Helical tomotherapy-based hypofractionated radiotherapy for prostate cancer: A report on the procedure, dosimetry and preliminary clinical outcome

Size: px
Start display at page:

Download "Helical tomotherapy-based hypofractionated radiotherapy for prostate cancer: A report on the procedure, dosimetry and preliminary clinical outcome"

Transcription

1 [Downloaded free from on Monday, June 17, 2013, IP: ] Click here to download free Android application for this journa Original Article Helical tomotherapy-based hypofractionated radiotherapy for prostate cancer: A report on the procedure, dosimetry and preliminary clinical outcome ABSTRACT Context: Hypofractionated intensity-modulated radiotherapy (IMRT) under image guidance using helical tomotherapy for prostate cancer improves therapeutic ratio. Aims: To report on clinical and dosimetric experience using hypofractionated helical tomotherapy for prostate cancer. Settings and Design: Prospective consecutive case series as feasibility study approved by Institutional Review Board (IRB) ( ). Materials and Methods: The staging work-up, risk stratification, simulation, contouring, planning, online matching and treatment delivery methodology are described in detail. The doses to (prostate and nodal) PTV and organs at risk (bladder, rectum, bowel and femoral heads) are described. The audit of online matching was used to determine set-up errors, PTV margins and resultant translational vector. We also report the outcomes in terms of biochemical relapse-free survival and acute toxicity. Results: Fifty-three consecutive patients were included. The baseline PSA was 23 ng/ml ( ). The prostate BED3 ranged from Gy (a/b for prostate Gy) and nodal Gy. The required PTV margin by van Hark s formula for lateral, longitudinal and vertical axes were 11.30, 9.95 and mm, respectively with resultant vectors 3-15 mm. There was 7% to 8% chance of missing part of CTV in absence of image guidance. There was only one patient requiring premature conclusion at 45 Gy due grade 3 genitourinary toxicity. At median follow-up of 23 months, biochemical relapse-free survival rate is 95.2%. Conclusions: Hypofractionated IMRT under image guidance using helical tomotherapy for prostate cancer is feasible with acceptable acute toxicity and may be advantageous in high throughput centers. KEY WORDS: Helical tomotherapy, hypofractionated, intensity-modulated radiotherapy, prostate cancer INTRODUCTION Radiotherapy for prostate cancer is in an exciting and challenging era. It has benefitted from advances in imaging and technology for both diagnostic and therapeutic improvement. Evidence for improvement in therapeutic ratio over the last decade has come in the form of randomized trials. [1-5] Use of conformal radiotherapy techniques has shown superiority over conventional radiotherapy methods in reducing late rectal toxicity, which remains the dose-limiting organ at risk in prostate external beam radiotherapy. [6-8] A number of randomized trials have shown to improve the control of prostate cancer using higher doses as compared to conventional doses using prostate-speciûc antigen (PSA) as a surrogate end point. These trials have shown an improvement in biochemical control rates between 6% and 19% by raising the radiation doses from Gy to Gy. Dose Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2 escalation has however come at a cost of significant increase in clinically relevant late rectal toxicity. [9,10] Intensity-modulated radiotherapy (IMRT) can offer the potential to reduce rectal toxicity. [11] This has been shown in a prospective, but not randomized, series of over 770 patients treated at the Memorial Sloan Kettering Cancer Center. [6] Traditionally, the a/b ratio (where a and b are the linear and quadratic components, respectively, of the cell kill) of 10 Gy is used to calculate the biologically equivalent dose for acute toxicity and tumor response. Recently several investigators have alluded to the fact that prostate cancer may have a high fractionation sensitivity due to a low a/b ratio of around [12] On the other hand, it has been suggested that the rectum, which is the dose-limiting organ in prostate radiotherapy, has a/b ratio of between 3.6 and Vedang Murthy, Rahul Krishnatry, Suman Mallik, Zubin Master, Umesh Mahantshetty, Shyamkishore Shrivastava Department of Radiation Oncology, Tata Memorial Hospital, Mumbai, India For correspondence: Dr. Vedang Murthy, Department of Radiation Oncology, Advanced Center for Treatment Research and Education in Cancer (ACTREC), Sector 22, Kharghar, Navi Mumbai, India. vedangmurthy@gmail. com Access this article online Website: DOI: / PMID: ***** Quick Response Code: 253

2 6.0. [12] If this difference is truly present, there is potential to escalate the total biological doses by using hypofractionated schedules with acceptable rectal toxicity and shorter overall treatment duration. Using large dose fractions with tight margins as used in IMRT raises the risk of under dosage of the target with every fraction due to potential internal prostate motion. The prostate moves internally in response to variations in rectal and, to some extent, bladder filling. [13] Solutions to correct the position of the gland before treatment include ultrasound guidance, fiducial marker implantation and daily computed tomography (CT) imaging. [14-16] Helical tomotherapy (HT) is one such technology platform to deliver IMRT with 3D image guidance capability. It uses a 6-MV linear accelerator mounted on a slip-ring CT gantry that delivers radiation helically, using a modulated fan beam. The fan beam is modulated as a function of the gantry angle by a 64-leaf binary MLC. Due to the large number of beam angles used per gantry rotation (a 360º circle, which is modulated at 7º intervals) and the small open-close time of the MLC leaves (20 ms to open or close), a very high level of intensity modulation can be achieved. An onboard CT detector is used for acquiring megavoltage CT (MVCT) images, giving the system image guidance capabilities. This is a report on the clinical and dosimetric experience for patients with prostate cancer treated using hypofractionated regimen on HT. MATERIALS AND METHODS The primary objective of the current report was to investigate the feasibility of delivering hypofractionated IMRT with MVCT-based image guidance and to document dosimetric, treatment delivery and acute toxicity parameters. Patients were treated as part of a prospective feasibility study approved by the Institutional Review Board (IRB) after written informed consent. The study cohort included 53 patients of adenocarcinoma of the prostate, registered at the centre from November 2007 to April Patient evaluation included a detailed history and complete physical examination. Baseline blood studies included baseline complete blood counts and standard biochemistry tests. A PSA level was obtained for each patient within 6 weeks of registration. Staging investigations included a bone scan, and CT scan of the chest abdomen and pelvis. An MRI of the pelvis was also done in case the seminal vesicles were not clinically involved. Patients with involvement of SV on MRI were treated as T3b. All patients had newly diagnosed low, intermediate or high risk prostatic adenocarcinoma. Low risk was defined as PSA <10 ng/ml or Gleason score 6; intermediate risk was defined as PSA or Gleason score 7 and high risk group was defined as ct3b-t4, PSA > 20 or Gleason score 8-10 based on the Roche formula. [17] None of the patients had received any radiotherapy prior to accrual or had any evidence of distant metastasis. Hormone therapy for intermediate and high risk patients was given in the form of LHRH analog and an antiandrogen in the first 3-4 weeks to prevent testosterone flare. The LHRH analog was continued during radiotherapy and later for a period of 6 months to 24 months depending on the risk grouping. The general characteristics of the patients are shown in Table 1. Radiotherapy planning preparation and contouring have been previously described. [18] Briefly, the following steps were performed consistently for all patients and target/oar delineation was approved by a single physician (VM). Patient preparation Bowel preparation: Specific steps such as use of laxatives or self-administered enema were not used for bowel preparation. Patients were however instructed to empty their bowel before the planning CT scan and each treatment. Bladder filling protocol: We followed a predefined bladder filling protocol to achieve a comfortably full bladder and all patients were asked to void completely and to drink 500 ml Table 1: Patient characteristics Age (years) 65.2 (mean) (SD 7.69) 67 (median) (range) Symptom duration (months) 8 (median), 13 (mean) PSA (ng/ml) At presentation 23 (median), 1.60 to (range) Last follow-up 0.11 (median), to (range) Gleason s score Number (%) 6 9 (17%) 7 25 (47%) 8 11 (21%) 9 7 (13%) 10 1(2%) TNM stage Number T1c 2 T2a 4 T2b 11 T2c 4 T3a 9 T3b 23 N1 9 Risk group (RTOG) Number Low risk 1 Intermediate risk 8 High risk 44 Median duration of hormone therapy 9 months (among those who have finished) Median duration between hormone 3 months; 0-14 (ranges) therapy and RT starting Radiotherapy duration 38 days (median), 38 days (mean); 13 (SD) Median follow-up 23 months 254 Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2

3 of plain water 45 minutes prior to acquiring the CT scan. This protocol of bladder filling was followed daily during treatment to displace bowel from high dose regions and minimize displacement of prostate due to variable bladder filling. Patients were simulated in supine position with hands over chest and a knee rest in place. Three fiducial markers were placed over skin at laser intersections; one at symphysis pubis and two laterally at the lateral aspect of thighs. CT simulation was performed on a 4-slice CT scanner ( Somatom, Siemens, USA). Contrast-enhanced CT scans were taken from 1 st lumbar vertebra to 5 cm inferior to the ischial tuberosity, with a slice thickness of 3 mm. Laser marks were permanently tattooed for further setup during treatment and those were considered as setup points. Volume delineation was done on the Coherence Dosimetrist workstation (Ver , Siemens Medical Solutions, USA). For consistency, all the contours were checked and finalized by a single radiation oncologist (VM). For patients without clinical or radiological involvement of SV, the whole of prostate gland including any ECE and the base of seminal vesicles defined as the proximal 0.5 cm of the SV was delineated as the CTV. [19] The distal, uninvolved SV was included in the pelvic nodal volume as described below. For patients with SV involved by disease (T3b), entire prostate and whole of the seminal vesicles were included in the CTV. Although MRI coregistration was not done, the apex of prostate was identified carefully from the diagnostic MR images. A 3D margin of 7 mm was grown in all directions except the posterior rectal interface to where it was kept at 5 mm to generate the PTV. All except 8 patients received pelvic nodal irradiation in addition to the prostate and SV. The prophylactic lymph nodal delineations follow the pattern shown in the RTOG website. [20] Briefly, contouring of nodal CTV started from the level of bifurcation of common iliac vessels i.e. usually at L5-S1 junction. Contouring included the common iliac vessels for patients with the presence of gross nodal disease in the pelvis. Contour was drawn around the major vessels with margins of about 5 mm and then modified depending on the anatomical boundaries like bone, muscles and peritoneum. The external iliac contouring was stopped at the top level of the femoral head and the femorals were not contoured. The upper external iliac region delineation also included the lateral and medial pre-sacral nodal area from S1-3 with a thickness of 8-10 mm from the anterior sacral wall. The internal iliac lymph node contouring (including the obturator node) was stopped at the beginning of the obturator foramen. The caudal part of the volume included the distal part of the SV when it was uninvolved clinico-radiologically. In the two patients in whom there was radiological evidence of lymph node involvement, the node was contoured according to its pre-hormonal size and a PTV of 5 mm was grown. A 3D volumetric margin of 7 mm was grown all around the prophylactic and gross nodal CTV to generate the respective nodal PTV. A 1 cm thick shell volume was created 5 mm away and around the PTVs to control the dose spillage beyond the targets, improve dose conformity and have a sharper dose fall off. Among the organs at risk, rectum was contoured as a solid structure starting from the recto sigmoid flexure up to the bottom of ischial tuberosity. The rectal wall was not drawn separately. The entire bladder was contoured as a solid structure from the dome to the base including the wall. Bowel was represented by a single solid structure encompassing the peritoneal cavity and any loops of bowel in the pelvis. The upper extent was kept constant at 5 cm superior to the uppermost extent of the pelvic nodal PTV to have comparability of the dose volume data. Penile bulb was drawn carefully on the CT image below the pelvic diaphragm with reference to the MRI of pelvis. Both femoral heads were drawn within the acetabulum without including the neck of the femur. All image and volume datasets were transferred to the proprietary tomotherapy treatment planning station (version 2.2.4, Tomotherapy Inc., USA) for inverse planning. Planning was done as a single phase Simultaneous Integrated Boost (SIB) technique. The tomotherapy planning system uses a convolution-superposition algorithm for dose calculation and a least squares minimization function for optimization during inverse planning. Treatment planning parameters unique to tomotherapy are field width, pitch and modulation factor. The field width is the thickness of the fan beam selected for treatment. Most HT units are commissioned with three clinical field widths (1 cm, 2.5 cm and 5 cm). The pitch is the distance traveled by the couch per gantry rotation as a fraction of the field width. The modulation factor is the ratio between maximum and average beam intensity and determines the speed of gantry rotation, and all these parameters have been explained in depth in other publications. [21] For all cases, a field width of 2.5 cm, pitch of 0.3 and maximum modulation factor of was used during optimization. Due to the nature of the feasibility study and the associated initial learning curve, the prescribed dose to prostate and nodal volume varied progressively. However, the different regimen used had relatively equivalent biologic effective dose (BED) as shown in Table 2 (a/b for prostate 1.5 to 3 Gy; the 2 Gy equivalent doses calculated). The prostate BED3 ranged from 110 to 129.7Gy and for nodal region 72 to Gy. We started with usual conventional dose to prostate from 66 Gy/33# with 2 Gy per # and this was followed by dose escalation to 74 Gy/35#. As no grade 3 acute GI or GU toxicity were observed, we moved to hypofractionated schedules from 2.64 Gy, 2.5 Gy and 2.0 Gy per fraction with BED Gy , and 110 Gy 3 respectively. The pelvic CTV dose per fraction was also changed from 1.57 to 2.25 Gy per fraction accordingly [Table 2]. Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2 255

4 Table 2: Equivalent Dose Dose Number BED 10 BED 3 BED 1.5 EQD2 10 EQD2 3 EQD2 1.5 PTV prostate 74 Gy/37# Gy/20# Gy/25# Gy/ Gy/33# Gy/25# Gy/35# PTV node 50 Gy/25# Gy/20# Gy/37# Gy/35# Gy/33# The main focus during planning was achieving acceptable target coverage with optimal organ sparing. For PTV, the goal was to deliver more than 95% of the prescribed dose to 100% of the volume, while keeping dose homogeneity as high as possible. For the rectum and bladder, the planner started by reducing the dose in the high dose regions of the DVH then in the intermediate and low dose regions as far as possible while maintaining the PTV coverage. The constraints for OAR in hypofractionated regimen were appropriately scaled down based on the Linear Quadratic Model. [22] Due to the complexity of Tomotherapy treatments, a patient specific QA or a Delivery (DQA) is performed for every treatment plan (similar to IMRT QA for conventional IMRT). A DQA procedure involves delivering the treatment to a cheese phantom and assessing the dose delivered by various means. A DQA plan is prepared where the dose distribution delivered by the particular treatment plan is recalculated on the phantom. When the treatment procedure is delivered to the phantom, measurements are made within the phantom using film (either EDR2 or GAF Chromic film) and an ion chamber (A1SL). These measurements are compared with the values from the calculated dose distribution and should be within a tolerance of ± 3% (for film, the tolerance criteria used is a gamma value of 3% Dose difference and 3 mm distance-toagreement). A more detailed description of the DQA procedure has been previously reported. [22] After following the bladder filling protocol as described above, patients were set up on the treatment unit aligned with the tattoos and daily imaging was performed for setup verification, using the onboard MVCT. The MVCT images and the KVCT (kilo-voltage CT) planning images were first auto coregistered by using bone and soft tissue matching technique and a fine resolution setting. After automatic matching, fine manual adjustments were done using direct visualization of the prostate by the oncologist for all fractions. Translational shifts (in mm) were recorded as a combination of this 2 step process in lateral, longitudinal and vertical directions and rotational shifts (roll, pitch and yaw) were recorded in degrees. All fractions were corrected on the basis of final online matching. Patients were repositioned if any of the uncorrectable rotational error (i.e., pitch and yaw) were more than 2 degrees. Patients were followed up with clinical examination and PSA testing every three months for the first year along with toxicity assessment. Imaging was only done if clinically indicated. Biochemical failure was defined according to the revised ASTRO definition (Phoenix) of at least 2 ng/ml greater than the nadir PSA. [23] Statistical data was analyzed using Statistical Package for Social Sciences (SPSS) version Mean values are indicated with standard deviation or 95% confidence interval. Events were calculated from the date of diagnosis (HPR confirmation) to the day of event. Plans were assessed by dose volume histogram analyses and visual interpretation of isodoses in transverse, sagittal and coronal views. V 95% (percentage volume of target receiving at least 95% of the prescribed dose), V 105%, D 5% (dose in Gy, received by 5% of the target volume), D 95%, D 99% (representing underdosage within the target) and D 1% (representing areas of high dose in the target) were checked for target. Homogeneity index and conformity index were calculated for each plan. [24] Doses to critical structures were assessed by their mean dose and D 1%. Conformity Index = (V Target95% /V Tumor ) (V Target95% /V Body95% ) Homogeneity Index = (D5%-D95%)/Mean dose to target Translational shifts after daily registration have been reported in terms of mean, individual patient mean, standard deviation and standard error of mean. Systematic error and population random error have been calculated by following ways. Systematic error (Σ) = Standard deviation of mean shifts per patient. Random error (σ) = Root mean square of standard deviation of each patient. 256 Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2

5 Three-dimensional registration system of helical tomotherapy gives information of translational and rotational shifts of patient compared to planning scan. After correction of setup error, the resultant translational movement from origin has been calculated by dimension of vector. Vector of one fraction of an individual patient = (x 2 +y 2 +z 2 ) Where x is lateral shift, y is vertical and z is caudo-cranial shift. RESULTS Fifty-three patients of prostate carcinoma who were accrued in an IRB-approved prospective protocol, treated with helical tomotherapy-based IMRT have been prospectively evaluated on dosimetric and clinical aspects. Four patients received postoperative radiotherapy. At presentation, median PSA value was 23 ng/ml (range, 1.60 to ). Most of them (44 patients) had high risk disease. All high risk patients received neoadjuvant hormonal therapy prior to radiotherapy and the median duration of neoadjuvant therapy was 3 months and Table 3: PTV and OAR dose indices Volumes Indicies Mean Standard Deviation Target PTV Prostate V95 (%) V99 (%) V105 (%) PTV nodes V95 (%) V99 (%) V105 (%) Organ at risk Bladder Mean D1 (Gy) V40 (%) V50 (%) V65 (%) Rectum Mean D1 (Gy) V40 (%) V50 (%) V65 (%) Bowel D80cc (Gy) D20cc (Gy) D1cc (Gy) Right Femoral Head Mean (Gy) D1 (Gy) Left Femoral Head Mean (Gy) D1 (Gy) has been planned for concomitant and adjuvant therapy for 2-3 years [Table 1]. Dose to primary and pelvic nodes have been enumerated in Table 2 with respective BED and EQD2 with different a/b (1.5, 3, 10) values [Table 2]. Using an optimization target of 100% of the PTV volume to be covered by 95% of the prescription dose, the mean volume covered by the 95% isodose (V 95% ) was 99.26% (SD 1.24) for the PTV primary and 99.38% (SD 0.34) for PTV nodes [Table 3]. Dose to 1% volume of bladder and rectum were Gy (SD 2.20) and Gy (SD 2.47), respectively. V40, V50 and V65 of bladder were 38.52%, 22.72% and 7.79%, respectively. Similarly in rectum volume received 40%, 50% and 65% of prescribed dose were 41.33, and 8.81%, respectively. Mean dose received by 1 cc of bowel was Gy (SD 12.72). Right and left femoral head received mean dose of Gy (SD 6.70) and Gy (SD 6.64), respectively [Table 3]. The required PTV margins for translational movements have been validated by implementing Marcel van Hark s formula in first 500 observations. Required PTV margin (90% probability of CTV volume to be covered by 95% of isodose curve) for lateral, longitudinal and vertical axes were mm, 9.95 mm and mm, respectively [Table 4]. Resultant vectors of translational shifts were mostly between 3 mm and 15 mm and were distributed normally with 165 observations between 6 and 10 mm [Table 5]. Offline audit of shift data revealed 7% to 8% chance of missing a part of CTV if patients were treated without image guidance with a uniform 10 mm CTV to PTV expansion [Table 6]. All patients except two completed their scheduled radiotherapy treatment. One patient defaulted radiotherapy after receiving 22 Gy (planned for 74 Gy in 37 fractions) and radiotherapy has been prematurely concluded in other patient at 45 Gy (planned for 60 Gy in 20 fractions) due grade 3 genitourinary complication. Most patients have tolerated treatment well with 14 (26.4%) and 12 (22.6%) grade 2 acute rectal and urinary toxicity, respectively [Table 7]. After median follow-up of 23 months for the whole cohort of 53 patients, the biochemical relapse-free survival rate is 95.2% Table 4: Translational and rotational shifts after co-registration (500 consecutive observations in first 21 patients) Lateral (cm) Longitudinal (cm) Vertical (cm) Pitch (degree) Roll (degree) Yaw (degree) Mean Median Standard deviation SEM Systematic error Σ (SD of systematic error) σ (Population random error) Margin required for non image guidance IMRT Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2 257

6 Table 5: Vector of translational shifts (500 consecutive observations in first 21 patients) Vector (x 2 +y 2 +z 2 ) in mm Number of observations 0 to 3 mm 39 More than 3 mm up to 6 mm 138 More than 6 mm up to 10 mm 165 More than 10 mm up to 15 mm 108 More than 15 mm up to 20 mm 39 More than 20 mm 11 Table 7: Acute toxicity profiles (RTOG) Organs Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 Gastrointestinal (18.9%) (54.7%) (26.4%) Genitourinary 10 (18.9%) 30 (56.6%) 12 (22.6%) 1 (2%) 0 (nadir +2 definition). [23] Three-year actuarial biochemical relapse-free survival is 78.4%. At median follow-up, overall survival is 95.0%. DISCUSSION Recently published clinical data suggest a/b ratio of 1.5 Gy for prostate cancer, which is lower than for rectum of 3 to 6 Gy. [12] This would suggest the role of hypofractionated radiotherapy regimens in dose escalation and differentially improving the therapeutic ratio by increasing local control rates at acceptable rectal toxicity. There have been multiple phase three trials testing the above hypothesis against conventional fractionation. The use of higher doses especially >74-80 Gy resulted in better biochemical and local control rates than conventional doses of <70 Gy. Initial dose escalation trials using conventional external beam radiation therapy (EBRT) techniques resulted in unacceptably high rates of morbidity. With conventional techniques, it was not always feasible to safely deliver high doses of radiation to the prostate without exceeding the tolerance of the surrounding bowel and bladder, resulting in serious late toxicity. [10-11] So, it is postulated that hypofractionated dose escalation with the help of IMRT-based planning and treatment delivery under image guidance can bring the required balance in adequate local control rates and low rectal toxicity. One of the recent studies by Pollack et al. compared 70.2 Gy/26# versus 76 Gy/38# using IMRT reported acute toxicity grade 3 or more in 8% versus 2%, respectively. [25] The longterm results showed 23% difference in the freedom from biochemical failure (FFF) with hypofractionation at the median follow-up of 8.7 years. [26] There was no grade 3 or more late toxicity reported. In other trials by Arcangeli et al. and Norkus et al. with 3.1 to 3 Gy per fractions using 3DCRT also reported acute toxicity grade 3 or more in 1% or less, respectively. [27,28] Most of the studies have shown improvement of biochemical Table 6: Chance (%) of missing the target by non image guidance IMRT Directions No Image Guidance 7 mm 10 mm 15 mm Lateral Longitudinal Vertical control rates with hypofractionated treatments when the equivalent doses were 80 Gy 3 with low acute toxicity rates (grade 3 or more <5%). Maggio et al. reported safe delivery of median dose of 100 Gy (EQD (2, a/b = 10) = 113 Gy) to the dominant intraprostatic lesion (DIL) using hypofractionated RT with IGRT without violating safe constraints for the organs at risk. [29] The typical rectal NTCP values were around or below 1%-3% for G3 toxicity and 5%-7% for G2-G3 toxicity. For the 100 Gy DIL dose boost strategy, mean D95% of DIL and PTVDIL were 98.8 Gy and 86.7 Gy, respectively. In present series no undue toxicity ( grade 3 acute genitourinary or gastrointestinal toxicity) was observed. It has been demonstrated before that the volume of rectum, which receives doses of Gy correlates with acute toxicity; this is very well confirmed in the current study also. [29] In a recent CHHip trial which randomly assigned 153 patients to conventional (74 Gy/37#) or hypofractionated high-dose intensity-modulated radio therapy (60 Gy/20# or 57 Gy/19#). At 50 5 months median follow-up (IQR ), six (4 3%; 95% CI ) of 138 in conventional group; 5 of 137 (3 6%; ) in 60 Gy and two of 143 (1 4%; ) had bowel toxicity of grade 2 at 2 years. For bladder also there was no significant difference in toxicities in various arms. [30] The genitourinary toxicity largely depends on the overlap volume of PTV with bladder mucosa. Unlike previous studies a uniform margin around the CTV as overlapping volumes over bladder and rectum were not given any differential weightage. This means, there was no difference in the dose prescription and constraints applied to the portion of the PTV overlapping the rectum. The low acute toxicity seen in present series suggests that the effect of higher doses in a relatively small overlapping volume, which gets diffused over the treatment course due to variable rectal anatomy. The systematic use of rectal emptying procedures like diet, laxatives, rectal enema/ wash rectal balloons may be used to further reduce the prostate and rectal motion as reported by some investigators. This can further help reduce toxicity. [31-33] To contain acute as well as late toxicity, it is important to achieve maximum sparing of organs at risk while treatment planning and precise treatment delivery using image guidance to obviate set-up errors and internal organ motion. Most of the modern series have used IMRT for treatment planning with 258 Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2

7 various techniques for image guidance like ultrasound, DRR with implanted fiducials, CBCT and MVCT as per availability. [11] Schubert et al. had reported setup errors of 1274 prostate patients treated with helical tomotherapy and found a vector displacement of more than 10 mm in 48.1% of the fractions. [34] In the current series it was proved that in absence of image guidance there is a chance of missing the CTV marginally in 7% to 8% of fractions with 1 cm margins [Table 6]. On analysis of 500 observations, a vector displacement of more than 10 m was seen in 46% of the treatment fractions. The availability of online image gating capability for correction of intrafraction movement would have further helped in reducing the chances of errors although the dosimetric effect of observed prostate motion on target is small and infrequently severe. [35] Like other studies, 96% biochemical response has been achieved at median follow-up of 15 months. [11] The 2-year actuarial biochemical relapse-free survival (80.6%) is also comparable with other series. [11,12] The long-term toxicity and outcomes cannot be reported adequately and would require longer follow-up in larger number of patients. The current work reports feasibility of safe practice of hypofractionated radiation and is found comparable to literature. The tomotherapy-based treatment planning was found to be capable of achieving maximum sparing of organs at risk, without compromising target coverage. The image guidance using MVCT was also satisfactory in daily online matching and set-up correction. So the use of hypofractionated schedules in prostate cancer is justified with minimal acute toxicity and acceptable short-term local control rates when practiced with image guidance. This study is important in the set up of a developing nation because hypofractionated regimens promising more convenient treatment schedules reduces outpatient travel and overall machine commitments in constraint set up. This is the first study from India to systematically report the use of hypofractionated schedules in prostate cancer with acceptable acute toxicity and short-term local control rates when practiced with image guidance. Hypofractionated RT has the potential to reduce the machine burden in a busy department while image guidance largely negates the effect of organ motion and set-up errors, which can have a larger detriment with hypofractionation. REFERENCES 1. Dearnaley DP, Sydes MR, Graham JD, Aird EG, Bottomley D, Cowan RA, et al. Escalated-dose versus standard- dose conformal radiotherapy in prostate cancer: First results from the MRC RT01 randomised controlled trial. Lancet Oncol 2007;8: Hanks GE, Hanlon AL, Epstein B, Horwitz EM. Dose response in prostate cancer with 8-12 years follow-up. Int J Radiat Oncol Biol Phys 2002;54: Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, et al. Dose-response in radiotherapy for localized prostate cancer: Results of the Dutch multicenter randomized Phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 2006;24: Pollack A, Zagars GK, Smith LG, Lee JJ, von Eschenbach AC, Antolak JA, et al. Preliminary results of a randomized radiotherapy doseescalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol 2000;18: Zietman AL, DeSilvio ML, Slater JD, Lee JJ, von Eschenbach AC, Antolak JA, et al. Comparison of conventional dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: A randomized controlled trial. JAMA 2005;294: Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, et al. Highdose intensity modulated radiation therapy for prostate cancer: Early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 2002;53: Jani AB, Su A, Correa D, Gratzle J. Comparison of late gastrointestinal and genitourinary toxicity of prostate cancer patients undergoing intensity modulated versus conventional radiotherapy using localized fields. Prostate Cancer Prostatic Dis 2006;10: De Meerleer GO, Fonteyne VH, Vakaet L, Villeirs GM, Denoyette L, Verbaeys A, et al. Intensity-modulated radiation therapy for prostate cancer: Late morbidity and results on biochemical control. Radiother Oncol 2007;82: Chism DB, Horwitz EM, Hanlon AL, Pinover WH, Mitra RK, Hanks GE. Late morbidity profiles in prostate cancer patients treated to Gy by a simple four-field coplanar beam arrangement. Int J Radiat Oncol Biol Phys 2003;55: Smit WG, Helle PA, van Putten WL, Pinover WH, Mitra RK, Hanks GE. Late radiation damage in prostate cancer patients treated by high dose external radiotherapy in relation to rectal dose. Int J Radiat Oncol Biol Phys 1990;18: Cahlon O, Hunt M, Zelefsky MJ. Intensity-modulated radiation therapy: Supportive data for prostate cancer. Semin Radiat Oncol 2008;18: Miles EF, Lee WR. Hypofractionation for prostate cancer: A critical review. Semin Radiat Oncol 2008;18: Langen KM, Jones DT. Organ motion and its management. Int J Radiat Oncol Biol Phys 2001;50: Balter JM, Sandler HM, Lam K, Bree RL, Lichter AS, ten Haken RK. Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 1995;31: Vigneault E, Pouliot J, Laverdière J, Roy J, Dorion M. Electronic portal imaging device detection of radio opaque markers for the evaluation of prostate position during megavoltage irradiationa clinical study. Int J Radiat Oncol Biol Phys 1997;37: Lattanzi J, McNeeley S, Hanlon A, Das I, Schultheiss TE, Hanks GE. Daily CT Localization for correcting portal errors in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys 1998;41: D Amico AV, Whittington R, Malkowicz RB, Schultz D, Blank K, Broderick G, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998;280: Murthy V, Shukla P, Adurkar P, Master Z, Mahantshetty U, Shrivastava SK. Dose variation during hypofractionated image-guided radiotherapy for prostate cancer: Planned versus delivered. J Cancer Res Ther 2011;7: Boehmer D, Maingon P, Poortmans P, Baron MH, Miralbell R, Remouchamps V, et al. Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol 2006;79: Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, et al. RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2009;74: Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2 259

8 21. Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, et al. QA for helical tomotherapy: Report of the AAPM Task Group 148. Med Phys 2010;37: Fiorino C, Sanguineti G, Cozzarini C, Fellin G, Foppiano F, Menegotti L, et al. Rectal dose-volume constraints in high-dose radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 2003;57: Roach M 3rd, Hanks G, Thames H Jr, Schellhammer P, Shipley WU, Sokol GH, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: Recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006;65: Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg 2000;93: Pollack A, Hanlon A, Horwitz EM, Feigenberg SJ, Konski AA, Movsas B, et al. Dosimetry and preliminary acute toxicity in the ûosi 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 2006;64: Pollack A, Walker G, Buyyounouski M, Feigenberg SJ, Konski AA, Movsas B, et al. Five year results of a randomized external beam radiotherapy hypofractionation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2011;81:S Arcangeli G, Fowler J, Gomellini S, Arcangeli S, Saracino B, Petrongari MG, et al. Acute and late toxicity in a randomized trial of conventional versus hypofractionated three-dimensional conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2011;79: Norkus D, Miller A, Kurtinaitis J, Haverkamp U, Popov S, Prott FJ, et al. A randomized trial comparing hypofractionated and conventionally fractionated three-dimensional external beam radiotherapy for localized prostate adenocarcinoma a report on acute toxicity. Strahlenther Onkol 2009;185: Maggio A, Fiorino C, Mangili P, Cozzarini C, de Cobelli F, Cattaneo GM, et al. Feasibility of safe ultra-high (EQD(2)>100 Gy) dose escalation on dominant intra-prostatic lesions (DILs) by Helical Tomotheraphy. Acta Oncol 2011;50: Dearnaley D, Syndikus I, Sumo G, Bidmead M, Bloomfield D, Clark C, et al. Conventional versus hypofractionated high-dose intensitymodulated radiotherapy for prostate cancer: Preliminary safety results from the CHHiP randomised control trial. Lancet Oncol 2012;13: Patel RR, Orton N, Tome WA, Chappell R, Ritter MA. Rectal dose sparing with a balloon catheter and ultrasound locali-zation in conformal radiation therapy for prostate cancer. Radiother Oncol 2003;67: Teh BS, Dong L, McGary JE, Mai WY, Grant W 3rd, Butler EB. Rectal wall sparing by dosimetric effect of rectal balloon used during intensity-modulated radiation therapy (IMRT) for prostate cancer. Med Dosim 2005;30: Teh BS, McGary JE, Dong L, Mai WY, Carpenter LS, Lu HH, et al. The use of rectal balloon during the delivery of intensity modulated radiotherapy (IMRT) for prostate cancer: More than just a prostate gland immobilization device? Cancer J 2002;8: Schubert LK, Westerly DC, Tomé WA, Mehta MP, Soisson ET, Mackie TR, et al. A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3,800 helical tomotherapy treatments. Int J Radiat Oncol Biol Phys 2009;73: Langen KM, Lu W, Willoughby TR, Chauhan B, Meeks SL, Kupelian PA, et al. Dosimetric effect of prostate motion during helical tomotherapy. Int J Radiat Oncol Biol Phys 2009;74: Cite this article as: Murthy V, Krishnatry R, Mallik S, Master Z, Mahantshetty U, Shrivastava S. Helical tomotherapy-based hypofractionated radiotherapy for prostate cancer: A report on the procedure, dosimetry and preliminary clinical outcome. J Can Res Ther 2013;9: Source of Support: Nil, Conflict of Interest: Nil. 260 Journal of Cancer Research and Therapeutics - April-June Volume 9 - Issue 2

Department of Radiotherapy & Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt.

Department of Radiotherapy & Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt. Original article Res. Oncol. Vol. 12, No. 1, Jun. 2016:10-14 Dosimetric comparison of 3D conformal conventional radiotherapy versus intensity-modulated radiation therapy both in conventional and high dose

More information

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer Tony Kin Ming Lam Radiation Planner Dr Patricia Lindsay, Radiation Physicist Dr John Kim, Radiation Oncologist Dr Kim Ann Ung,

More information

New Technologies for the Radiotherapy of Prostate Cancer

New Technologies for the Radiotherapy of Prostate Cancer Prostate Cancer Meyer JL (ed): IMRT, IGRT, SBRT Advances in the Treatment Planning and Delivery of Radiotherapy. Front Radiat Ther Oncol. Basel, Karger, 27, vol. 4, pp 315 337 New Technologies for the

More information

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery Reena Phurailatpam Tejpal Gupta, Rakesh Jalali, Zubin Master, Bhooshan Zade,

More information

OPTIMIZATION OF COLLIMATOR PARAMETERS TO REDUCE RECTAL DOSE IN INTENSITY-MODULATED PROSTATE TREATMENT PLANNING

OPTIMIZATION OF COLLIMATOR PARAMETERS TO REDUCE RECTAL DOSE IN INTENSITY-MODULATED PROSTATE TREATMENT PLANNING Medical Dosimetry, Vol. 30, No. 4, pp. 205-212, 2005 Copyright 2005 American Association of Medical Dosimetrists Printed in the USA. All rights reserved 0958-3947/05/$ see front matter doi:10.1016/j.meddos.2005.06.002

More information

Helical Tomotherapy Experience. TomoTherapy Whole Brain Head & Neck Prostate Lung Summary. HI-ART TomoTherapy System. HI-ART TomoTherapy System

Helical Tomotherapy Experience. TomoTherapy Whole Brain Head & Neck Prostate Lung Summary. HI-ART TomoTherapy System. HI-ART TomoTherapy System The Challenges Associated with Differential Dose Delivery using IMRT Chester Ramsey, Ph.D. Director of Medical Physics Thompson Cancer Center Knoxville, Tennessee, U.S.A Collaborators Chester Ramsey, Ph.D.

More information

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Measurement of Dose to Critical Structures Surrounding the Prostate from Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Conformal Radiation Therapy (3D-CRT); A Comparative Study Erik

More information

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Tan Chek Wee 15 06 2016 National University Cancer Institute, Singapore Clinical Care Education Research

More information

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments

Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments Feasibility of 4D IMRT Delivery for Hypofractionated High Dose Partial Prostate Treatments R.A. Price Jr., Ph.D., J. Li, Ph.D., A. Pollack, M.D., Ph.D.*, L. Jin, Ph.D., E. Horwitz, M.D., M. Buyyounouski,

More information

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor

IMRT/IGRT Patient Treatment: A Community Hospital Experience. Charles M. Able, Assistant Professor IMRT/IGRT Patient Treatment: A Community Hospital Experience Charles M. Able, Assistant Professor Disclosures I have no research support or financial interest to disclose. Learning Objectives 1. Review

More information

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer 1 Charles Poole April Case Study April 30, 2012 Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer Abstract: Introduction: This study

More information

Target localization for post-prostatectomy patients using CT and ultrasound image guidance

Target localization for post-prostatectomy patients using CT and ultrasound image guidance JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 4, FALL 2005 Target localization for post-prostatectomy patients using CT and ultrasound image guidance Kamen Paskalev, Steven Feigenberg,

More information

A PRACTICAL METHOD TO ACHIEVE PROSTATE GLAND IMMOBILIZATION AND TARGET VERIFICATION FOR DAILY TREATMENT

A PRACTICAL METHOD TO ACHIEVE PROSTATE GLAND IMMOBILIZATION AND TARGET VERIFICATION FOR DAILY TREATMENT PII S0360-3016(01)02663-3 Int. J. Radiation Oncology Biol. Phys., Vol. 51, No. 5, pp. 1431 1436, 2001 Copyright 2001 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/01/$ see front

More information

IGRT Solution for the Living Patient and the Dynamic Treatment Problem

IGRT Solution for the Living Patient and the Dynamic Treatment Problem IGRT Solution for the Living Patient and the Dynamic Treatment Problem Lei Dong, Ph.D. Associate Professor Dept. of Radiation Physics University of Texas M. D. Anderson Cancer Center Houston, Texas Learning

More information

biij Initial experience in treating lung cancer with helical tomotherapy

biij Initial experience in treating lung cancer with helical tomotherapy Available online at http://www.biij.org/2007/1/e2 doi: 10.2349/biij.3.1.e2 biij Biomedical Imaging and Intervention Journal CASE REPORT Initial experience in treating lung cancer with helical tomotherapy

More information

Linac Based SBRT for Low-intermediate Risk Prostate Cancer in 5 Fractions: Preliminary Report of a Phase II Study with FFF Delivery

Linac Based SBRT for Low-intermediate Risk Prostate Cancer in 5 Fractions: Preliminary Report of a Phase II Study with FFF Delivery Linac Based SBRT for Low-intermediate Risk Prostate Cancer in 5 Fractions: Preliminary Report of a Phase II Study with FFF Delivery FILIPPO ALONGI MD Radiation Oncology & Radiosurgery Istituto Clinico

More information

IMRT for Prostate Cancer

IMRT for Prostate Cancer IMRT for Cancer All patients are simulated in the supine position. Reproducibility is achieved using a custom alpha cradle cast that extends from the mid-back to mid-thigh. The feet are positioned in a

More information

Clinically Proven Metabolically-Guided TomoTherapy SM Treatments Advancing Cancer Care

Clinically Proven Metabolically-Guided TomoTherapy SM Treatments Advancing Cancer Care Clinically Proven Metabolically-Guided TomoTherapy SM Treatments Advancing Cancer Care Institution: San Raffaele Hospital Milan, Italy By Nadia Di Muzio, M.D., Radiotherapy Department (collaborators: Berardi

More information

Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons

Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 4, FALL 2006 Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons Mei Sun and Lijun Ma a University

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity-Modulated Radiation Therapy (IMRT) of the Prostate File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_the_prostate

More information

INTENSITY MODULATED RADIATION THERAPY: Next Generation 3-D CRT or Distinct Form of RT?

INTENSITY MODULATED RADIATION THERAPY: Next Generation 3-D CRT or Distinct Form of RT? INTENSITY MODULATED RADIATION THERAPY: Next Generation 3-D CRT or Distinct Form of RT? Three dimensional conformal radiation therapy (3D-CRT) uses a uniform dose of radiation where the dose distribution

More information

The use of SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy and its impact on rectal dosimetry

The use of SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy and its impact on rectal dosimetry The use of SpaceOAR hydrogel in dose-escalated prostate cancer radiotherapy and its impact on rectal dosimetry Poster No.: R-0296 Congress: Type: Authors: Keywords: DOI: 2014 CSM Scientific Exhibit F.

More information

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain 1 Carol Boyd March Case Study March 11, 2013 Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain History of Present Illness:

More information

Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center

Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center Proton Therapy for Prostate Cancer Andrew K. Lee, MD, MPH Associate Professor Department tof fradiation Oncology M.D. Anderson Cancer Center Seungtaek Choi, MD Assistant Professor Department tof fradiation

More information

Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment

Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment Chinese Journal of Cancer Original Article Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment Suresh Rana 1 and ChihYao Cheng 2 Abstract The volumetric modulated

More information

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem Original Article Treatment Planning Evaluation of Sliding Window and Multiple Static Segments Technique in Intensity Modulated Radiotherapy for Different Beam Directions Teyyiba Kanwal, Muhammad Khalid,

More information

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia IMRT - the physician s eye-view Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia The goals of cancer therapy Local control Survival Functional status Quality of life Causes

More information

Outcomes Following Negative Prostate Biopsy for Patients with Persistent Disease after Radiotherapy for Prostate Cancer

Outcomes Following Negative Prostate Biopsy for Patients with Persistent Disease after Radiotherapy for Prostate Cancer Clinical Urology Post-radiotherapy Prostate Biopsy for Recurrent Disease International Braz J Urol Vol. 36 (1): 44-48, January - February, 2010 doi: 10.1590/S1677-55382010000100007 Outcomes Following Negative

More information

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 401 410, 2014 A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * M. D. SUDITU 1,2, D. ADAM 1,2, R. POPA 1,2, V. CIOCALTEI

More information

BLADDER RADIOTHERAPY PLANNING DOCUMENT

BLADDER RADIOTHERAPY PLANNING DOCUMENT A 2X2 FACTORIAL RANDOMISED PHASE III STUDY COMPARING STANDARD VERSUS REDUCED VOLUME RADIOTHERAPY WITH AND WITHOUT SYNCHRONOUS CHEMOTHERAPY IN MUSCLE INVASIVE BLADDER CANCER (ISRCTN 68324339) BLADDER RADIOTHERAPY

More information

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film E.B.Rajmohan¹, Pratik Kumar¹, Bhudatt Paliwal,² David Westerly², N.Gopishankar³, R.K.Bisht³, D.Tewatia²,

More information

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas 1 Carol Boyd Comprehensive Case Study July 11, 2013 Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas Abstract: Introduction:

More information

Radiation Therapy for Prostate Cancer. Resident Dept of Urology General Surgery Grand Round November 24, 2008

Radiation Therapy for Prostate Cancer. Resident Dept of Urology General Surgery Grand Round November 24, 2008 Radiation Therapy for Prostate Cancer Amy Hou,, MD Resident Dept of Urology General Surgery Grand Round November 24, 2008 External Beam Radiation Advances Improving Therapy Generation of linear accelerators

More information

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis Iran. J. Radiat. Res., 2007; 5 (1): 1-8 3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis A.K. Bhardwaj 1*,T.S.

More information

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Tagreed AL-ALAWI Medical Physicist King Abdullah Medical City- Jeddah Aim 1. Simplify and standardize

More information

Chapters from Clinical Oncology

Chapters from Clinical Oncology Chapters from Clinical Oncology Lecture notes University of Szeged Faculty of Medicine Department of Oncotherapy 2012. 1 RADIOTHERAPY Technical aspects Dr. Elemér Szil Introduction There are three possibilities

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 6, NUMBER 2, SPRING 2005 Advantages of inflatable multichannel endorectal applicator in the neo-adjuvant treatment of patients with locally advanced

More information

NEWER RADIATION (3 D -CRT, IMRT, IGRT) TECHNIQUES FOR CERVICAL CANCERS (COMMON PELVIC TUMORS)

NEWER RADIATION (3 D -CRT, IMRT, IGRT) TECHNIQUES FOR CERVICAL CANCERS (COMMON PELVIC TUMORS) NEWER RADIATION (3 D -CRT, IMRT, IGRT) TECHNIQUES FOR CERVICAL CANCERS (COMMON PELVIC TUMORS) Umesh Mahantshetty, DMRT, MD, DNBR Associate Professor, Radiation Oncology Convener: Urology Disease Management

More information

The sigmoid colon and bladder shielding in whole pelvic irradiation at prostate cancer (forward planned IMRT from Institute of Oncology Ljubljana)

The sigmoid colon and bladder shielding in whole pelvic irradiation at prostate cancer (forward planned IMRT from Institute of Oncology Ljubljana) doi:10.2478/v10019-009-0001-4 research article The sigmoid colon and bladder shielding in whole pelvic irradiation at prostate cancer (forward planned IMRT from Institute of Oncology Ljubljana) Daša Grabec

More information

Clinical Commissioning Policy Proposition: Proton Beam Therapy for Cancer of the Prostate

Clinical Commissioning Policy Proposition: Proton Beam Therapy for Cancer of the Prostate Clinical Commissioning Policy Proposition: Proton Beam Therapy for Cancer of the Prostate Reference: NHS England B01X09 First published: March 2016 Prepared by NHS England Specialised Services Clinical

More information

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS ICTP SCHOOL ON MEDICAL PHYSICS FOR RADIATION THERAPY DOSIMETRY AND TREATMENT PLANNING FOR BASIC AND ADVANCED APPLICATIONS March

More information

Phase II study of FFF-SBRT in 5 fractions for low and intermediate risk prostate cancer

Phase II study of FFF-SBRT in 5 fractions for low and intermediate risk prostate cancer Phase II study of FFF-SBRT in 5 fractions for low and intermediate risk prostate cancer Ciro Franzese, G D Agostino, E Clerici, E Villa, A Tozzi, T Comito, C Iftode, AM Ascolese, F De Rose, S Pentimalli,

More information

EORTC radiation Oncology Group Intergroup collaboration with RTOG EORTC 1331-ROG; RTOG 0924

EORTC radiation Oncology Group Intergroup collaboration with RTOG EORTC 1331-ROG; RTOG 0924 EORTC radiation Oncology Group Intergroup collaboration with RTOG EORTC 1331-ROG; RTOG 0924 Title of the Study Medical Condition Androgen deprivation therapy and high dose radiotherapy with or without

More information

Role of Belly Board Device in the Age of Intensity Modulated Radiotherapy for Pelvic Irradiation

Role of Belly Board Device in the Age of Intensity Modulated Radiotherapy for Pelvic Irradiation Role of Belly Board Device in the Age of Intensity Modulated Radiotherapy for Pelvic Irradiation 2017 AAMD 42 nd Annual Meeting Neil C. Estabrook, MD 6 / 14 / 2017 7/5/2017 1 Conflicts of Interest None

More information

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY doi:10.1016/j.ijrobp.2009.03.029 Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 1, pp. 253 259, 2009 Copyright Ó 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/$ see front

More information

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques TROG 08.03 RAVES Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques Introduction Commissioning and quality assurance of planning systems and treatment delivery

More information

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO Investigations and research Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO M. Kunze-Busch P. van Kollenburg Department of Radiation Oncology, Radboud University Nijmegen Medical

More information

Helical tomotherapy for head and neck squamous cell carcinoma: Dosimetric comparison with linear accelerator-based step-and-shoot IMRT

Helical tomotherapy for head and neck squamous cell carcinoma: Dosimetric comparison with linear accelerator-based step-and-shoot IMRT Original Article Free full text available from www.cancerjournal.net Helical tomotherapy for head and neck squamous cell carcinoma: Dosimetric comparison with linear accelerator-based step-and-shoot IMRT

More information

Vaginal Sparing with Volumetric Modulated Arc Therapy (VMAT) for Rectal Cancer. Scott Boulet BSc, RT(T)

Vaginal Sparing with Volumetric Modulated Arc Therapy (VMAT) for Rectal Cancer. Scott Boulet BSc, RT(T) Vaginal Sparing with Volumetric Modulated Arc Therapy (VMAT) for Rectal Cancer Scott Boulet BSc, RT(T) Outline Background Objectives Design Results Discussion Conclusion Acknowledgements Questions Background

More information

Trina Lynd, M.S. Medical Physicist Lifefirst Imaging & Oncology Cullman, AL Tri-State Alabama, Louisiana and Mississippi Spring 2016 Meeting April

Trina Lynd, M.S. Medical Physicist Lifefirst Imaging & Oncology Cullman, AL Tri-State Alabama, Louisiana and Mississippi Spring 2016 Meeting April Trina Lynd, M.S. Medical Physicist Lifefirst Imaging & Oncology Cullman, AL Tri-State Alabama, Louisiana and Mississippi Spring 2016 Meeting April 17, 2016 Discuss permanent prostate brachytherapy and

More information

Prostate Cancer. 3DCRT vs IMRT : Hasan Murshed

Prostate Cancer. 3DCRT vs IMRT : Hasan Murshed Prostate Cancer 3DCRT vs IMRT : the second debate Hasan Murshed Take home message IMRT allows dose escalation. Preliminary data shows IMRT technique improves cancer control while keeping acceptable morbidity

More information

Helical Tomotherapy: An Innovative Technology and Approach to Radiation Therapy

Helical Tomotherapy: An Innovative Technology and Approach to Radiation Therapy Technology in Cancer Research & Treatment ISSN 1533-0346 Volume 1, Number 4, August (2002) Adenine Press (2002) Helical Tomotherapy: An Innovative Technology and Approach to Radiation Therapy www.tcrt.org

More information

PROSTATE CANCER, Radiotherapy ADVANCES in RADIOTHERAPY for PROSTATE CANCER

PROSTATE CANCER, Radiotherapy ADVANCES in RADIOTHERAPY for PROSTATE CANCER PROSTATE CANCER, Radiotherapy ADVANCES in RADIOTHERAPY for PROSTATE CANCER Alberto Bossi Radiotherapy and Oncology Gustave Roussy, Villejuif, France PROSTATE CANCER, Radiotherapy IGRT RT + ADT: short vs

More information

Research Article Implant R100 Predicts Rectal Bleeding in Prostate Cancer Patients Treated with IG-IMRT to 45 Gy and Pd-103 Implant

Research Article Implant R100 Predicts Rectal Bleeding in Prostate Cancer Patients Treated with IG-IMRT to 45 Gy and Pd-103 Implant Radiotherapy, Article ID 130652, 6 pages http://dx.doi.org/10.1155/2014/130652 Research Article Implant R100 Predicts Rectal Bleeding in Prostate Cancer Patients Treated with IG-IMRT to 45 Gy and Pd-103

More information

INTRAFRACTION PROSTATE MOTION DURING IMRT FOR PROSTATE CANCER

INTRAFRACTION PROSTATE MOTION DURING IMRT FOR PROSTATE CANCER PII S0360-3016(02)02738-4 Int. J. Radiation Oncology Biol. Phys., Vol. 53, No. 2, pp. 261 268, 2002 Copyright 2002 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/02/$ see front

More information

The Physics of Oesophageal Cancer Radiotherapy

The Physics of Oesophageal Cancer Radiotherapy The Physics of Oesophageal Cancer Radiotherapy Dr. Philip Wai Radiotherapy Physics Royal Marsden Hospital 1 Contents Brief clinical introduction Imaging and Target definition Dose prescription & patient

More information

CyberKnife Radiotherapy For Localized Prostate Cancer: Rationale And Technical Feasibility

CyberKnife Radiotherapy For Localized Prostate Cancer: Rationale And Technical Feasibility Open Access Article The authors, the publisher, and the right holders grant the right to use, reproduce, and disseminate the work in digital form to all users. Technology in Cancer Research & Treatment

More information

Subject: Image-Guided Radiation Therapy

Subject: Image-Guided Radiation Therapy 04-77260-19 Original Effective Date: 02/15/10 Reviewed: 01/25/18 Revised: 01/01/19 Subject: Image-Guided Radiation Therapy THIS MEDICAL COVERAGE GUIDELINE IS NOT AN AUTHORIZATION, CERTIFICATION, EXPLANATION

More information

MVCT Image. Robert Staton, PhD DABR. MD Anderson Cancer Center Orlando. ACMP Annual Meeting 2011

MVCT Image. Robert Staton, PhD DABR. MD Anderson Cancer Center Orlando. ACMP Annual Meeting 2011 MVCT Image Guidance and QA Robert Staton, PhD DABR MD Anderson Cancer Center Orlando ACMP Annual Meeting 2011 Disclosures MDACCO has received grant funding from TomoTherapy, Inc. Overview TomoTherapy MVCT

More information

IMAGE GUIDED RADIOTHERAPY BY CBCT BASED POSITION VERIFICATION IN HIGH RISK CARCINOMA PROSTATE- AN INDIAN EXPERIENCE AND REVIEW OF LITERATURE ABSTRACT

IMAGE GUIDED RADIOTHERAPY BY CBCT BASED POSITION VERIFICATION IN HIGH RISK CARCINOMA PROSTATE- AN INDIAN EXPERIENCE AND REVIEW OF LITERATURE ABSTRACT Asian Journal of Medical Science, Volume-5(2014) IMAGE GUIDED RADIOTHERAPY BY CBCT BASED POSITION VERIFICATION IN HIGH RISK CARCINOMA PROSTATE- AN INDIAN EXPERIENCE AND REVIEW OF LITERATURE REVIEW OF LITERATURE,Vol-5

More information

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC

MRI Based treatment planning for with focus on prostate cancer. Xinglei Shen, MD Department of Radiation Oncology KUMC MRI Based treatment planning for with focus on prostate cancer Xinglei Shen, MD Department of Radiation Oncology KUMC Overview How magnetic resonance imaging works (very simple version) Indications for

More information

Statistical Analysis and Volumetric Dose for Organ at Risk of Prostate Cancer

Statistical Analysis and Volumetric Dose for Organ at Risk of Prostate Cancer The African Review of Physics (2013) 8:0063 477 Statistical Analysis and Volumetric Dose for Organ at Risk of Prostate Cancer F. Assaoui¹,*, A. Bazine² and T. Kebdani³ ¹ Medical Physics Unit, Radiotherapy

More information

Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*, Girish N. Bedre*, D. D. Deshpande

Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*, Girish N. Bedre*, D. D. Deshpande 60 Original Article Evaluation of radiograph-based interstitial implant dosimetry on computed tomography images using dose volume indices for head and neck cancer Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*,

More information

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM *

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 394 400, 2014 A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM * D. ADAM 1,2,

More information

CyberKnife SBRT for Prostate Cancer

CyberKnife SBRT for Prostate Cancer CyberKnife SBRT for Prostate Cancer Robert Meier, MD Swedish Radiosurgery Center Swedish Cancer Institute Seattle, WA 2017 ESTRO Meeting, Vienna Austria 5-year safety, efficacy & quality of life outcomes

More information

Intensity Modulated Radiotherapy (IMRT) of the Prostate

Intensity Modulated Radiotherapy (IMRT) of the Prostate Medical Policy Manual Medicine, Policy No. 137 Intensity Modulated Radiotherapy (IMRT) of the Prostate Next Review: August 2018 Last Review: November 2017 Effective: December 1, 2017 IMPORTANT REMINDER

More information

Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system

Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 2, 2015 Intrafractional prostate motion during external beam radiotherapy monitored by a real-time target localization system Xu Tong, 1 Xiaoming

More information

Innovazioni tecnologiche in Radioterapia" Sergio Fersino Radioterapia Oncologica

Innovazioni tecnologiche in Radioterapia Sergio Fersino Radioterapia Oncologica Innovazioni tecnologiche in Radioterapia" Sergio Fersino Radioterapia Oncologica 2014 HYPOFRACTIONATION & PROSTATE CANCER HYPOFRACTIONATION & PROSTATE CANCER: TECHNOLOGY: HIGH CONFORMAL DOSE & IMAGING

More information

Toxicity of Tomotherapy-Based Simultaneous Integrated Boost in Whole-Pelvis Radiation for Prostate Cancer

Toxicity of Tomotherapy-Based Simultaneous Integrated Boost in Whole-Pelvis Radiation for Prostate Cancer Original Article http://dx.doi.org/10.3349/ymj.2015.56.2.510 pissn: 0513-5796, eissn: 1976-2437 Yonsei Med J 56(2):510-518, 2015 Toxicity of Tomotherapy-Based Simultaneous Integrated Boost in Whole-Pelvis

More information

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA Indra J. Das,

More information

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT Purpose The purpose of this curriculum outline is to provide a framework for multidisciplinary training for radiation oncologists, medical

More information

CBCT of the patient in the treatment position has gained wider applications for setup verification during radiotherapy.

CBCT of the patient in the treatment position has gained wider applications for setup verification during radiotherapy. Gülcihan CÖDEL Introduction The aim of this study is to evaluate the changes in bladder doses during the volumetric modulated arc therapy (VMAT) treatment of prostate cancer patients using weekly cone

More information

Radiation treatment in prostate cancer : balancing between tumor control and toxicity Heemsbergen, W.D.

Radiation treatment in prostate cancer : balancing between tumor control and toxicity Heemsbergen, W.D. UvA-DARE (Digital Academic Repository) Radiation treatment in prostate cancer : balancing between tumor control and toxicity Heemsbergen, W.D. Link to publication Citation for published version (APA):

More information

Would SBRT Hypofractionated Approach Be as Good? Then Why Bother With Brachytherapy?

Would SBRT Hypofractionated Approach Be as Good? Then Why Bother With Brachytherapy? Would SBRT Hypofractionated Approach Be as Good? Then Why Bother With Brachytherapy? Yasuo Yoshioka, MD Department of Radiation Oncology Osaka University Graduate School of Medicine Osaka, Japan Disclosure

More information

External Beam Radiation Therapy for Low/Intermediate Risk Prostate Cancer

External Beam Radiation Therapy for Low/Intermediate Risk Prostate Cancer External Beam Therapy for Low/Intermediate Risk Prostate Cancer Jeff Michalski, M.D. The Carlos A. Perez Distinguished Professor of Department of and Siteman Cancer Center Learning Objectives Understand

More information

MATERIALS AND METHODS

MATERIALS AND METHODS Original Article Free full text available from www.cancerjournal.net High-dose intensity-modulated radiotherapy as primary therapy for prostate cancer: Report on dosimetry aspects and acute toxicity in

More information

Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient Using Electronic Portal Imaging Device (EPID)

Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient Using Electronic Portal Imaging Device (EPID) IOSR Journal of Applied Physics (IOSR-JAP) e-issn: 2278-4861.Volume 10, Issue 2 Ver. I (Mar. Apr. 2018), PP 55-59 www.iosrjournals.org Measure the Errors of Treatment Set-Ups of Prostate Cancer Patient

More information

LA TOMOTERAPIA IN ITALIA: ESPERIENZE A CONFRONTO

LA TOMOTERAPIA IN ITALIA: ESPERIENZE A CONFRONTO LA TOMOTERAPIA IN ITALIA: ESPERIENZE A CONFRONTO BARD 20 NOVEMBRE 2010 DI MUZIO NADIA H. S. RAFFAELE MILANO PHASE I-II STUDY OF HYPOFRACTIONATED SIMULTANEOUS INTEGRATED BOOST WITH TOMOTHERAPY FOR PROSTATE

More information

Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation

Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 3, 2015 Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation Harumitsu Hashimoto, 1,3a Motoko Omura,

More information

What do we Know About Adaptive Radiotherapy? Lei Dong, Ph.D. Scripps Proton Therapy Center San Diego, California

What do we Know About Adaptive Radiotherapy? Lei Dong, Ph.D. Scripps Proton Therapy Center San Diego, California What do we Know About Adaptive Radiotherapy? Lei Dong, Ph.D. Scripps Proton Therapy Center San Diego, California AAMD Region II Meeting Houston, Texas September 13-14, 2012 Learning Objectives To gain

More information

IMAT: intensity-modulated arc therapy

IMAT: intensity-modulated arc therapy : intensity-modulated arc therapy M. Iori S. Maria Nuova Hospital, Medical Physics Department Reggio Emilia, Italy 1 Topics of the talk Rotational IMRT techniques: modalities & dedicated inverse-planning

More information

UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies

UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies UNIVERSITY OF WISCONSIN-LA CROSSE Graduate Studies A SINGLE INSTITUTION S EXPERIENCE IN DEVELOPING A PURPOSEFUL AND EFFICIENT OFF-LINE TECHNIQUE FOR ADAPTIVE RADIOTHERAPY IN A CLINICAL ENVIRONMENT A Research

More information

Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive

Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed tomography for non-operative lung cancer during adaptive Oncology and Translational Medicine October 2015, Vol. 1, No. 5, P195 200 DOI 10.1007/s10330-015-0054-3 ORIGINAL ARTICLE Dosimetric consequences of tumor volume changes after kilovoltage cone-beam computed

More information

Radiotherapy (RT) Protocol for Prostate Cancer

Radiotherapy (RT) Protocol for Prostate Cancer Radiotherapy (RT) Protocol for Prostate Cancer CGMH-2010-02 *This document is aimed to set up RT protocols for prostate cancer. The treatment guideline for prostate cancer will not be covered here. A.

More information

Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study

Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 1, WINTER 2007 Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study Vitali Moiseenko, 1 Mitchell Liu,

More information

Work partially supported by VisionRT

Work partially supported by VisionRT Work partially supported by VisionRT Background of frameless intracranial stereotactic radiosurgery UCSD SRS/SRT procedure Clinical Results Summary Total prescribed doses : order of 10 50 Gy Planning targets

More information

3D ANATOMY-BASED PLANNING OPTIMIZATION FOR HDR BRACHYTHERAPY OF CERVIX CANCER

3D ANATOMY-BASED PLANNING OPTIMIZATION FOR HDR BRACHYTHERAPY OF CERVIX CANCER SAUDI JOURNAL OF OBSTETRICS AND GYNECOLOGY VOLUME 11 NO. 2 1430 H - 2009 G 3D ANATOMY-BASED PLANNING OPTIMIZATION FOR HDR BRACHYTHERAPY OF CERVIX CANCER DR YASIR BAHADUR 1, DR CAMELIA CONSTANTINESCU 2,

More information

SUPERIORITY OF A REAL TIME PLANNING TECHNIQUE OVER IMAGE GUIDED RADIATION THERAPY FOR THE TREATMENT OF PRIMARY PROSTATE CANCERS

SUPERIORITY OF A REAL TIME PLANNING TECHNIQUE OVER IMAGE GUIDED RADIATION THERAPY FOR THE TREATMENT OF PRIMARY PROSTATE CANCERS SUPERIORITY OF A REAL TIME PLANNING TECHNIQUE OVER IMAGE GUIDED RADIATION THERAPY FOR THE TREATMENT OF PRIMARY PROSTATE CANCERS Authors: Scott Merrick James Wong MD, Mona Karim MD, Yana Goldberg MD DISCLOSURE

More information

Defining Target Volumes and Organs at Risk: a common language

Defining Target Volumes and Organs at Risk: a common language Defining Target Volumes and Organs at Risk: a common language Eduardo Rosenblatt Section Head Applied Radiation Biology and Radiotherapy (ARBR) Section Division of Human Health IAEA Objective: To introduce

More information

Acute toxicity profile in prostate cancer with conventional and hypofractionated treatment

Acute toxicity profile in prostate cancer with conventional and hypofractionated treatment Viani et al. Radiation Oncology 2013, 8:94 RESEARCH Acute toxicity profile in prostate cancer with conventional and hypofractionated treatment Open Access Gustavo Arruda Viani 1,3*, Lucas Bernardes Godoy

More information

Proton Therapy for Prostate Cancer. Andrew K. Lee, MD, MPH Director Proton Therapy Center

Proton Therapy for Prostate Cancer. Andrew K. Lee, MD, MPH Director Proton Therapy Center Proton Therapy for Prostate Cancer Andrew K. Lee, MD, MPH Director Proton Therapy Center Disclosures No relevant financial disclosures This presentation will not discuss off-label or investigational treatments

More information

Intensity Modulated Radiation Therapy for Squamous Cell Carcinoma of the Penis

Intensity Modulated Radiation Therapy for Squamous Cell Carcinoma of the Penis 1 Louise Francis September Case Study September 23, 2011 Intensity Modulated Radiation Therapy for Squamous Cell Carcinoma of the Penis History of Present Illness: JM is a 56 year-old African American

More information

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016

JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016 JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 6, 2016 Dosimetric and volumetric changes in the rectum and bladder in patients receiving CBCT-guided prostate IMRT: analysis based on daily

More information

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical sites. The final aim will be to be able to make out these

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Abdomen and File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_abdomen_and_pelvis

More information

Accuracy Requirements and Uncertainty Considerations in Radiation Therapy

Accuracy Requirements and Uncertainty Considerations in Radiation Therapy Departments of Oncology and Medical Biophysics Accuracy Requirements and Uncertainty Considerations in Radiation Therapy Introduction and Overview 6 August 2013 Jacob (Jake) Van Dyk Conformality 18 16

More information

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session Stereotactic Body Radiation Therapy Quality Assurance Educational Session J Perks PhD, UC Davis Medical Center, Sacramento CA SBRT fundamentals Extra-cranial treatments Single or small number (2-5) of

More information

Development of a treatment planning protocol for prostate treatments using intensity modulated radiotherapy

Development of a treatment planning protocol for prostate treatments using intensity modulated radiotherapy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 2, NUMBER 2, SPRING 2001 Development of a treatment planning protocol for prostate treatments using intensity modulated radiotherapy Gary A. Ezzell,*

More information

Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment

Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment reports of practical oncology and radiotherapy 1 7 (2 0 1 2) 134 140 Available online at www.sciencedirect.com journal homepage: http://www.elsevier.com/locate/rpor Original research article Utilization

More information

Dose escalation with external beam therapy for

Dose escalation with external beam therapy for Rapid Communication Reduction in Patient-reported Acute Morbidity in Prostate Cancer Patients Treated With 81-Gy Intensity-modulated Radiotherapy Using Reduced Planning Target Volume Margins and Electromagnetic

More information