES BIOLOGY Failure of terminal differentiation Failure of differentiated cells to undergo apoptosis Failure to control growth Neoplastic stem cell FAILURE OF TERMINAL DIFFERENTIATION

More information

Recommended Timing for Transplant Consultation

Recommended Timing for Transplant Consultation REFERRAL GUIDELINES Recommended Timing for Transplant Consultation Published jointly by the National Marrow Donor Program /Be The Match and the American Society for Blood and Marrow Transplantation BeTheMatchClinical.org

More information

NEWS FROM. Roswell Park s LEUKEMIA SERVICE

NEWS FROM. Roswell Park s LEUKEMIA SERVICE NEWS FROM Roswell Park s LEUKEMIA SERVICE MEET THE LEUKEMIA TEAM PATHOLOGY The Leukemia Service at Roswell Park Cancer Institute () is dedicated to quality patient care, innovative research, and the development

More information

N Engl J Med Volume 373(12): September 17, 2015

N Engl J Med Volume 373(12): September 17, 2015 Review Article Acute Myeloid Leukemia Hartmut Döhner, M.D., Daniel J. Weisdorf, M.D., and Clara D. Bloomfield, M.D. N Engl J Med Volume 373(12):1136-1152 September 17, 2015 Acute Myeloid Leukemia Most

More information

of TERT, MLL4, CCNE1, SENP5, and ROCK1 on tumor development were discussed.

of TERT, MLL4, CCNE1, SENP5, and ROCK1 on tumor development were discussed. Supplementary Note The potential association and implications of HBV integration at known and putative cancer genes of TERT, MLL4, CCNE1, SENP5, and ROCK1 on tumor development were discussed. Human telomerase

More information

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON ... Epigenetics Lyle Armstrong f'ci Garland Science UJ Taylor & Francis Group NEW YORK AND LONDON Contents CHAPTER 1 INTRODUCTION TO 3.2 CHROMATIN ARCHITECTURE 21 THE STUDY OF EPIGENETICS 1.1 THE CORE

More information

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz October 11, 2013

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz October 11, 2013 Cancer and Oncogenes Bioscience in the 21 st Century Linda Lowe-Krentz October 11, 2013 Just a Few Numbers Becoming Cancer Genetic Defects Drugs Our friends and family 200 180 160 140 120 100 80 60 40

More information

Overview of Cancer. Mylene Freires Advanced Nurse Practitioner, Haematology

Overview of Cancer. Mylene Freires Advanced Nurse Practitioner, Haematology Overview of Cancer Mylene Freires Advanced Nurse Practitioner, Haematology Aim of the Presentation Review basic concepts of cancer Gain some understanding of the socio-economic impact of cancer Order of

More information

Management of Myelodysplastic Syndromes

Management of Myelodysplastic Syndromes Management of Myelodysplastic Syndromes Peter L. Greenberg, MD Stanford Cancer Institute Myelodysplastic Syndromes: Clinical & Molecular Advances for Disease Classification and Prognostication MDSs: A

More information

TARGETED THERAPY FOR CHILDHOOD CANCERS

TARGETED THERAPY FOR CHILDHOOD CANCERS TARGETED THERAPY FOR CHILDHOOD CANCERS AZIZA SHAD, MD AMEY DISTINGUISHED PROFESSOR OF PEDIATRIC HEMATOLOGY ONCOLOGY, BLOOD AND MARROW TRANSPLANTATION LOMBARDI CANCER CENTER GEORGETOWN UNIVERSITY HOSPITAL

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive Lab No 135091548 Age 35 Years Gender Female 1/9/2017 120000AM 1/9/2017 103420AM 4/9/2017 23753M Ref By Dr UNKNWON Final Test Results Units Bio Ref Interval LEUKEMIA DIAGNOSTIC COMREHENSIVE ROFILE 3 t (1;19)

More information

Epigenetics: Basic Principals and role in health and disease

Epigenetics: Basic Principals and role in health and disease Epigenetics: Basic Principals and role in health and disease Cambridge Masterclass Workshop on Epigenetics in GI Health and Disease 3 rd September 2013 Matt Zilbauer Overview Basic principals of Epigenetics

More information

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Carlos E. Bueso-Ramos, M.D., Ph.D Department of Hematopathology The University of Texas M.

More information

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17

Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 Agro/Ansc/Bio/Gene/Hort 305 Fall, 2017 MEDICAL GENETICS AND CANCER Chpt 24, Genetics by Brooker (lecture outline) #17 INTRODUCTION - Our genes underlie every aspect of human health, both in function and

More information

Scientific report: Delineating cellular stages and regulation of human NK cell development to improve NK cell-based therapy for cancer (Dnr )

Scientific report: Delineating cellular stages and regulation of human NK cell development to improve NK cell-based therapy for cancer (Dnr ) Scientific report: Delineating cellular stages and regulation of human NK cell development to improve NK cell-based therapy for cancer (Dnr 130259) The main goal of this project focuses on establishing

More information

Yue Wei 1, Rui Chen 2, Carlos E. Bueso-Ramos 3, Hui Yang 1, and Guillermo Garcia-Manero 1

Yue Wei 1, Rui Chen 2, Carlos E. Bueso-Ramos 3, Hui Yang 1, and Guillermo Garcia-Manero 1 Genome-wide CHIP-Seq Analysis of Histone Methylation Reveals Modulators of NF- B Signaling And the Histone Demethylase JMJD3 Implicated in Myelodysplastic Syndrome Yue Wei 1, Rui Chen 2, Carlos E. Bueso-Ramos

More information

Classification and risk assessment in AML: integrating cytogenetics and molecular profiling

Classification and risk assessment in AML: integrating cytogenetics and molecular profiling ACUTE MYELOID LEUKEMIA: HOW CAN WE IMPROVE UPON STANDARD THERAPY? Classification and risk assessment in AML: integrating cytogenetics and molecular profiling Matahi Moarii and Elli Papaemmanuil Department

More information

Treatment of low risk MDS

Treatment of low risk MDS Treatment of low risk MDS Matteo G Della Porta Cancer Center IRCCS Humanitas Research Hospital & Humanitas University Rozzano Milano, Italy matteo.della_porta@hunimed.eu International Prognostic Scoring

More information

DISCLOSURE Luca Malcovati, MD. No financial relationships to disclose

DISCLOSURE Luca Malcovati, MD. No financial relationships to disclose ICUS, CCUS and CHIP Luca Malcovati, MD Department of Molecular Medicine, University of Pavia Medical School, & Department of Hematology Oncology, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy DISCLOSURE

More information

Myelodysplastic syndrome is a highly heterogeneous hematopoietic

Myelodysplastic syndrome is a highly heterogeneous hematopoietic SHORT COMMUNICATION Clinical Characteristics and Prognosis of 48 Patients with Mutations in Myelodysplastic Syndrome Yulu Tian #, Ruijuan Zhang #, Linhua Yang* Yang L. Clinical Characteristics and Prognosis

More information

Myeloproliferative Disorders - D Savage - 9 Jan 2002

Myeloproliferative Disorders - D Savage - 9 Jan 2002 Disease Usual phenotype acute leukemia precursor chronic leukemia low grade lymphoma myeloma differentiated Total WBC > 60 leukemoid reaction acute leukemia Blast Pro Myel Meta Band Seg Lymph 0 0 0 2

More information

Mutational Impact on Diagnostic and Prognostic Evaluation of MDS

Mutational Impact on Diagnostic and Prognostic Evaluation of MDS Mutational Impact on Diagnostic and Prognostic Evaluation of MDS Elsa Bernard, PhD Papaemmanuil Lab, Computational Oncology, MSKCC MDS Foundation ASH 2018 Symposium Disclosure Research funds provided by

More information

Case Presentation. Pei Lin, M. D.

Case Presentation. Pei Lin, M. D. Case Presentation Pei Lin, M. D. History A 26 yr man reports a history of numerous skin and upper respiratory infections as a child, including lymphadenitis and meningitis. In March 2013 during a preoperative

More information

Molecular Pathogenesis Human Leukemia. Adolfo A. Ferrando, Institute for Cancer Genetics Columbia University

Molecular Pathogenesis Human Leukemia. Adolfo A. Ferrando, Institute for Cancer Genetics Columbia University Molecular Pathogenesis Human Leukemia Adolfo A. Ferrando, Institute for Cancer Genetics Columbia University The Hemopoietic System Pro-B (cig - ) Pre-B (cig + ) Lymph. B (sig + ) Plasma cell Lymphoid Progenitor

More information

Genomic Methods in Cancer Epigenetic Dysregulation

Genomic Methods in Cancer Epigenetic Dysregulation Genomic Methods in Cancer Epigenetic Dysregulation Clara, Lyon 2018 Jacek Majewski, Associate Professor Department of Human Genetics, McGill University Montreal, Canada A few words about my lab Genomics

More information

Molecular Advances in Hematopathology

Molecular Advances in Hematopathology Molecular Advances in Hematopathology HOW MOLECULAR METHODS HAVE CHANGED MY PRACTICE Objectives Understand the importance of cytogenetic/molecular studies in hematolymphoid diseases Know some of the important

More information

Epigenetics and Human Disease

Epigenetics and Human Disease Epigenetics and Human Disease May 28, 2014 1 Angelman Syndrome & Prader-Willi Syndrome Sister Syndromes Angelman Syndrome ~1/20,000 births happy disposition smile often bouts of laughter minimal verbal

More information

Let s Look at Our Blood

Let s Look at Our Blood Let s Look at Our Blood Casey O Connell, MD Associate Professor of Clinical Medicine Jane Anne Nohl Division of Hematology Keck School of Medicine of USC 10,000,000,000 WBCs/day Bone Marrow: The Blood

More information