Effects of Long-Term Exposure to Radiation. Tim Marshel R.T. (R)(N)(CT)(MR)(NCT)(PET)(CNMT)

Size: px
Start display at page:

Download "Effects of Long-Term Exposure to Radiation. Tim Marshel R.T. (R)(N)(CT)(MR)(NCT)(PET)(CNMT)"

Transcription

1 Effects of Long-Term Exposure to Radiation Tim Marshel R.T. (R)(N)(CT)(MR)(NCT)(PET)(CNMT)

2 SNMTS Approved MIIWIIQI: Effects of Long Term Exposure to Radiation 45 Hr PET Registry Review Course Reference Number: CEH s

3 Program Objectives Discuss and describe epidemiology Discuss population used as sources Describe limitations on epidemiologic studies Discuss Hiroshima-Nagasaki atomic bombings and radiation induced malignancies Discuss and explain different risk models Review the genetic effects of radiation Discuss Life Span Shortening Discuss the effects of radiation to the fetus Review stochastic and nonstochastic effects Discuss Radiation Hormesis

4 EPIDEMIOLOGY Epidemiology is the study of diseases in populations of humans or other animals, specifically how, when and where they occur. The science of epidemiology was first developed to discover and understand possible causes of contagious diseases such as: Small pox Thyroid polio

5 EPIDEMIOLOGY First documented case of radiation-induced carcinoma (growth or tumor) In 1902, it was determined that radiation is carcinogenic (cancer causing) Incidence rates for radiation-induced cancer are determined by Expected occurrence in a control group (general population) Occurrence in experimental group (the irradiated population)

6 EPIDEMIOLOGY Population used as sources of data (cancer) Atomic bomb survivors Medically exposed patients Occupationally exposed personnel Populations who receive high natural background exposure

7 EPIDEMIOLOGY Limitations on epidemiologic studies include: Failure to control experimental group for other known carcinogens Insufficient observation periods which permit full demonstration of cancers with long latent periods Using improper control groups Deficient or incorrect health records Studies can be divided into two basic types Whether the events have already happened (retrospective) Whether events may happen in the future (prospective)

8 ATOMIC BOMB SURVIVORS The two A-bombs dropped in August 1945 killed between 150,000 and 200,000 of a total population. Around 93,000 were exposure at the time of the bombing. Approximately 20,000 received doses between 1-5 cgy while ~1,1000 received doses in excess of 2 Gy

9

10 A-BOMB SURVIVORS' OBSERVED AND EXPECTED DEATHS FROM SOLID CANCERS ( )

11 Radiation induced cancer deaths in the Japanese A-Bomb survivor cohort ( ) % Ca s Radiation Total CA Deaths b Radiation Induced Induced Solid Tumors 7, % Leukemia % Combined 7,827 b % a. 86,572 individuals are included in the Life Span Study of survivors (whole body dose received by this group was >10 rads with an average dose of 28 rads). b. By 1991, approximately 38,600 had died; approximately 20% from cancer. Calculations estimate that 1.1% of the deaths in this population resulted from the radiation exposure

12 Earlier Epidemiology Studies [most] of these studies was considered by the Committee to constitute reliable evidence at present for use in risk estimation, for various reasons, including inadequate sample size in some instances, inadequate statistical analysis, and unconfirmed results. BEIR 1980, p. 138

13 Populations exposed to very low levels of irradiation DOE s Hanford Facility Portsmouth Naval Nuclear Shipyard Tri-state study of leukemia deaths Utah residents exposed to fallout Project Smoky Three-Mile Island

14 Project Smoky ,153 Nevada atmospheric A-bomb test Military personnel Dose estimate Most under 5 rem Leukemia Observed 8 cases expected 2-4 cases

15 Effects for Which No Relationship with A-Bomb Exposure Has Been Shown 1. Increased birth defects in the F 1 generation. 2. Increased F 1 mortality. 3. Infertility. 4. Accelerated aging. 5. Altered immune function. 6. Diseases other than neoplasm.

16

17

18

19 BEIR V the possibility that there may be no risks from exposure comparable to external natural background radiation cannot be ruled out.

20

21

22

23 Estimation of Risk

24 Low Level Radiation Exposure Single exposure of 10 rad or less Larger exposures delivered over periods of days or longer (low dose rates)

25 Risk model The relative or multiplicative risk model Explains how age at the time of radiation exposure may influence the cancer risk estimate The absolute or additive risk model Estimates continual increase in risk that is independent of the spontaneous age specific cancer risk at the time of exposure Excess risk Is another way to express risk. Expressed as number of excess cases observed compared with the expected spontaneous occurrence

26 Risk model Absolute risk states risk in terms of number of cases 10⁶ persons/rad/year Excess risk Observed cases expected cases Relative risk Observed cases/ expected cases

27 Risk Risk from a radiation dose is typically based on calculations of the real effect of the radiation dose that is absorbed. These calculations are based on: The type of radiation. Each type of radiation is different and affects tissues differently. The energy that it leaves in the body. More energy means a higher probability of an effect. Where in the body the energy remains. Radiation exposure to a nonsensitive area of the body (i.e., wrist) really has no actual effect. Radiation exposure to a sensitive area of the body (i.e., blood-forming organs) can have an effect if the amount of energy left is high enough.

28 Cancer The average natural lifetime incidence of cancer in the United States is 42 percent 42 out of 100 people will get cancer in their lifetime. 1 Diagnostic medical radiation exposures typically will not increase this risk appreciably. Radiation exposure does not create a unique cancer risk situation, nor is the risk directly measurable or distinguishable from the cancer risk caused by other sources (environmental, chemical, biological, etc.).

29 Cancer Radiation-induced cancers do not appear until at least 10 years after exposure (for tumors) or 2 years after exposure (for leukemia). The time after exposure until possible cancer formation is called the latent period. The risk of cancer after exposure can extend beyond this latent period for the rest of a person s life for tumors or about 30 years for leukemia.

30 Cancer Risk Estimates We lack scientific data to determine a precise risk of cancer in the future from radiation exposure today. We estimate the increase in the cancer incidence rate is about 0.17 percent per rem of radiation dose 1 ; this is based on effects seen at high doses. However, it may be impossible to demonstrate that additional cancers occur at low levels of radiation exposure since the normal incidence rate of cancer is plus or minus some natural variation.

31 Cancer Risk Estimates (cont.) This means that, of a group of 100 people, it is estimated that about 42 will get a cancer in their lifetime. If we expose each to one rem of radiation, still about 42 will get a cancer in their lifetime. If we expose each to five rem of radiation, we estimate that about 43 will get a cancer in their lifetime. What we cannot tell, though, is whether the estimated one additional cancer is just a natural variation or whether it is due to the radiation exposure.

32

33

34 STOCHASTIC EFFECTS: In low dose ranges hereditary effects, carcinogenesis. NON-STOCHASTIC EFFECTS: Various somatic effects, including erythema, epilation, cataracts, impaired fertility, etc.

35

36 RISKS OF LOW-LEVEL RADIATION EXPOSURE Genetic Effects Induction of Cancer Effects on the embryo

37 GENERAL CONCEPTS Considerable time may elapse between radiation exposure and cancer development. In human beings the length of this latent period may be 10, 20, 30 or even 40 years.

38

39 Variable Radiation Sensitivity Cancer can be induced in almost all body tissues but they vary considerably in their sensitivity.

40 Latent Effects 4. Whole body exposure produces more solid tumors than leukemias. Solid tumors also have longer latent periods and periods of expression.

41 Radiation Induced Cancers Cancers induced by radiation are indistinguishable from those that occur spontaneously, hence their existence must be inferred on the basis of statistical excess.

42 Radiation cancer is difficult to demonstrate at high doses and essentially impossible to quantify at low doses even with large populations.

43 High Background of Spontaneous Cancers Reason: The observed number of cancers in the control population is so large with respect to the number of cancers induced by radiation that the radiation effects become undetectable.

44

45

46

47 DOSE RATE EFFECTS

48

49 Thyroid and Breast Cancers The incidence of radiation-induced human breast and thyroid cancer is such that the total cancer risk is greater for women than for men. For other cancers, the risks are about equal.

50 Example of Linear-, Non-Threshold Estimation of Risks at Low Doses 100 rad to breast 1000 women Observed = 40 cancers Expected [Background] = 22 Excess = 18

51 Linear Extrapolation of Risk Estimation 100 rad 1000 women 18 cancers 1 rad 100,000 women 18 cancers

52 LINEAR EXTRAPOLATION OF RISK ESTIMATION 100 rad 1000 women 1 rad 100,000 women Expected = 22 Expected = 2,200 Exces = 18 Excess = vs vs vs. 22

53

54

55

56

57 Age Dependency Age is a major factor in the risk of radiationinduced cancer (breast, lung, and leukemia in A- bomb survivors; in utero irradiation).

58 R.J. Hall, Radiobiology for the Radiologist 5 th ed. Lippincott Williams & Williams, Philadelphia, PA 2000, p. 150

59 Treatment of Hyperthyroid Disease in Humans with 131 I Radioiodine (Na 131 I) Thyroid Gland Dose ~ Gy No significant increase in thyroid cancer or leukemia compared to hyperthyroid control cohort.

60 EXPRESSION OF RADIOSENSITIVITY Absolute Risk Breast and thyroid are well ahead of bone marrow and lung Relative Risk The sequence is probably: Thyroid, bone marrow, lung, and breast.

61 Somatic Effects Approximately 450 cancer deaths/million/rem Natural incidence of cancer deaths is 200,000/million

62 Health Effects of Exposure to Low Levels of Ionizing Radiation BEIR V National Research Council. National Academy Press, Washington D.C., 1990, P. 357.

63

64

65 GENETIC EFFECTS

66 Genetic Effects Must be estimated on the basis of data from animal experiments because NO Conclusive Human Data Exists.

67 Genetic Effects Genetic mutations occur from incorrect repair of damaged chromosomes in egg or sperm cells. Ovaries can repair mild radiation damage. Genetic mutations may show up in future generations. Radiation-caused genetic mutations have been shown in animal studies at very high radiation doses (>25 rem). Radiation-caused genetic mutations have not been seen in exposed human populations.

68 Radiation Damage to Chromosomes Indirect damage Water molecule is ionized, breaks apart, and forms OH free radical. OH free radical contains an unpaired electron in the outer shell and is highly reactive: Reacts with DNA. 75 percent of radiation-caused DNA damage is due to OH free radical. Direct damage DNA molecule is struck by radiation, ionized, resulting in damage.

69 Chromosome Damage Formation of a ring and fragments followed by replication of chromosomes.

70 Chromosome Damage Interchange between two chromosomes forms a chromosome with two centromeres and fragment, followed by replication.

71 What Follows Chromosome Damage? The cell might: Repair mild damage. Have some mild damage that sits inactive until another agent interacts with the same cell. (If it is a reproductive cell like sperm or egg cells) have damage to the genetic code that doesn t show up until future generations (your children, their children, etc.). Have some damage, causing it to become a cancer. Stop functioning. Be killed.

72

73 Estimation of Genetic Effects Conclusions are largely mousebound. How are mouse numbers converted to human numbers? Some evidence of similarity from in vitro studies of imitation and chromosome changes.

74

75

76

77 EFFECTS ON THE EMBRYO

78 Justification A medical procedure involving radiation should be done only when there is a question to be answered is something broken, why the pounding headaches, could there be cancer? This is justification; i.e., there should be an appropriate medical reason for the x ray to be performed. The issue of medical radiation exposure is not only a matter of safety; it s a matter of benefit compared with risk. For properly performed common medical radiation procedures that are necessary in light of the patient s medical condition, safety alone is not the issue.

79 Radiation Effects on the Embryo Depends on. Radiation dose Dose-rate Stage of gestation

80 Classical Triad of Effects of Radiation on the Embryo Growth retardation Embryonic, fetal or neonatal death Congenital malformation

81 Hall, R.J., Radiobiology for the Radiologist 5 th Ed. Lippincott Williams & Williams, Philadelphia, PA 2000, p. 187

82 Embryo is Radiosensitive Embryonic cells have high rates of cell division and cell differentiation. Composed of relatively few cells.

83 NCRP Report 54, page 6 Animal experiments have shown that irradiation during the pre-implantation period generally produces an all-or-none effect, i.e., either very early embryonic death (pre- or immediately post-implantation) is caused, or there is apparent normalcy (including growth rate, fertility, and longevity) of survivors.

84 Hall, R.J., Radiobiology for the Radiologist 5 th Ed. Lippincott Williams & Williams, Philadelphia, PA 2000, p. 187

85

86 Radiation and Congenital Malformations Radiation produces no unique abnormalities. High rate of spontaneous abnormality (4-6%).

87

88 NCRP Report 54, page 7 Noting that the excess risk of adverse effects arising from doses below 10 rad probably is not statistically detectable in experiments involving manageable numbers of animals, one must decide on a level above which scheduling is indicated. Doses below 5 rad to the human embryo-fetus are considered by many to represent an acceptable risk when compared to the potential medical benefit of the examination to the patient.

89 10 Day Rule It must be emphasized that both the ICRP and NCRP recommended application of the 10-day rule only to those studies that do not contribute to management of current disease. It, therefore, follows that studies which do contribute to diagnosis or treatment of current disease should be performed in fertile women without regard to stage of the menstrual cycle. The ACR supports the American College of Obstetricians and Gynecologists 1977 Guidelines for Diagnostic X-ray Examinations of Fertile Women.

90 Hall, R.J., Radiobiology for the Radiologist 5 th Ed. Lippincott Williams & Williams, Philadelphia, PA 2000, p. 188

91

92 Hall, R.J., Radiobiology for the Radiologist 5 th Ed. Lippincott Williams & Williams, Philadelphia, PA 2000, p. 187

93

94 Fetal Irradiation Therefore, one concludes that from preconception to birth there is no period during which a radiological examination of the lower abdomen and pelvis of a woman of reproductive capacity can be conducted with no risk.

95 Linear No-Threshold Hypothesis (LNT) As early as the 1950s, when scientific groups were creating radiation protection guidelines: No one really knew what the effects of radiation at low doses were or if there were any. It was decided to assume that the radiation dose and the effect of the dose were linear and proportional. This means for a given dose of radiation to a person, that person has some possibility of a radiation effect; if the dose of radiation is doubled, that person has twice the possibility and so on. It was also decided that at any dose, no matter how small, there could be an effect (no threshold). Setting radiation protection standards required erring on the safe side setting a standard lower than it may have to be if the real level of hazard were known. This was and still is the basis for the LNT. LNT was intended for scientists to set radiation protection standards and not for general use; because it was easy to use and explain, most people quickly presented it as fact rather than saying we do not know the effects of low doses of radiation or that low doses of radiation are safe.

96 Life Span Shortening Animals that received acute and chronic radiation indicate that animals that were chronically irradiated died younger than animals that were not Examinations of the dead animals showed a decreased number of Parenchymal (essential life sustaining) cells and blood vessels along with increased in connective tissue organs

97 Con t The correlation between life span shortening and dose is linear nonthreshold relationship.

98 Stochastic (random) Stochastic effect are thought to be non threshold as damage to a few cells or even a single cell could theoretically produce the disease They are associated with the linear and linear quadratic dose response curve Examples: include radiation induced cancer and radiation induced genetic effects

99 Nonstochastic (not random) Nonstochastic or deterministic effect are thought to be threshold as these are doses below which the effect is not observed These nonstochatic or deterministic effects are different from stochastic effects in that they need much higher dose to occur Examples: ionizing radiation, cataracts, erythema, fibrosis, and hematopoietic damage Nonstochastic or deterministic affect increase in severity with dose and therefore are considered to be threshold

100 Hormesis By definition, hormesis is a generally favorable biological response to low exposures to toxins or stressors that would give an unfavorable response at high exposures. Some studies of worker populations, plants, animals, and cells have shown favorable health outcomes at low exposures of radiation as compared to adverse outcomes at high exposures. However, these studies have not been accepted as proof of a hormetic effect from radiation. There are some studies in which the authors report that cells exposed to a small amount of radiation (called a conditioning dose) can actually produce what they refer to as an adaptive response that makes cells more resistant to another dose of radiation. Some potential issues: Many of the results cannot be reproduced (meaning that other scientists have tried to do the same testing and get the same results, but haven t been able to; this suggests that the initial results might have been just due to chance). Not every type of cell has this capacity for an adaptive response. The adaptive response does not appear to last long (so the second radiation dose would have to occur soon after the conditioning dose).

Estimates of Risks LONG-TERM LOW DOSE EFFECTS OF IONIZING RADIATION

Estimates of Risks LONG-TERM LOW DOSE EFFECTS OF IONIZING RADIATION Estimates of Risks LONG-TERM LOW DOSE EFFECTS OF IONIZING RADIATION Low Level Radiation Exposure Single exposure of 10 rad or less Larger exposures delivered over periods of days or longer (low dose

More information

1/31/2014. Radiation Biology and Risk to the Public

1/31/2014. Radiation Biology and Risk to the Public Radiation Biology and Risk to the Public Dr. David C. Medich University of Massachusetts Lowell Lowell MA 01854 Introduction Definition: Radiation Biology is the field of science that studies the biological

More information

The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned. Richard C. Miller, PhD Associate Professor The University of Chicago

The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned. Richard C. Miller, PhD Associate Professor The University of Chicago The Linear No-Threshold Model (LNT): Made to Be Tested, Made to Be Questioned Richard C. Miller, PhD Associate Professor The University of Chicago Regulatory Organizations NCRP (Nat l Council on Radiation

More information

Radiation Health Effects

Radiation Health Effects Radiation Health Effects Elena Buglova Incident and Emergency Centre Department of Nuclear Safety and Security Content Historical background Primary target for cell damage Deterministic effects Stochastic

More information

Ernest Rutherford:

Ernest Rutherford: November 1895: Roentgen discovers x rays February 1896: Becquerel discovers radioactivity Ernest Rutherford 1898-99 Ernest Rutherford: 1898-99 The Electromagnetic Spectrum Interaction of Charged Particles

More information

Ionizing Radiation. Nuclear Medicine

Ionizing Radiation. Nuclear Medicine Ionizing Radiation Nuclear Medicine Somatic Deterministic Effect Erythema Somatic Stochastic Effect Leukemia Genetic Effects DNA BIOLOGICAL EFFECTS OF IONIZING RADIATION ON TISSUES, ORGANS AND SYSTEMS

More information

RADIATION RISK ASSESSMENT

RADIATION RISK ASSESSMENT RADIATION RISK ASSESSMENT EXPOSURE and TOXITY ASSESSMENT Osipova Nina, associated professor, PhD in chemistry, Matveenko Irina, Associate professor, PhD in philology TOMSK -2013 The contents 1.What is

More information

RADIATION SAFETY. Junior Radiology Course

RADIATION SAFETY. Junior Radiology Course RADIATION SAFETY Junior Radiology Course Expectations for the Junior Radiology Course Medical School wants students to learn basic principles, factual knowledge, safety info, etc. Medical Students want

More information

Lab & Rad Safety Newsletter

Lab & Rad Safety Newsletter Ohio UNIVERSITY Fall 2018 Lab & Rad Safety Newsletter Alan Watts Radiation Safety Officer In This Issue: Instruction Concerning Risks From Occupational Radiation Exposure... pg.1-5 = Required = Optional

More information

Sources of Data of Stochastic Effects of Radiation. Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic

Sources of Data of Stochastic Effects of Radiation. Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic Sources of Data of Stochastic Effects of Radiation Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic Biological Effects of Ionizing Radiation (BEIR) 2007 National Academy of Science National Research

More information

Radiation Units and Dosimetry 15 August Kalpana M. Kanal, Ph.D., DABR 1

Radiation Units and Dosimetry 15 August Kalpana M. Kanal, Ph.D., DABR 1 Introduction Radiation Units and Dosimetry Radiation dose quantities are used as indicators of the risk of biologic damage to patients from x-rays and thus a good knowledge of the different dose parameters

More information

BIOLOGICAL EFFECTS OF

BIOLOGICAL EFFECTS OF BIOLOGICAL EFFECTS OF RADIATION Natural Sources of Radiation Natural background radiation comes from three sources: Cosmic Radiation Terrestrial Radiation Internal Radiation 2 Natural Sources of Radiation

More information

Radiation related cancer risk & benefit/risk assessment for screening procedures

Radiation related cancer risk & benefit/risk assessment for screening procedures WHO Workshop on Justification of CT for IHA 15-17 Oct 2014 Radiation related cancer risk & benefit/risk assessment for screening procedures Elke A. Nekolla BfS Federal Office for Radiation Protection Radiation

More information

Radioactivity. Lecture 8 Biological Effects of Radiation

Radioactivity. Lecture 8 Biological Effects of Radiation Radioactivity Lecture 8 Biological Effects of Radiation Studies of impact of ionizing radiation on the human body - Hiroshima - US-Japanese teams medical tests, autopsies, human organ analysis, on-site

More information

CONTENTS NOTE TO THE READER...1 LIST OF PARTICIPANTS...3

CONTENTS NOTE TO THE READER...1 LIST OF PARTICIPANTS...3 CONTENTS NOTE TO THE READER...1 LIST OF PARTICIPANTS...3 PREAMBLE...9 Background...9 Objective and Scope...9 Selection of Topics for Monographs...10 Data for Monographs...11 The Working Group...11 Working

More information

BEIR VII: Epidemiology and Models for Estimating Cancer Risk

BEIR VII: Epidemiology and Models for Estimating Cancer Risk National Cancer Institute U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health BEIR VII: Epidemiology and Models for Estimating Cancer Risk Ethel S. Gilbert National Cancer Institute

More information

Radiation Dose Specification

Radiation Dose Specification Chapter 9 Dose Limits for Exposure to Ionizing Radiation Dose Limits for exposure to Ionizing Radiation apply to: Occupational workers Nonoccupational workers Radiation Dose Specification Equivalent Dose

More information

Background Radiation in U.S. ~ msv/yr msv/yr ~0.02 ~0.02 msv msv/day /day (~2 m rem/day) mrem/day) NCRP 4

Background Radiation in U.S. ~ msv/yr msv/yr ~0.02 ~0.02 msv msv/day /day (~2 m rem/day) mrem/day) NCRP 4 Patient Safety Concerns in Diagnostic Radiology? Lawrence T. Dauer, PhD, CHP Assistant Attending Health Physicist Department of Medical Physics RAMPS/GNYCHPS Spring Symposium April 30, 2010 Benefits?

More information

Vascular & Interventional Education Days Thomas M Griglock, Ph.D., DABR Chief Diagnostic Imaging Physicist, OHSU

Vascular & Interventional Education Days Thomas M Griglock, Ph.D., DABR Chief Diagnostic Imaging Physicist, OHSU Vascular & Interventional Education Days - 2018 Thomas M Griglock, Ph.D., DABR Chief Diagnostic Imaging Physicist, OHSU In the beginning. Experimenters circa 1890s In the beginning. Advertisement for General

More information

Biological Effects of Radiation

Biological Effects of Radiation Radiation and Radioisotope Applications EPFL Doctoral Course PY-031 Biological Effects of Radiation Lecture 09 Rafael Macian 23.11.06 EPFL Doctoral Course PY-031: Radioisotope and Radiation Applications

More information

STUDIES OF LOW-DOSE RADIATION AND CANCER. E. Lubin

STUDIES OF LOW-DOSE RADIATION AND CANCER. E. Lubin STUDIES OF LOW-DOSE RADIATION AND CANCER E. Lubin 1 RELEVANT DATA BEIR VII 2006 UNSCEAR 2000 ICRP PIERCE D. PRESTON DL Japanese survivors. CARDIS E. IARC occupational exposure. BRENNER D. CT exposure and

More information

Chem 481 Lecture Material 3/11/09

Chem 481 Lecture Material 3/11/09 Chem 481 Lecture Material 3/11/09 Health Physics NRC Dose Limits The NRC has established the following annual dose limits. Organ NRC Limit (mrem/year) Comments Whole Body 5000 (50 msv/yr) Lens of the Eye

More information

Chapter 14 Basic Radiobiology

Chapter 14 Basic Radiobiology Chapter 14 Basic Radiobiology This set of 88 slides is based on Chapter 14 authored by N. Suntharalingam, E.B. Podgorsak, J.H. Hendry of the IAEA publication (ISBN 92-0-107304-6): Radiation Oncology Physics:

More information

Leukemia: Lessons from the Japanese Experience

Leukemia: Lessons from the Japanese Experience Leukemia: Lessons from the Japanese Experience STUART C. FINCH Cooper Hospital, Camden, New Jersey, USA Key Words. Leukemia. Japan Life Span Study Atomic bomb. Radiation ABSTRACT Probably more has been

More information

Where does the estimate of 29,000 cancers come from? Based on Table 12D from BEIR VII, + risk estimates for 56,900,000 patients

Where does the estimate of 29,000 cancers come from? Based on Table 12D from BEIR VII, + risk estimates for 56,900,000 patients BEIR VII: What It Does and Doesn t Say Michael K O Connor, Ph.D. Dept. of Radiology, Mayo Clinic Using BEIR VII report, estimated radiation-related incident cancers Estimated that 29,000 future cancers

More information

Radiation Safety for New Medical Physics Graduate Students

Radiation Safety for New Medical Physics Graduate Students Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training This is intended as

More information

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident JAPAN EARTHQUAKE & TSUNAMI RELIEF ORGANIZATIONS Doctors Without Borders/Médecins Sans Frontières: Doctorswithoutborders.org The

More information

The Epidemiology of Leukaemia and other Cancers in Childhood after Exposure to Ionising Radiation

The Epidemiology of Leukaemia and other Cancers in Childhood after Exposure to Ionising Radiation IMPORTANT The following is a slide show presentation, presented by Dr. Richard Wakeford at the CHILDREN with LEUKAEMIA International Scientific Conference in London, September 2004. As such it is strictly

More information

Biological Effects of Ionizing Radiation Module 8 - AAPM/RSNA Curriculum. Basic Radiation Biology

Biological Effects of Ionizing Radiation Module 8 - AAPM/RSNA Curriculum. Basic Radiation Biology Biological Effects of Ionizing Radiation Module 8 - AAPM/RSNA Curriculum Basic Radiation Biology Kalpana M. Kanal, PhD, DABR Associate Professor, Radiology Director, Resident Physics Education a copy of

More information

Lecture 14 Exposure to Ionizing Radiation

Lecture 14 Exposure to Ionizing Radiation Lecture 14 Exposure to Ionizing Radiation Course Director, Conrad Daniel Volz, DrPH, MPH Assistant Professor, Environmental & Occupational Health, University of Pittsburgh, Graduate School of Public Health

More information

UNC-Duke Biology Course for Residents Fall

UNC-Duke Biology Course for Residents Fall UNC-Duke Biology Course for Residents Fall 2018 1 UNC-Duke Biology Course for Residents Fall 2018 2 UNC-Duke Biology Course for Residents Fall 2018 3 UNC-Duke Biology Course for Residents Fall 2018 4 UNC-Duke

More information

What We Know and What We Don t Know About Radiation Health Effects

What We Know and What We Don t Know About Radiation Health Effects What We Know and What We Don t Know About Radiation Health Effects An Educational Briefing By The HEALTH PHYSICS SOCIETY Specialists In Radiation Safety March 28, 2001 Presentation Agenda Radiation Exposure

More information

U.S. Low Dose Radiation Research Program

U.S. Low Dose Radiation Research Program U.S. Low Dose Radiation Research Program Update November 2010 ISCORS NF Metting, ScD, Program Manager Office of Science Office of Biological and Environmental Research The Department of Energy Office of

More information

From Epidemiology to Risk Factors aka DDREF: Light and Shadows

From Epidemiology to Risk Factors aka DDREF: Light and Shadows From Epidemiology to Risk Factors aka DDREF: Light and Shadows MELODI 2011, Rome November 2, 2011 Dale L. Preston Hirosoft International Eureka, CA Outline DDREF Origins and Background DDREF in Practice

More information

Epidemiologic Studies. The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies. Types of Epidemiologic Studies

Epidemiologic Studies. The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies. Types of Epidemiologic Studies Division Of Cancer Epidemiology And Genetics Radiation Epidemiology Branch The Carcinogenic Effects of Radiation: Experience from Recent Epidemiologic Studies Elaine Ron Columbia University Radiation Course

More information

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11 REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11 Naoyuki Shigematsu, Junichi Fukada, Toshio Ohashi, Osamu Kawaguchi and Tetsuya Kawata Department of Radiology, School of Medicine, Keio

More information

Role and Responsibility of Medical Staff in Nuclear Accident

Role and Responsibility of Medical Staff in Nuclear Accident Role and Responsibility of Medical Staff in Nuclear Accident 26 th November, 2011 Tomoko KUSAMA Oita University of Nursing and Health Sciences 1 Roles of Medical Staff in Nuclear Accident Clarify of Radiation

More information

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb Ionizing Radiation Michael J. Vala, CHP Bristol-Myers Squibb michael.vala@bms.com 732-227-5096 2013 American Industrial Hygiene Association, New Jersey Section, Inc. Course Objectives At the end of this

More information

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology Radiation Oncology Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology This exam tests your knowledge of the principles of cancer and radiation biology

More information

Yes I Can Site Report: The Radiation Effects Research Foundation in Hiroshima Report by Shari Yasin, McMaster University

Yes I Can Site Report: The Radiation Effects Research Foundation in Hiroshima Report by Shari Yasin, McMaster University Yes I Can Site Report: The Radiation Effects Research Foundation in Hiroshima Report by Shari Yasin, McMaster University 1. How did the RERF start? The Atomic Bomb Casualty Commission (ABCC), the predecessor

More information

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND Univerzita Karlova v Praze - 1. Lékařská fakulta Radiation protection NUCLEAR MEDICINE Involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine study

More information

Laboratory Safety 197/405. Types of Radiation 198/405

Laboratory Safety 197/405. Types of Radiation 198/405 Laboratory Safety 197/405 Types of Radiation 198/405 Particle Radiation Alpha He nucleus (heavy particle) +2 charge Internal hazard only Beta Electron -1 charge Internal and external hazard Neutron 199/405

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Overview Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical Energy Industry Other Man-Made

More information

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP Ionizing Radiation, Cancer, and Causation James P. Seward, MD MPP FACOEM Clinical Professor of Medicine, UCSF American Occupational Health Conf May 4, 2015 Ionizing Radiation, Cancer, and Causation James

More information

RADIATION BIOLOGY. 1. Radiation Units. 1.1 Absorbed Dose. 1.2 Equivalent Dose

RADIATION BIOLOGY. 1. Radiation Units. 1.1 Absorbed Dose. 1.2 Equivalent Dose Ing. Daniela Skibová, Ph.D., 1. Radiation Units The biological effect of radiation can be understood in terms of the transfer of energy from the radiation (photons and particles) to the tissue. When the

More information

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014 Chapter 7 Molecular & Cellular Radiation Biology What is Radiation Biology? A branch of biology concerned with how ionizing radiation effects living systems. Biological damage that occurs from different

More information

Mapping the ASRT Objectives for Radiation Protection (47 Objectives) and Radiation Biology (21 Objectives) to this Text

Mapping the ASRT Objectives for Radiation Protection (47 Objectives) and Radiation Biology (21 Objectives) to this Text Appendix B Mapping the ASRT Objectives for Radiation Protection (47 Objectives) and Radiation Biology (21 Objectives) to this Text 1. Identify and justify the need to minimize unnecessary radiation exposure

More information

ICRP = International Commission on. recommendations and guidance on. Functioning since 1928.

ICRP = International Commission on. recommendations and guidance on. Functioning since 1928. ICRP = International Commission on Radiological Protection; An advisory body providing recommendations and guidance on radiation protection; Functioning since 1928. While the use of ionising radiation

More information

Radiation Dose in Pediatric Imaging

Radiation Dose in Pediatric Imaging Radiation Dose in Pediatric Imaging A Brief History of Radiology Dose: Why Does It Matter? Measuring Exposure and Dose Deterministic Effects Stochastic Effects Common Exams: What is the Risk? Reducing

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

Health effects of radiation (acute and late effects)

Health effects of radiation (acute and late effects) ANSN Regional Workshop on Medical Response to Radiological Emergency Handling Complex Situations 1-4 October 2013, Chiba, Japan Health effects of radiation (acute and late effects) Hideo Tatsuzaki, M.D.,

More information

Long-term Epidemiological Studies on Radiation Effects in A-bomb Survivors

Long-term Epidemiological Studies on Radiation Effects in A-bomb Survivors Consultancy Meeting on Science, Technology and Society Perspectives on Nuclear Science, Radiation and Human Health: The International Perspective 23 May 2017 Hiroshima, Japan Long-term Epidemiological

More information

Epidemiological Studies on the Atomic-bomb Survivors (Handout)

Epidemiological Studies on the Atomic-bomb Survivors (Handout) Epidemiological Studies on the Atomic-bomb Survivors (Handout) Kotaro OZASA Department of Epidemiology Radiation Effects Research Foundation Hiroshima, JAPAN 1 Atomic-bombings in Hiroshima and Nagasaki

More information

Molecular Radiobiology Module 4 Part #3

Molecular Radiobiology Module 4 Part #3 Molecular Radiobiology Module 4 Part #3 Bushong - Chapter 31 10-526-197 - Rhodes Interaction & damage is a matter of chance Energy deposited rapidly 10-17 seconds Interactions are non-selective in tissue

More information

CHAPTER 6 DOSE AND RISK ESTIMATION

CHAPTER 6 DOSE AND RISK ESTIMATION CHAPTER 6 DOSE AND RISK ESTIMATION 6.1 INTRODUCTION Ionizing radiation emitted by the radioactive decay of nuclides released into the environment poses a risk of inducing excess cancers or heritable genetic

More information

Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma,

Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma, Estimating Risk of Low Radiation Doses (from AAPM 2013) María Marteinsdóttir Nordic Trauma, 20140521 Stochastic effects Linear No Threshold - LNT-model Uncertain Material produced by William R. Hendee

More information

Radiation Safety For Anesthesiologists. R2 Pinyada Pisutchareonpong R2 Nawaporn Sateantantikul Supervised by Aj Chaowanan Khamtuicrua

Radiation Safety For Anesthesiologists. R2 Pinyada Pisutchareonpong R2 Nawaporn Sateantantikul Supervised by Aj Chaowanan Khamtuicrua Radiation Safety For Anesthesiologists R2 Pinyada Pisutchareonpong R2 Nawaporn Sateantantikul Supervised by Aj Chaowanan Khamtuicrua Modern World Non Ionizing VS Ionizing Non Ionizing Harmless Ex. visible

More information

Annex X of Technical Volume 4 RADIATION AND HEALTH EFFECTS AND INFERRING RADIATION RISKS FROM THE FUKUSHIMA DAIICHI ACCIDENT

Annex X of Technical Volume 4 RADIATION AND HEALTH EFFECTS AND INFERRING RADIATION RISKS FROM THE FUKUSHIMA DAIICHI ACCIDENT Annex X of Technical Volume 4 RADIATION AND HEALTH EFFECTS AND INFERRING RADIATION RISKS FROM THE FUKUSHIMA DAIICHI ACCIDENT Anxieties about the risk of harm from radiation are often out of proportion

More information

Is a Linear Extrapolation of Cancer Risks to Very Low Doses Justified?

Is a Linear Extrapolation of Cancer Risks to Very Low Doses Justified? Is a Linear Extrapolation of Cancer Risks to Very Low Doses Justified? May 3, 2000 Radiation Research Society Albuquerque, New Mexico, USA Daniel J. Strom Risk Analysis & Health Protection Richland, Washington

More information

RADIOLOGY AN DIAGNOSTIC IMAGING

RADIOLOGY AN DIAGNOSTIC IMAGING Day 2 p. 1 RADIOLOGY AN DIAGNOSTIC IMAGING Dr hab. Zbigniew Serafin, MD, PhD serafin@cm.umk.pl and Radiation Protection mainly based on: C. Scott Pease, MD, Allen R. Goode, MS, J. Kevin McGraw, MD, Don

More information

RADIATION HAZARDS AND SAFETY

RADIATION HAZARDS AND SAFETY RADIATION HAZARDS AND SAFETY Dr. S. P. Tyagi All types of radiation produce changes in the living tissues. The resultant cellular injury causes physiological and pathological changes leading to Radiation

More information

Low Level Exposure to Ionizing Radiation: Current Concepts and Concerns for Nuclear Pharmacists

Low Level Exposure to Ionizing Radiation: Current Concepts and Concerns for Nuclear Pharmacists .::VOLUME 13, LESSON 7::. Low Level Exposure to Ionizing Radiation: Current Concepts and Concerns for Nuclear Pharmacists Continuing Education for Nuclear Pharmacists and Nuclear Medicine Professionals

More information

Issues to Discuss 2/28/2018. The Adverse Effects of Occupational and Environmental Ionizing Radiation: James Seward, MD MPP. Past, Present, and Future

Issues to Discuss 2/28/2018. The Adverse Effects of Occupational and Environmental Ionizing Radiation: James Seward, MD MPP. Past, Present, and Future The Adverse Effects of Occupational and Environmental Ionizing Radiation: Past, Present, and Future James P. Seward, MD MPP FACOEM Clinical Professor of Medicine UCSF Presented at UCSF OEM Conference March

More information

Understanding Radiation and Its Effects

Understanding Radiation and Its Effects Understanding Radiation and Its Effects Prepared by Brooke Buddemeier, CHP University of California Lawrence Livermore National Laboratory Presented by Jeff Tappen Desert Research Institute 1 Radiation

More information

Cancer Risk Factors in Ontario. Other Radiation

Cancer Risk Factors in Ontario. Other Radiation Cancer Risk Factors in Ontario Other Radiation OTHer radiation risk factor/ exposure Radon-222 and decay products X-radiation, gamma radiation Cancer The context where high risks were reported Magnitude

More information

Radiation Carcinogenesis

Radiation Carcinogenesis Radiation Carcinogenesis November 11, 2014 Dhyan Chandra, Ph.D. Pharmacology and Therapeutics Roswell Park Cancer Institute Email: dhyan.chandra@roswellpark.org Overview - History of radiation and radiation-induced

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 13, 2015 Overview Nuclear Energy Industry Outlook Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical

More information

Ionizing Radiation. Alpha Particles CHAPTER 1

Ionizing Radiation. Alpha Particles CHAPTER 1 CHAPTER 1 Ionizing Radiation Ionizing radiation is radiation that has sufficient energy to remove electrons from atoms. In this document, it will be referred to simply as radiation. One source of radiation

More information

Stochastic effects. Biological foundation of radiation protection. Part 2: Stochastic effects

Stochastic effects. Biological foundation of radiation protection. Part 2: Stochastic effects Biological foundation of radiation protection Part 2: Stochastic effects Audun Sanderud 05/04/2005 FYS-KJM4710 - Lection V 1 Stochastic effects Stochastic effects: A change in cells can lead to: - Cancer

More information

The issue of second malignancies. Risks associated with radiotherapy UCL

The issue of second malignancies. Risks associated with radiotherapy UCL The issue of second malignancies Risks associated with radiotherapy Spinocellular carcinoma of a dentist's finger QuickTime et un module de décompression QuickTime et to CD sont requis pour visualiser

More information

Radiobiology of radionuclide therapy

Radiobiology of radionuclide therapy Radiobiology of radionuclide therapy Prof Sarah Baatout Sarah.Baatout@sckcen.be Head of the Radiobiology Unit, SCK CEN Faculty of Biosciences Engineering, Universiteit Gent, Belgium Faculté des Sciences,

More information

Health physics is concerned with protecting people from the harmful effects

Health physics is concerned with protecting people from the harmful effects A Brief History of Radiation Health physics is concerned with protecting people from the harmful effects of ionizing radiation while allowing its beneficial use in medicine, science, and industry. Since

More information

Steven Aaron Ross, M.D. Pediatric Radiologist El Paso Imaging Consultants El Paso Children s Hospital

Steven Aaron Ross, M.D. Pediatric Radiologist El Paso Imaging Consultants El Paso Children s Hospital Steven Aaron Ross, M.D. Pediatric Radiologist El Paso Imaging Consultants El Paso Children s Hospital I will prescribe regimens for the good of my patients according to my ability and my judgment and never

More information

Radiation-Induced. Neoplastic Transformation In Vitro, Hormesis and Risk Assessment. Les Redpath Department of Radiation Oncology UC Irvine

Radiation-Induced. Neoplastic Transformation In Vitro, Hormesis and Risk Assessment. Les Redpath Department of Radiation Oncology UC Irvine Radiation-Induced Neoplastic Transformation In Vitro, Hormesis and Risk Assessment Les Redpath Department of Radiation Oncology UC Irvine Neoplastic Transformation In Vitro Clear cancer-related related

More information

Review of the Radiobiological Principles of Radiation Protection

Review of the Radiobiological Principles of Radiation Protection 1 Review of the Radiobiological Principles of Radiation Protection Cari Borrás, D.Sc., FACR, FAAPM Radiological Physics and Health Services Consultant Adjunct Assistant Professor (Radiology) GWU School

More information

CT Radiation Risks and Dose Reduction

CT Radiation Risks and Dose Reduction CT Radiation Risks and Dose Reduction Walter L. Robinson, M.S. D.A.B.S.N.M., D.A.B.M.P., D.A.B.R. Consultant Certified Medical Radiation Health & Diagnostic Imaging Physicist Medical Radiation and Children

More information

ARRT Specifications Radiation Exposure & Monitoring

ARRT Specifications Radiation Exposure & Monitoring Radiation Protection Review 15% (30) 11% (22) Gina Tice, MSRS, RT(R) Gadsden State Community College ARRT Specifications Radiation Exposure & Monitoring Radiation Protection (45) Biological Aspects of

More information

Non-Targeted Effects. Break out Session 1 H.Métivier Rapporteur

Non-Targeted Effects. Break out Session 1 H.Métivier Rapporteur Non-Targeted Effects Break out Session 1 H.Métivier Rapporteur Non-Targeted Effects The group discussed the non-targeted effects and their potential impacts on RP system. However, after a fruitful and

More information

ACUTE RADIATION SYNDROME: Diagnosis and Treatment

ACUTE RADIATION SYNDROME: Diagnosis and Treatment ACUTE RADIATION SYNDROME: Diagnosis and Treatment Badria Al Hatali, MD Medical Toxicologist Department of Environmental and Occupational Health MOH - Oman Objectives Provide a review of radiation basics

More information

Article Excerpts: Radiation protection concerns among staff performing Fluoroscopic procedures.

Article Excerpts: Radiation protection concerns among staff performing Fluoroscopic procedures. Article Excerpts: Radiation protection concerns among staff performing Fluoroscopic procedures. E.P./Cath Lab Pain Management Radiology Contents: Interventional Radiology Carries Occupational Risk for

More information

Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection

Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection NCRP SC 1-25 DRAFT COMMENTARY Implications of Recent Epidemiologic Studies for the Linear Nonthreshold Model and Radiation Protection September 15, 2017 Note: Copyright permission is being sought for the

More information

Radiation related illnesses: risks and awareness

Radiation related illnesses: risks and awareness Radiation related illnesses: risks and awareness Eric Radtke RADPAD Radiation Protection Worldwide Innovations & Technologies Inc. 1895 Wilhelm Conrad Roentgen discovered radiation 1896 radiation

More information

AN ESTIMATE OF THE DOUBLING DOSE OF IONIZING RADIATION FOR HUMANS

AN ESTIMATE OF THE DOUBLING DOSE OF IONIZING RADIATION FOR HUMANS - 23 - AN ESTIMATE OF THE DOUBLING DOSE OF IONIZING RADIATION FOR HUMANS James V. Neel Department of Human Genetics University of Michigan Medical School Ann Arbor, Michigan 48109-0618 Since 1946 a continuing

More information

The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation

The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation The Impact of Bystander Effects and Adaptive Responses in the Health Risks of Low Dose Ionizing Radiation Edouard Azzam New Jersey Medical School Newark, USA Two phenomena have been recently implicated

More information

A factor which brings about a mutation is called a mutagen. Any agent that causes cancer is called a carcinogen and is described as carcinogenic.

A factor which brings about a mutation is called a mutagen. Any agent that causes cancer is called a carcinogen and is described as carcinogenic. Cancer Cancer is one of the most common diseases in the developed world: 1 in 4 deaths are due to cancer 1 in 17 deaths are due to lung cancer Lung cancer is the most common cancer in men Breast cancer

More information

Health Physics and the Linear No-Threshold Model

Health Physics and the Linear No-Threshold Model Health Physics and the Linear No-Threshold Model Understanding Radiation and Its Effects John Baunach Vanderbilt University Nashville, TN What is health physics? Outline What organizational bodies govern

More information

RAMPS-GNYCHPS 2010 Spring Symposium New York, NY, April 30, Error Prevention and Patient Safety for Radiation Treatment and Diagnosis

RAMPS-GNYCHPS 2010 Spring Symposium New York, NY, April 30, Error Prevention and Patient Safety for Radiation Treatment and Diagnosis RAMPS-GNYCHPS 2010 Spring Symposium New York, NY, April 30, 2010 Error Prevention and Patient Safety for Radiation Treatment and Diagnosis Radiotherapy and Radiology in the 21 st Century: Risks and Benefits

More information

Radiobiology Hall 14: Radiologic Terrorism (Completed)

Radiobiology Hall 14: Radiologic Terrorism (Completed) Radiobiology Hall 14: Radiologic Terrorism (Completed) What are a few of the possible scenarios of radiologic terrorism? 1. Detonation of a nuclear major city 2. An attack on a nuclear power station 3.

More information

1.08 BIOLOGICAL EFFECTS OF RADIATION RCT/HPT STUDY GUIDE

1.08 BIOLOGICAL EFFECTS OF RADIATION RCT/HPT STUDY GUIDE LEARNING OBJECTIVES 1.08.01 Identify the function of the following cell structures: a. Cell membrane b. Cytoplasm c. Mitochondria d. Lysosome e. Nucleus f. DNA g. Chromosomes 1.08.02 Identify effects of

More information

Radiation Exposure 1980 to 2006

Radiation Exposure 1980 to 2006 Radiation Exposure 1980 to 2006 Background 3-6 msv/yr Natural (85% 45%) Radon Cosmic Rays Air travel Living at Altitude Man-made (15% 55%) Medical Imaging** mgy Radiation Therapy cgy Radiation Whole Body

More information

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation.

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. Radiation Therapy Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. One person in three will develop some form of cancer in their lifetime.

More information

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES May 2011 IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES KEY FACTS Ionizing radiation is a type of energy released by atoms in the form of electromagnetic waves or particles. People are exposed

More information

Space Radiation Risks for Long. Duration Missions Edward Semones

Space Radiation Risks for Long. Duration Missions Edward Semones Space Radiation Risks for Long Duration Missions Edward Semones Radiation Health Officer Space Life Sciences Directorate Johnson Space Center Presented to the American Astronautical Society November 16,

More information

Objectives. Explanation of Radiation Dose Terminology 10/9/2018. What are these lines?

Objectives. Explanation of Radiation Dose Terminology 10/9/2018. What are these lines? Oh no, it s not!!! with Breast Tomosynthesis It s not what you may be thinking, so I ll tell you! IT IS A VIETNAMESE PUMPKIN! Oh yes, it is! Objectives Explain radiation dose terminology Recognize 2D and

More information

Supplementary Information. Renseignements supplémentaires. Exposé oral. Oral Presentation. Presentation from Jerry Cuttler

Supplementary Information. Renseignements supplémentaires. Exposé oral. Oral Presentation. Presentation from Jerry Cuttler CMD 18-H6.35A File / dossier: 6.01.07 Date: 2018-05-22 Edocs: 5541801 Supplementary Information Oral Presentation Presentation from Jerry Cuttler Renseignements supplémentaires Exposé oral Présentation

More information

LOW DOSES OF RADIATION REDUCE RISK IN VIVO

LOW DOSES OF RADIATION REDUCE RISK IN VIVO Dose-Response: An International Journal Volume 5 Issue 1 ADAPTIVE BIOLOGICAL RESPONSES FOLLOWING EXPOSURES TO IONIZING RADIATION Article 4 3-2007 LOW DOSES OF RADIATION REDUCE RISK IN VIVO REJ Mitchel

More information

Understanding radiation-induced cancer risks at radiological doses

Understanding radiation-induced cancer risks at radiological doses Understanding radiation-induced cancer risks at radiological doses David J. Brenner Center for Radiological Research Columbia University Medical Center New York, NY djb3@columbia.edu Let s distinguish

More information

Childhood Leukemia Causes, Risk Factors, and Prevention

Childhood Leukemia Causes, Risk Factors, and Prevention Childhood Leukemia Causes, Risk Factors, and Prevention Risk Factors A risk factor is anything that affects your chance of getting a disease such as cancer. Learn more about the risk factors for childhood

More information

Risk factors for radiogenic cancer: a comparison of factors derived from the Hanford survey with those

Risk factors for radiogenic cancer: a comparison of factors derived from the Hanford survey with those British Journal of Industrial Medicine 1985;42: 341-345 Risk factors for radiogenic cancer: a comparison of factors derived from the Hanford survey with those recommended by the ICRP K F BAVERSTOCK AND

More information

María José Mesa López

María José Mesa López María José Mesa López q Radiobiology. q Ionizing Radiations. q Mutations. q Stochastic Effects Vs Deterministic Effects. q Cellular Radiosensitivity. q Bibliography. Science which combines the basic principles

More information