Helicobacter pylori are gram-negative spiral microaerophilic

Size: px
Start display at page:

Download "Helicobacter pylori are gram-negative spiral microaerophilic"

Transcription

1 GASTROENTEROLOGY 2005;128: Helicobacter pylori and MALT Lymphoma PEDRO FARINHA and RANDY D. GASCOYNE Department of Pathology and Laboratory Medicine, British Columbia Cancer Agency and the University of British Columbia, Vancouver, British Columbia, Canada Helicobacter pylori are gram-negative spiral microaerophilic organisms that belong to the Campylobacterales order, Helicobacteracea family. They are capable of colonizing the harsh environment of the human stomach. Over 50% of the world s population carries this infection. 1 H pylori have colonized the human stomach since time immemorial. 2 In virtually all infected individuals, H pylori causes inflammation in the form of chronic active gastritis, which progresses in 10% 20% of affected persons to peptic ulcer disease, gastric adenocarcinoma, and/or mucosa-associated lymphoid tissue (MALT) lymphoma. However, only a very small minority (1% 2%) of infected individuals will develop a malignant disease. 3 One of the most distinctive features of H pylori is the genetic diversity it displays between clinical isolates. 4 H pylori isolates are highly diverse, with evidence of a constantly changing genome, primarily caused by point mutations, substitutions, insertions, and/or deletions. 5,6 Moreover, mixed infections are frequent and may lead to exchange of DNA fragments between H pylori strains in a single host. This suggests co-evolution of H pylori with its human host and that disease may be caused both by strain-specific properties that increase virulence and by host susceptibility. Such strains possibly evolve through exercising significant flexibility in gene content and gene regulation. Among many of the host pathogen interactions that potentially could occur, some could prove beneficial in which the co-evolved bacteria and the host reach an almost symbiotic relationship. H pylori may not be just a bad bug in all instances. A large body of data have implicated H pylori in the pathogenesis of gastric MALT lymphoma, including epidemiologic, biological, and molecular genetic studies. Interestingly, both H pylori and MALT lymphoma were born almost simultaneously, when H pylori was described by Marshall and Warren 7 and MALT lymphoma was recognized as a distinct entity by Isaacson and Wright. 8 These latter investigators noted morphologic similarities between the histology of the condition known as immunoproliferative small intestinal disease, a subtype of primary intestinal B-cell lymphoma, and primary low-grade gastric B-cell lymphoma. Moreover, the histologic features differed from that of comparable nodal low-grade B-cell lymphomas in that the overall architecture and cytology of these lymphomas bore a resemblance to normal MALT tissue rather than recapitulating the structure of lymph nodes. Roughly one third of all non-hodgkin s lymphomas in adults are of extranodal origin. MALT lymphomas, by definition arising at mucosal/epithelial sites, collectively account for approximately 8% of all non-hodgkin s lymphomas, with gastric MALT lymphoma being the most common extranodal site. This review summarizes the published data that support a causative role for H pylori infection in the pathogenesis of gastric MALT lymphomas. The epidemiology of H pylori is discussed and its role in the pathogenesis, including factors affecting the infectious organism and the host. A major focus of this review addresses the relationship between the immune response, H pylori, and MALT lymphomas. This is followed by a description of the morphology, phenotype, and unifying concepts of the molecular genetics of MALT lymphomas. Treatment strategies of gastric MALT lymphoma are not discussed because these are beyond the scope of this review. Finally, we conclude with a brief discussion of H pylori negative MALT lymphomas, preventative measures for reducing infection, and the direction of future research into MALT lymphomas. Abbreviations used in this paper: CagA, cytotoxin-associated antigen A; CARD4, caspase recruitment domain; CIMP, CpG island methylator phenotype; DC-SIGN, dendritic cell specific intercellular adhesion molecule-3 grabbing nonintegrin; DLBCL, diffuse large B-cell lymphoma; DSB, double-strand DNA breaks; FOXP1, Forkhead box protein P1; GST, glutathione S-transferase; IAP, inhibitors of apoptosis; IFN, interferon; IGH, immunoglobulin heavy chain; IL, interleukin; LEL, lymphoepithelial lesion; MALT, mucosa-associated lymphoid tissue; MHC, major histocompatability complex; NF- B, nuclear factor B; ntx, neonatal thymectomized; PAI, pathogenicity island; PCR, polymerase chain reaction; ROS, reactive oxygen species; SS, Sjögren s syndrome; Th1, helper1 T cells; Th2, helper2 T cells; TRAF, tumor necrosis factor associated factor; Treg, regulatory T cells; TNF-, tumor necrosis factor by the American Gastroenterological Association /05/$30.00 doi: /j.gastro

2 1580 FARINHA AND GASCOYNE GASTROENTEROLOGY Vol. 128, No. 6 Epidemiology Infection with H pylori occurs worldwide and affects at least half the world s population, but the prevalence varies greatly among countries and within individuals in the same country. 3 The overall prevalence of H pylori infection is correlated strongly with socioeconomic status. 9 The prevalence among adults is approximately 80% in many developing countries and 50% in industrialized countries. Direct fecal-oral transmission predominates in industrialized countries whereas other transmission routes, such as contamination of water, may be more important in developing countries. 10 The bacteria is transmitted within families in early childhood. 11 Children often are infected by a strain with a genetic fingerprint identical to that of their parents, and they maintain this genotype even after moving to a different environment. Improved sanitation in industrialized countries reduced the rate of infection of H pylori over recent decades. In the United States, there has been a decrease in H pylori infection prevalence since the second half of the 19th century. It has been known for some time that even though the genome of H pylori is extraordinarily diverse, strains fall into distinct geographic groups. 2,12 By using distinct patterns of polymorphic sites based on the nucleotide sequences of 8 genes in 370 H pylori strains from 27 geographic and ethnic human populations, Falush et al 2 identified 7 H pylori populations and subpopulations. By comparing human migratory fluxes with these H pylori populations, some of the apparent inconsistencies could be explained by known human migration patterns (eg, the appearance of Helicobacter subpopulation West Africa (hspw Africa) strains in African-Americans in the United States as a result of the slave trade, and the isolation of H pylori East Asia strains from Native Americans introducing these strains into continental America some 12,000 years ago). In adults, H pylori infection usually is chronic and will not heal without specific therapy. In children, the elimination of the bacterium probably is relatively common, aided by the more frequent administration of antibiotics given for other reasons. 13 There currently is no evidence for zoonotic transmission, although H pylori is found in some nonhuman primates and occasionally in other animals. 14 Undoubtedly, management of colonized individuals will continue to evolve as new knowledge emerges and socioeconomic conditions change. Gastric MALT lymphoma develops in only a very small percentage of patients. The estimated incidence of this lymphoma in the United States is between 1 per 30,000 80,000. Similar numbers are reported in European countries, with recent reported incidence rates of.7.8 per 100,000 population, except in England where the incidence appears lower. 15 However, there are differences between populations within Europe, the United States, and other countries. A higher incidence (13 per 100,000) has been reported in Northeastern Italy, where the prevalence of H pylori is also very high, being detected in 80% of the adult population. 16 Developing countries, not surprisingly, show higher incidences, for example, in Tunisia, with incidence rates of 6.3 and 3.8 per 100,000, for men and women, respectively. 17 H pylori are not the only helicobacter species infecting humans. Humans also can become infected with Helicobacter heilmannii, a tightly coiled spiral bacterium larger than H pylori, found in dogs, cats, pigs, and nonhuman primates. The prevalence in humans is approximately.5%. H heilmannii causes only mild gastritis in most cases, but it also can induce acquired MALT in the stomach and has been found in association with gastric MALT lymphoma. 18 Evidence Linking H pylori Infection With Gastric MALT Lymphomas The first study linking H pylori with gastric MALT lymphoma occurred in These investigators showed that H pylori infection significantly increased the risk for gastric MALT lymphoma because the vast majority of gastric MALT lymphoma patients were infected with H pylori. The normal stomach is devoid of organized lymphoid tissue. It was shown that lymphoid follicles develop in H pylori infected persons and that the lymphoid tissue formed in response is identical morphologically to normal MALT. Moreover, case-control studies have shown an association between previous H pylori infection and the development of primary gastric lymphoma. 20 Direct evidence confirming the importance of H pylori in the pathogenesis of gastric MALT lymphoma was obtained from studies that detected the lymphoma B-cell clone in the biopsy specimens of chronic gastritis that preceded the development of lymphoma and from a series of in vitro studies showing that lymphoma growth could be stimulated in culture by H pylori strain-specific T cells when crude lymphoma cultures were exposed to the organism. 21 Finally, Wotherspoon et al 22 in 1993, and subsequently several other groups, showed that eradication of H pylori with antibiotics alone resulted in regression of gastric MALT lymphoma in 75% of cases. Most of these patients whose lymphomas responded to antibiotic eradication therapy have shown sustained clinical remissions. 23 These landmark studies showed that a ma-

3 May 2005 H PYLORI AND MALT LYMPHOMAS 1581 lignant tumor could be eradicated successfully by using antibiotic therapy alone. Moreover, very strong evidence based on seroepidemiologic case-control studies showed that infection with H pylori increased the risk for gastric carcinoma. Thus, in 1994, H pylori was classified as a type I (definitive) carcinogen by the International Agency for Research on Cancer. Pathogenesis In contrast to infection with other mucosal pathogens, only a small percentage of persons carrying H pylori ever develop clinical sequelae. H pylori induce gastric inflammation in virtually all hosts, and gastritis increases the risk for gastric and duodenal ulceration, distal gastric adenocarcinoma, and gastric mucosal lymphoproliferative disease of the MALT type. Recent investigations have emphasized that disease-specific mechanisms involve choreographed interactions between the pathogen and host, which, in turn, are dependent on strain-specific bacterial factors and induced host effectors. H pylori Bacteria indigenous to the human body are numerous and varied. They dwell in multiple niches on mucosal surfaces in various anatomic sites. Many of these sites are colonized persistently by several species. Such cohabitation implies an equilibrium in which the biologic cost of the colonization to the host is low. The different organisms compete for nutrients and the best locations, and participate in a number of shared activities such as waste management and genetic exchange. Colonization of the stomach by H pylori is an exception to these generalities because it can persist for decades and is not deterred by competing microbes. The H pylori genome (1.65 million bp) codes for about 1500 proteins. 5,6 H pylori research has benefited from genomic approaches more than any other bacterial pathogen. It was the first bacterial species to have the complete genome of 2 unrelated clinical isolates ( J99 and 26995) fully sequenced and compared. 5,6 Functional genomics has used the expression profiling of messenger RNA to provide a condition-dependent and time-specific genome scale portrait of the organism s transcriptome. 24 Comparison of the 2 completely sequenced H pylori organisms revealed a significant amount of genetic variation between genomes. The genome of strain J99 is smaller (1,643,831 bp) than that of strain (1,667,867 bp). 5,6 They contain 52 and 110 strain-specific genes, respectively, approximately half of which reside within a locus termed the plasticity zone. 25 These 2 H pylori genome sequencing projects showed that many genes could be switched on and off by base mispairing mediated mutagenesis. Proteins encoded by such genes include surface molecules responsible for control of entry of foreign DNA into the bacteria, and proteins affecting bacterial motility. Strains of H pylori have been shown to have a panmictic or freely recombining population structure over a period of years. The populations colonizing a given host experience genetic variation as a result of point mutations or recombination, which can involve exchanges across loci within a genome (intragenomic) or between differing organisms (intergenomic). 26 DNA microarray analysis has been used to study H pylori genes within the same host who had refused eradication therapy (9-year period). The genes of the later isolated strains were related closely but not identical to either the earlier isolates or even each other. Each of 13 new isolates tested had a unique complement of genes. 27 Considering that a single gastric biopsy specimen represents only a small percentage of gastric mucosal cells, the amount of variation within the total population of H pylori must be enormous. Thus, the genome of H pylori may change continuously during chronic colonization of an individual host by importing small pieces of foreign DNA from other H pylori strains during persistent or transient mixed infection. 28 These findings support microevolution of H pylori, that is, gradual small changes in its genome as an adaptive mechanism, with marked plasticity and a trend to adaptation to the host. A number of factors may impact this adaptation. These include ph levels within different gastric niches and their influence on the survival of H pylori and its ability to grow under acidic conditions, the distribution and viscosity of mucin glycoforms in the gastric mucosa, the adherence of H pylori to gastric mucins, and host genotype and physiology affecting niche characteristics. 29,30 After being ingested, the bacteria must evade the bactericidal activity of the gastric luminal contents and then enter the mucous layer. Urease production and motility are essential for this first step of infection. Urease hydrolyzes urea into carbon dioxide and ammonia, thereby allowing H pylori to survive in this acidic milieu. H pylori flagella have adapted similarly to the gastric microenvironment. Most strains of H pylori possess the cytotoxin-associated antigen (CagA), a kilodalton protein. 31 It is found in 60% 70% of H pylori strains in the industrialized world. 1 The caga gene is localized at one end of the cag pathogenicity island (cag-pai), a 37-kb genomic fragment containing 31 putative genes. Several of these genes encode components of a type IV secretion apparatus that translocates the 120- to 145-kilodalton CagA protein into the host cell. 32 After entering an epithelial

4 1582 FARINHA AND GASCOYNE GASTROENTEROLOGY Vol. 128, No. 6 cell, CagA is phosphorylated and binds to SHP-2 tyrosine phosphatase, leading to a growth factor like cellular response and cytokine production by the host cell. The deregulation of SHP-2 by CagA is an important mechanism by which CagA promotes gastric epithelial carcinogenesis. 33 In the lymphocytes, it has been shown that after entering the cells, CagA affects different pathways. Umehara et al 34 studied the effects of CagA protein on the growth and survival of B lymphocytes by using B-cell lines ectopically expressing CagA. The CagA protein was shown to suppress lymphoid cell proliferation through the suppression of the JAK-STAT pathway, which would be advantageous to the bacteria because it hampers the rapid expansion of H pylori specific immune cells. These investigators also provided evidence that CagA counteracts B-cell apoptosis induced by hydroxyurea by inhibiting P53 accumulation. This may contribute to the accumulation of genetic mutations in abnormal B cells by allowing escape from programmed cell death. Several other cag-pai genes such as cagg, cagh, cagi, cagl, and cagm, seem to be associated with particular epithelial cell responses relevant to H pylori pathogenesis. 35 Independent of cag-pai status, another type IV cluster, the comb gene cluster, has been linked to the natural transformation and competence of H pylori. 36 The comb gene cluster is essential for the bacterium to take up plasmid and chromosomal DNA via natural transformation. It appears that the comb transformation apparatus has evolved conservatively and typically is present in all strains. 37 A third cluster of type IV secretion genes has been described recently. 38 About half of all H pylori strains express the 95- kilodalton vacuolating cytotoxin, VacA, a secreted exotoxin. This toxin inserts itself into the epithelial cell membrane and forms anion-selective, voltage-dependent channels through which bicarbonate and organic anions can be released. 39 VacA also is targeted to the mitochondrial membrane, where it causes release of cytochrome c, resulting in apoptosis. 40 VacA inhibits the intracellular pathway of macrophage antigen presentation, resulting in a reduced amount of peptides able to bind major histocompatibility complex class II molecules, with consequent lower stimulation of an antigen-specific T-cell response. An alternative hypothesis is that VacA acts directly on T cells by inhibiting activation of intracellular signaling pathways. VacA expression is determined by genetic variation in the signal sequence (s1a, s1b, s1c, and s2) and midregion sequence (m1 and m2) of the vaca gene. Strains with the s1-type signaling sequence allele produce functional VacA toxin inducing epithelial vacuolization and cell death, whereas the s2-type signaling sequence has little cytotoxic activity. 41 H pylori can bind tightly to epithelial cells by multiple bacterial surface components. The best characterized adhesin, BabA, is a protein that binds to a Lewis B bloodgroup antigen and has 2 isoforms: baba1 and baba2. 42 The product of baba1, in contrast to baba2, cannot interact with Lewis B to enhance H pylori colonization to surface epithelium. 43 In European countries the presence of baba2 has been associated significantly with caga, the s1/m1 alleles of vaca, and oipa, which encodes an outermembrane protein that influences host cell release of interleukin-8 (IL-8) in vitro. Conversely, more than 90% of caga-negative strains are negative for baba2, had s2/m2 vaca alleles, and show an oipa off genotype, suggesting that the presence of genes located within cag-pai is linked to genes located outside the pathogenicity island, probably through the influence of a common selection pressure. 44 Strains bearing either caga, vaca s1m1, or baba2 genes show higher degrees of gastric antral and corpus colonization by H pylori and more severe inflammation. The clinical relevance of the baba2 genotype has been questioned after the results from Japanese individuals, in which no correlation was found between baba2 and caga genotypes and the baba2 genotype and clinical outcome. 45 These findings agree with previous results showing that genotype-phenotype correlations obtained in Western individuals are not applicable to Asian populations, suggesting that the clinical impact of H pylori genotypes with higher virulence is modulated by environmental and/or host factors. In gastric MALT lymphoma, several of these virulence factors have been investigated by several groups. The role of infection of caga strains of H pylori in the development of gastric MALT lymphoma is controversial. Eck et al 46 reported a very high correlation of caga H pylori with gastric MALT lymphoma. Other studies, however, did not support this correlation. 47,48 In other studies, caga was suggested to be associated preferentially with diffuse large B-cell lymphoma (DLBCL). 49,50 Recently, Ye et al 51 found a significant association of caga strains of H pylori with gastric MALT lymphoma, in particular the cases harboring the t(11;18)(q21;q21) (14 of 15; 93.3%). Importantly, H pylori strains harboring the caga island were associated with more apparent histologic inflammatory responses and induction of potent chemokines producing neutrophil activation. Activated neutrophils release reactive oxygen species (ROS), which can cause a wide range of DNA damage (see later). Lehours et al 52 studied some of the H pylori virulence factors described: caga, cage, vaca, IceA, baba, hopq,

5 May 2005 H PYLORI AND MALT LYMPHOMAS 1583 oipa, saba, and hopz were investigated in 43 H pylori gastric MALT strains in comparison with 39 strains associated only with gastritis. None of these genes considered individually was associated with MALT lymphoma. Nevertheless, a gene cluster comprised of the icea1 allele, saba on status, and hopz off status was identified in strains for which the likelihood of having a gastric MALT lymphoma was 10 times higher than that of the gastritis-associated strains. However, the low prevalence of such strains (25% of MALT strains) makes the association a low-sensitivity marker for MALT lymphoma H pylori strains. Genes linked to the development of gastric cancer have been assigned to the plasticity zone. 53 Lehours et al 54 attempted to identify the same correlation in gastric lymphoma. They studied genetic markers associated with H pylori strains isolated from patients with gastric MALT lymphoma in comparison with strains obtained from aged-matched patients with gastritis only, duodenal ulcer, or gastric adenocarcinoma. By using subtractive hybridization and multiple correspondence analyses, they failed to identify a gene cluster associated with the MALT lymphoma inducing strains when the analysis included all of the strains. However, when they performed dot-blot hybridization between MALT lymphoma strains and the gastritis strains only, they found one open reading frame located in the plasticity zone that was associated significantly with the MALT lymphoma, the open reading frame JHP950. These investigators concluded that open reading frame JHP950 is a specific marker for strains giving rise to an increased risk for MALT lymphoma. Flavodoxin-A protein and the 60-kilodalton heat shock protein of H pylori are both antigenic, resulting in an antibody response in some infected individuals. The presence of a serologic response has been reported to be associated with the development of gastric MALT lymphoma, but these results are controversial Despite the observation that H pylori genomic studies show trends for specific associations of open reading frame with the development of MALT lymphoma, to date no specific strains or factors of virulence have been identified that predict either disease or clinical outcome with epidemiologic consistency. Just as strains of H pylori with supposed virulence attributes may be responsible for disease, other strains may be protective where they have lost virulence through microevolutionary changes associated with life-long colonization of the gastric mucosa. A recent study has shown that H pylori can produce a cecropin-like peptide with high antimicrobial properties. 58 When released in the stomach it kills other microorganisms, preventing other organisms from colonizing the stomach. Children infected with H pylori were less likely to have diarrhea than children without the infection, again implying that some strains of H pylori may have beneficial properties for the human host. 59 Thus, the value of H pylori genotypes as predictors of disease outcome is limited because the pathogenic impact of bacterial virulence factor probably is most influenced by the host. Immune Response and H pylori H pylori cause continuous gastric inflammation in virtually all infected persons. 60 The host inflammatory response consists of both innate and adaptive immunity. It starts with recruitment of neutrophils, followed by T and B lymphocytes, plasma cells, and macrophages, all of which can damage the epithelium (Figure 1). 61 Most H pylori infected patients are unable to clear the pathogen, leading to the suspicion that H pylori somehow may hamper the host immune response. Because H pylori rarely, if ever, invade the gastric mucosa, the host response is triggered primarily by the interaction of the bacteria with the epithelial cells. As described, H pylori use the type IV secretion apparatus to mediate the translocation of protein effector molecules into the target host cells. 62 In vitro studies have shown that strains with functional cagpai induce cytoskeletal modifications and transcription factor nuclear factor B (NF- B) dependent proinflammatory responses in the epithelial cells. 63 Viala et al 64 identified the intracellular protein (nucleotide-binding oligomerization domain 1 [NOD1] or caspase recruitment domain 4 [CARD4]) as being a major pathogen-recognition molecule in gastric epithelial cells in mice. They showed that Nod1-deficient mice produced significantly lower amounts of Cxcl2, a NF- B dependent chemokine, which has biological activity in mice analogous to those of human IL-8. Although Toll-like receptors (a family of molecules that recognize conserved microbial components, including various products of gram-negative bacteria) 2 and 4 have been reported to mediate H pylori 60-kilodalton heat shock protein recognition by macrophages in vitro, H pylori recognition seems not to occur predominantly through this mechanism. 65 Instead, Nod1, an intracytoplasmic pathogen-recognition molecule with homology to plant resistance proteins, recognizes an internalized H pylori peptidoglycan and activates a proinflammatory signaling cascade. 66 Interestingly, Nod1-deficient mice cannot regulate the density of H pylori growing at their gastric epithelial surface, indicating that, after recognition of its cognate pathogen-associated molecular pattern, Nod1 activates the recruitment of inflammatory cells, particu-

6 1584 FARINHA AND GASCOYNE GASTROENTEROLOGY Vol. 128, No. 6 Figure 1. H pylori and MALT lymphoma. In the stomach, H pylori do not invade the epithelium, but bind to the host epithelial cells by multiple surface adhesion molecules. Binding of the organism translocates effector proteins into both epithelial and surrounding immune cells. These cells recognize H pylori by both membrane (MHC, DC-SIGN) and intracellular (CARD4) receptors that trigger cellular apoptosis, as well as an NF- B dependent inflammatory response. There is infiltration of the mucosa by neutrophils and macrophages (innate immunity) followed by lymphocytes and plasma cells (adaptive immunity). The inflammation is chronic in virtually all H pylori patients, which suggests H pylori somehow hamper the host immune response through a favorable balance between T-cells subsets (helper vs regulatory cells). The persistence of inflammation triggers the acquisition of reactive MALT and leads to the formation of genotoxic agents such as ROS. The combination of H pylori strain-specific virulence factors and host immune response features (eg, different cytokine polymorphisms and components of the immune microenvironment induced by Treg cells and alternatively activated macrophages) eventually will facilitate the emergence and proliferation of a malignant B-cell clone that resembles normal memory marginal zone B cells. In early phases the survival of the malignant cells is dependent on H pylori specific T cells and the lymphoma regresses with H pylori antibiotic therapy. Lymphoma cells can show different genomic abnormalities that proceed along 2 major pathways: (1) the H pylori dependent pathway that shows more often a methylator phenotype and is prone to accumulate further genomic abnormalities and eventually transform into a high-grade lymphoma (DLBCL); and (2) the H pylori independent pathway characterized by balanced translocations, the most common being t(11;18)(q32;q21), a nonmethylator phenotype, an advanced stage, and lack of response to antibiotic therapy. The t(11;18)(q32;q21) is often the only genomic abnormality found and these cases do not show clonal evolution or transformation into an aggressive lymphoma. larly neutrophils, which infiltrate the epithelium to eradicate the bacteria, thereby inducing chronic gastritis. In addition to the damage associated with CagPAImediated translocation of proteins, H pylori infection results in epithelial injury through several other mechanisms. The pathogen can bind directly to the surface of gastric epithelial cells through urease-targeting class II major histocompatibility complex (MHC) molecules, inducing their apoptosis. 67 Additionally, mucosal dendritic cells also recognize several H pylori components such as lipoproteins, lipopolysaccharide such as O-antigen Lewis blood group, and DNA. They are processed via intracellular signaling cascades leading to the production of regulatory cytokines and up-regulation of major histocompatibility complex class II molecules. Binding of these Lewis antigens of H pylori to the dendritic cell specific intercellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN) was reported recently by Bergman et al. 68 DC-SIGN is involved in cell adhesion as well as

7 May 2005 H PYLORI AND MALT LYMPHOMAS 1585 antigen presentation to T cells. 69 H pylori targets DC-SIGN, and this interaction may contribute to the persistence of this pathogen by modeling the polarity of different T-cell subsets. Inflammation of the gastric mucosa follows and varies according to the host immune reaction against the pathogen. 70 The stimulation of isolated endothelial cells with H pylori contributes to the recruitment of neutrophils resulting from up-regulation of the adhesion molecules vascular cell adhesion molecule 1, intercellular adhesion molecule-1, E-selectin, and IL Neutrophils then increase the epithelial damage through the release of ROS. 72 The activation of macrophages results in the release of cytokines, including IL-1, IL-6, IL-8, IL-12, tumor necrosis factor- (TNF- ), and interferon- (IFN- ). Similarly, the cytotoxin VacA leads to disruption of the epithelial barrier, facilitating the translocation of bacterial antigens and leading to further activation of macrophages. 73 Cytokines produced by macrophages then can alter the secretion of mucus, contributing to H pylori mediated disruption of the mucous layer. H pylori infection typically induces a humoral response. 3 This antibody production does not lead to eradication of the infection but may contribute to damage of the surrounding tissues. Some H pylori infected patients have an autoantibody response directed against the H / K adenosine triphosphatase of gastric parietal cells that correlates with increased atrophy of the corpus, one of the typical morphologic features of H pylori induced chronic gastritis. 74 The chronic phase of H pylori gastritis associates an adaptive lymphocyte response with the initial innate response. Immature helper T cells can differentiate into 2 functional subtypes: helper1 T (Th1) cells that secrete IL-2 and IFN-, which elicit macrophage proliferation, and helper2 T (Th2) cells that secrete IL-4, IL-5, and IL-13, which act as growth/differentiation factors for B cells. 75 Along with these helper T cells there also are T regulatory (Treg) cells (mainly CD4 CD25 and IL- 10 secreting T cells) that control the former cells (Figure 1). 76 Because H pylori is noninvasive and induces a strong humoral response, a Th2-cell response would be expected. Paradoxically, the immune response resulting from H pylori infection is primarily a proinflammatory response (Th1), mediated by a cascade of cytokines including IL-1, IL-12, IL-18, TNF-, and INF-. 77 These cytokines regulate their own levels of expression by autocrine mechanisms, but they also influence downstream cytokine expression, thereby amplifying the inflammatory response. Studies in gene-targeted mice have shown that Th1 cytokines promote gastritis, whereas Th2 cytokines are protective against gastric inflammation. 78 This Th1 orientation may be caused by increased antral production of IL-18 in response to H pylori infection. 79 The resultant biased Th1 response, combined with Fas-mediated apoptosis of H pylori specific T-cell clones, may favor the persistence of H pylori. 80 However, this hypothesis is controversial. Panthel et al 81 assessed the ability of H pylori to colonize BALB/c (intrinsic Th2-cell responders) and C57BL/6J (an intrinsic Th1- cell responsive strain) wild-type mice, as compared with their IL-4 and IL-12 knockouts. Disruption of IL-12 in BALB/c mice resulted in enhanced colonization, and disruption of IL-4 in these mice had little effect. In contrast, colonization of C57BL/6J knockout mice deficient in either IL-4 or IL-12 was decreased. These findings support the hypothesis that H pylori benefits from a mechanism that modulates the host Th1-/Th2-cell balance during colonization, leading to suppression of Th1- cell responses. Bergman et al 68 also showed that H pylori targeted DC-SIGN could block a polarized Th1-cell response by phase-variable expression of the Lewis antigen by H pylori. CD4 CD25 Treg cells have been shown to reduce immunologic damage during H pylori infection in mice by reducing the activation of Th1 cells. Infection of athymic (nu/nu) mice with H pylori resulted in considerably lower colonization in mice previously reconstituted with lymph node cells depleted of Treg cells than in reconstituted controls. 82 Raghavan et al 82 suggested that IFN- producing CD4 T cells are reduced by the presence of Treg cells at the expense of a higher H pylori load. Establishing the link between a predominant Th1 response and the suppressive Treg cells, Kaser et al 83 reported that the Th1 cytokine IL-18 recruits a particular subset of dendritic cells, plasmacytoid DC, characterized by the expression of CD123 and blood DC antigen 2. These acute inflammatory cells are known to promote the development of Treg cells. 84 Their role in H pylori infection is unknown. Mechanisms used by H pylori to evade clearance may impair the macrophage response. Gobert et al 85 reported that H pylori arginase inhibits the antimicrobial effect of nitric oxide (essential component of innate immunity) produced by activated macrophages. Thus, bacterial arginase allows H pylori to evade the immune response. Furthermore, the same group showed that arginase II expression is up-regulated in both murine and human H pylori induced gastritis. 86 The arginase pathway leads to the metabolism of arginine with the generation of ornithine and polyamines. This pathway is used predominantly by the alternatively activated macrophage type of polarized macrophage, instead of the inducible NO syn-

8 1586 FARINHA AND GASCOYNE GASTROENTEROLOGY Vol. 128, No. 6 thase characteristic of the classically activated type macrophages. The classically activated macrophage is proinflammatory and produces IL-12 and TNF-, whereas alternatively activated macrophages typically produce IL The expression of arginase by macrophages seems to induce T-cell dysfunction/suppression. 88 These polarized alternatively activated macrophages have tissue repair/remodeling functions and could be responsible not only for the architectural features observed in chronic gastritis, but also might participate with Treg cells in immunosuppression toward H pylori. Finally, Zheng and Jones 89 reported that vaca H pylori strains also inhibit phagosome development after bacterial ingestion by macrophages, which is associated with the retention of coronin1 (or tryptophane aspartate containing coat protein, TACO), leading to a possible down-regulation of phagocytic macrophage function. 90 Immune Response and MALT Lymphoma Despite the ability of H pylori to infect chronically the stomach of all hosts, why do so few people develop lymphoma? A number of studies have indicated that genetic factors likely play a fundamental role in affecting different clinical outcomes after H pylori infection. For example, familial aggregation, interethnic variation of disease incidences, human leukocyte antigen typing, and animal models previously were shown to point to a genetic influence in gastric carcinogenesis susceptibility and/or resistance. 91 As described, the H pylori inflammatory immune response features are orchestrated by sequential elaboration of proinflammatory cytokines including IL-10, IFN-, TNF-, and IL It is probable that cytokine imbalance is responsible for disease progression and dictates the disease outcome after H pylori infection. Accordingly, factors involved in regulating cytokine responses may confer susceptibility to or protection against H pylori associated diseases. Specifically, single nucleotide polymorphisms in the coding or promoter regions of a cytokine or cytokine receptor may affect overall cytokine production directly, leading to either high or low production of a given cytokine. Therefore, variant cytokine alleles might contribute to interindividual differences in inflammatory responses and account for heterogeneous outcomes after an infectious event. Such a correlation has been reported in gastric carcinoma in which IL-1 polymorphisms confer a 2-fold increased risk for gastric adenocarcinoma after H pylori infection. 93 Recently, polymorphic alleles of several cytokines have been studied in MALT lymphoma. IL-1 mediates the Th1 immune response after H pylori infection, with IL-1 production typically up-regulated in the presence of H pylori. IL-1 is a powerful inhibitor of gastric acid secretion; thus, the hypochlorhydria associated with high-producing variants of IL-1 likely govern the extent of H pylori infection and the distribution of gastritis. The IL-1 gene cluster comprises 3 related genes: IL-1, IL-1, and IL-1 RN, which encode the proinflammatory cytokines IL-1 and IL-1 and their endogenous receptor antagonist IL-1ra, respectively. 94 Three bi-allelic polymorphisms in IL-1 have been described, all C to T base transitions found at positions 511, 31, and 3954 bp from the transcriptional start site. 95 The IL-1 RN(2) allele has been associated with chronic inflammatory conditions such as ulcerative colitis and autoimmune conditions such as Sjögren s syndrome (SS) and with enhanced IL-1 production in vitro. Studies reporting an increased associated risk for gastric carcinoma with inheritance of the IL-1-31 (CC)/IL-1 RN 2/2 genotype suggest that the IL-1-31 C allele in the context of H pylori infection is associated with a proinflammatory phenotype and therefore an increased risk for DNA damage and, ultimately, gastric carcinoma. 93,96 Rollinson et al 97 suggested a significant association between gastric MALT lymphoma and inheritance of the IL-1 RN 2/2 genotype, but no associated risk with the IL-1-31 genotype. The high IL-1 levels associated with the IL-1 RN(2) allele favor a proinflammatory response; at the same time, the concomitant inhibition of gastric acid facilitates widespread H pylori colonization of the gastric mucosa, promoting the development of MALT in response to infection. TNF- has been recognized as an important mediator in the pathogenesis of a wide variety of diseases. Multiple polymorphisms located in TNF- have been associated with increased malignancies, suggesting that genetic variants within TNF- may be relevant functionally in vivo. 98,99 TNF- and its receptors play an important role in the signaling system involved in the immune response to H pylori infection. In vitro studies have shown that TNF- production may promote the growth of lymphoid cells. 100 Clinical studies have shown high TNF- levels in patients with malignant lymphoma. 100 Previous studies also have documented that the TNF- 308G allele is a risk factor for duodenal ulcer whereas the 308A allele is associated with an increased risk for Epstein Barr virus associated gastric adenocarcinoma. 101,102 Wu et al 103 showed a strong correlation between this cytokine genotype and MALT lymphoma. Specifically, they found that individuals with the TNF- 857T allele were less likely to develop lymphoma, with a 3-fold decreased risk. However, it is noteworthy

9 May 2005 H PYLORI AND MALT LYMPHOMAS 1587 that published studies of the functional effect of the TNF- 857 C/T polymorphism have used different methodologies, and thus no clear consensus has emerged. 104 As a result, the functional relevance of the TNF- 857 C/T polymorphisms and their role in disease remain to be determined. Certain human leukocyte antigen class II antigens have been reported to predict the serologic response to H pylori infection in patients with gastrointestinal malignancies and have been associated with the development of atrophic gastritis, a premalignant condition, in H pylori positive patients. 105 On the other hand, many immune responses are controlled by the major histocompatibility complex, leading some investigators to postulate a role for autoimmune mechanisms in the development of lymphoma. 106 It is worth noting that patients with enteropathy-associated T-cell lymphoma often show the same human leukocyte antigen DQA and DQB antigens as patients with celiac disease, the underlying autoimmune disorder. 107 Reimer et al 108 investigated 46 patients with MALT lymphoma recruited in a prospective multicenter study with 13,000 voluntary stem cell donors from more than 40 German blood banks as the control group. They found that the frequency of human leukocyte antigen B35 was decreased significantly in patients with gastric MALT lymphoma compared with the control group, suggesting a protective role of this human leukocyte antigen against gastric MALT lymphoma. One of the major cellular defense mechanisms against DNA damage is enzymes with antioxidant activity, capable of neutralizing free radicals. These are glutathione S-transferase (GST) enzymes. There are 4 cytosolic GST families, including GST-T1 and GST M1. Independent gene deletions exist at both the GST-T1 and GST M1 loci, resulting in a lack of functional protein, and the null genotypes of both loci have been associated with several malignancies. 109 Associations between the GST-T1 null genotype and increased risks for astrocytoma, meningioma, myelodysplasia, and acute myeloid leukemia have been reported. 110 Rollinson et al 97 also described a significant association between the null genotype of GST-T1 and an increased risk for gastric MALT lymphoma. They postulate that the GST-T1 null genotype is associated with an increased risk because of a compromised antioxidant capacity and not because of the metabolism of a specific xenobiotic substrate. Thus, combinations of genetic variations for cytokines that promote the immune response to H pylori infection and the production of ROS and variants that decrease the levels of antioxidants are likely to play important roles in the development of MALT lymphoma (shown in Figure 1). MALT Lymphoma H pylori tumor cells show somatic hypermutation in the immunoglobulin genes that are characteristic of antigen selection. 111 MALT lymphoma cells resemble memory B cells still responsive to differentiation signals, such as CD40 costimulation and cytokines produced by antigen-stimulated helper T cells, and dependent for their growth on stimulation by H pylori specific T cells. 21 Thus, H pylori stimulation of lymphoma B cells is not direct, but occurs through tumor-infiltrating T cells, involving both CD40 and CD40L costimulatory molecules. 112,113 The surface immunoglobulin on gastric MALT lymphoma B cells does not recognize H pylori, but instead recognizes various autoantigens, suggesting that malignant cells are transformed from autoreactive B cells. 114 Initially, MALT lymphoma is sustained by H pylori induced T-cell help, remains localized, and regresses after H pylori eradication. 113 In chronic gastritis patients, the helper function toward B cells exerted by H pylori antigen stimulated gastric T-cell clones is regulated negatively by the concomitant cytolytic killing of B cells. 115 In MALT lymphoma, T cells are unable to express perforin-mediated cytotoxicity against autologous B cells, leading to B-cell proliferation. 116 The majority of T-helper clones from uncomplicated chronic gastritis induce Fas-Fas ligand-mediated apoptosis in target cells, whereas only a small fraction of H pylori specific gastric clones from MALT lymphoma are able to induce apoptosis in target cells, including autologous B cells. 116 Both defective perforin-mediated cytotoxicity and a decreased ability to induce Fas-Fas ligand mediated apoptosis are restricted to MALT lymphoma infiltrating T cells because H pylori specific helper T cells derived from the peripheral blood of the same patients expressed the same cytolytic potential and pro-apoptotic activity as that shown by helper T cells from chronic gastritis patients. 116 The reason why gastric T cells of MALT lymphoma, although delivering powerful help to B cells, apparently are deficient in mechanisms involved in the concomitant control of B-cell growth remains unclear. In a proportion of MALT lymphomas, resistance to Fas-mediated apoptosis appears to be caused by FAS mutations, suggesting that increased inhibition of apoptosis contributes to oncogenesis in MALT lymphoma. 106 Mutation of the FAS gene and its pathway-related components is associated with autoimmune disorders, including a rare disorder known as autoimmune lymphoproliferative syndrome. 117 The majority of MALT lymphomas with FAS mutations are restricted to patients with both MALT lymphoma and

10 1588 FARINHA AND GASCOYNE GASTROENTEROLOGY Vol. 128, No. 6 autoimmune disease, and rarely are found in typical gastric MALT lymphoma, which normally lacks prominent clinical autoimmune features. 118 Controversy remains about the predominant subset of infiltrating T cells in MALT lymphoma. In some studies, the dominant cytokine produced in cases of low-grade B-cell gastric lymphoma was IFN- regardless of stimulation with H pylori, indicating the dominance of an immature helper T-cell/1-type response similar to what is observed in H pylori gastritis. 116,119 However, on in vitro stimulation with H pylori, a strong IFN- response and production of Th2 cytokines was observed in tumorinfiltrating T cells from patients with gastric MALT lymphoma. 120 These studies indicate that both Th1- and Th2-type cytokines, both growth factors of B cells, are secreted by H pylori stimulated MALT lymphoma T cells. The polarization toward an IFN- dominated cytokine response in infiltrating T cells may contribute to ongoing tissue injury and the inhibition of a possibly beneficial Th2 cytokine response. This may lead to an inability of the immune system to eliminate H pylori and consequently may lead to a chronic inflammatory process. However, a Th2 response also seems to be present, so that a balanced Th1/Th2 may be beneficial in lymphomagenesis. The generation of abnormal B-cell clones and the progression toward B-cell lymphoma might occur within this background. These observations correlate with the findings recently reported in murine MALT lymphoma models (see later). Another hypothesis relates to the role of lymphomainfiltrating Treg cells in suppressing the T-cytotoxic functions that underlie immunosurveillance, and thus contribute to an immunosuppressive microenvironment favorable to the tumor (cancer immunoediting). 121 Increased levels of Treg cells in the duodenum that may suppress H pylori specific immune responses recently were shown in ulcer patients. 122 Although not reported in MALT lymphomas, this mechanism has been reported in other tumors as a mechanism of immune escape and tumoral progression. 123,124 Murine models recently have been shown to be useful mimics of both clinical and histopathologic characteristics of human MALT lymphomas, including the antibiotic-induced regression of disease. Thus, they may represent an important model to study the progression of MALT lymphoma events over time. 125 Fukui et al 126 used neonatal thymectomized (ntx) BALB/c mice, which after H pylori infection for 6 months showed reactive lymphoid follicles with prominent lymphoepithelial lesions (LELs) and evidence of B-cell monoclonality. These investigators used BALB/c mice, a Th2-dominant strain, and C57BL/6J mice, which are believed to be a Th1- dominant strain. In BALB/c mice, ntx depletes CD25 Treg cells, resulting in the development of Th1- dominant autoimmune atrophic gastritis with loss of parietal/chief cells. Gastric MALT lymphoma like lesions caused by the H pylori infection were seen only in the ntx BALB/c mice and not in the non-ntx animals. Moreover, lymphoid follicle formation by H pylori never was observed in C57BL/6 mice irrespective of ntx, although these mice developed severe active gastritis after H pylori infection (Th1-associated inflammation). These data show that in contrast to H pylori induced gastritis, both Th1 and Th2 responses are necessary for the development of MALT lymphoma like lesions induced by H pylori. In support of this hypothesis, Fukui et al 126 observed both IFN- (Th1-type cytokine) and IL-4 (Th2- type cytokine) in the gastric mucosa of only H pylori infected BALB/c mice with ntx that developed lymphoid tissue. Mueller et al 127 used a 38,000-element murine complementary DNA microarray and laser microdissection to identify molecular markers of the histopathologic stages of gastric MALT lymphoma and to define the cellular origin of the transcriptional responses. H. heilmanni infected BALB/c mice were followed-up for 12, 18, and 24 months after infection and compared with control animals. The majority of the infected mice developed gastric wall invasion with monoclonal B-cell populations showing numerous LELs, similar to human MALT lymphoma. A hierarchic unsupervised clustering analysis segregated, not surprisingly, uninfected from infected samples. Samples from animals classified with moderate and severe pathology cluster together in a group. This finding argues against the likelihood of a single definitive transforming event and in favor of a continuum of events for which malignant lymphoma represents the end point. Having determined the signature of infected vs uninfected stomachs, Mueller et al 127 next sought to identify genes that discriminated between mild and moderate to severe pathology. Mice that were uninfected and exhibited mild pathology were grouped together and compared with animals showing moderate and severe pathology. Additionally, they microdissected the tumors and studied separately the mucosal and lymphoid components. Interesting examples of genes that were up-regulated consistently in the severe pathology specimens have been associated with other human malignancies, including the laminin receptor-1, a protein implicated in basement membrane degradation and tumor dissemination; MDR-1, a multidrug resistance protein; and nibrin, a DNA double-strand repair protein. The defined gene signatures (mild/moderate vs severe) were useful in pre-

Helicobacter and gastritis

Helicobacter and gastritis 1 Helicobacter and gastritis Dr. Hala Al Daghistani Helicobacter pylori is a spiral-shaped gram-negative rod. H. pylori is associated with antral gastritis, duodenal (peptic) ulcer disease, gastric ulcers,

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Abul K. Abbas UCSF FOCiS 2 Lecture outline Dendritic cells and antigen presentation The role of the MHC T cell activation Costimulation, the B7:CD28 family

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

Defense mechanism against pathogens

Defense mechanism against pathogens Defense mechanism against pathogens Immune System What is immune system? Cells and organs within an animal s body that contribute to immune defenses against pathogens ( ) Bacteria -Major entry points ;open

More information

Immunology for the Rheumatologist

Immunology for the Rheumatologist Immunology for the Rheumatologist Rheumatologists frequently deal with the immune system gone awry, rarely studying normal immunology. This program is an overview and discussion of the function of the

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30 PBS 803 - Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs. 15-25, 27-30 Learning Objectives Compare and contrast the maturation of B and T lymphocytes Compare and contrast

More information

LESSON 2: THE ADAPTIVE IMMUNITY

LESSON 2: THE ADAPTIVE IMMUNITY Introduction to immunology. LESSON 2: THE ADAPTIVE IMMUNITY Today we will get to know: The adaptive immunity T- and B-cells Antigens and their recognition How T-cells work 1 The adaptive immunity Unlike

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center General Overview of Immunology Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center Objectives Describe differences between innate and adaptive immune responses

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Note: Page numbers of article titles are in boldface type. A Adherence, to bismuth quadruple therapy, 543 546 Adjuvant therapy, probiotics as, 567 569 Age factors, in gastric cancer, 611 612, 616 AID protein,

More information

Helicobacter pylori:an Emerging Pathogen

Helicobacter pylori:an Emerging Pathogen Bacteriology at UW-Madison Bacteriology 330 Home Page Helicobacter pylori:an Emerging Pathogen by Karrie Holston, Department of Bacteriology University of Wisconsin-Madison Description of Helicobacter

More information

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS 1 Innate immunity Abul K. Abbas University of California San Francisco FOCiS 2 Lecture outline Components of innate immunity Recognition of microbes and dead cells Toll Like Receptors NOD Like Receptors/Inflammasome

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

Immunobiology 7. The Humoral Immune Response

Immunobiology 7. The Humoral Immune Response Janeway Murphy Travers Walport Immunobiology 7 Chapter 9 The Humoral Immune Response Copyright Garland Science 2008 Tim Worbs Institute of Immunology Hannover Medical School 1 The course of a typical antibody

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS Choompone Sakonwasun, MD (Hons), FRCPT Types of Adaptive Immunity Types of T Cell-mediated Immune Reactions CTLs = cytotoxic T lymphocytes

More information

ulcer healing role 118 Bicarbonate, prostaglandins in duodenal cytoprotection 235, 236

ulcer healing role 118 Bicarbonate, prostaglandins in duodenal cytoprotection 235, 236 Subject Index Actin cellular forms 48, 49 epidermal growth factor, cytoskeletal change induction in mucosal repair 22, 23 wound repair 64, 65 polyamine effects on cytoskeleton 49 51 S-Adenosylmethionine

More information

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System 24.1 Multiple-Choice Questions 1) The body's innate defenses against infection include A) several nonspecific

More information

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases Immunity to infection depends on a combination of innate mechanisms (phagocytosis, complement, etc.) and antigen

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Overview of the immune system

Overview of the immune system Overview of the immune system Immune system Innate (nonspecific) 1 st line of defense Adaptive (specific) 2 nd line of defense Cellular components Humoral components Cellular components Humoral components

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

Immunological Tolerance

Immunological Tolerance Immunological Tolerance Introduction Definition: Unresponsiveness to an antigen that is induced by exposure to that antigen Tolerogen = tolerogenic antigen = antigen that induces tolerance Important for

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

The Nobel Prize in Physiology or Medicine for 2005

The Nobel Prize in Physiology or Medicine for 2005 The Nobel Prize in Physiology or Medicine for 2005 jointly to Barry J. Marshall and J. Robin Warren for their discovery of "the bacterium Helicobacter pylori and its role in gastritis and peptic ulcer

More information

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group FIT Board Review Corner September 2015 Welcome to the FIT Board Review Corner, prepared by Andrew Nickels, MD, and Sarah Spriet, DO, senior and junior representatives of ACAAI's Fellows-In-Training (FITs)

More information

Unit 5 The Human Immune Response to Infection

Unit 5 The Human Immune Response to Infection Unit 5 The Human Immune Response to Infection Unit 5-page 1 FOM Chapter 21 Resistance and the Immune System: Innate Immunity Preview: In Chapter 21, we will learn about the branch of the immune system

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Structure and Function of Antigen Recognition Molecules

Structure and Function of Antigen Recognition Molecules MICR2209 Structure and Function of Antigen Recognition Molecules Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will examine the major receptors used by cells of the innate and

More information

2. Innate immunity 2013

2. Innate immunity 2013 1 Innate Immune Responses 3 Innate immunity Abul K. Abbas University of California San Francisco The initial responses to: 1. Microbes: essential early mechanisms to prevent, control, or eliminate infection;

More information

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally!

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally! MCMP422 Immunology and Biologics Immunology is important personally and professionally! Learn the language - use the glossary and index RNR - Reading, Note taking, Reviewing All materials in Chapters 1-3

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmunity Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmune disease can be caused to primary defects in B cells, T cells and possibly

More information

Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces

Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces Molecular and Cellular Basis of Immune Protection of Mucosal Surfaces Department of Biologic & Materials Sciences School of Dentistry University of Michigan Ann Arbor, Michigan 48109-1078 1 Image quality

More information

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco Determinants of Immunogenicity and Tolerance Abul K. Abbas, MD Department of Pathology University of California San Francisco EIP Symposium Feb 2016 Why do some people respond to therapeutic proteins?

More information

Chapter 21: Innate and Adaptive Body Defenses

Chapter 21: Innate and Adaptive Body Defenses Chapter 21: Innate and Adaptive Body Defenses I. 2 main types of body defenses A. Innate (nonspecific) defense: not to a specific microorganism or substance B. Adaptive (specific) defense: immunity to

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

Innate Immunity. Connection Between Innate and Adaptive Immunity. Know Differences and Provide Examples Chapter 3. Antimicrobial peptide psoriasin

Innate Immunity. Connection Between Innate and Adaptive Immunity. Know Differences and Provide Examples Chapter 3. Antimicrobial peptide psoriasin Know Differences and Provide Examples Chapter * Innate Immunity * kin and Epithelial Barriers * Antimicrobial peptide psoriasin -Activity against Gram (-) E. coli Connection Between Innate and Adaptive

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

Examples of questions for Cellular Immunology/Cellular Biology and Immunology

Examples of questions for Cellular Immunology/Cellular Biology and Immunology Examples of questions for Cellular Immunology/Cellular Biology and Immunology Each student gets a set of 6 questions, so that each set contains different types of questions and that the set of questions

More information

Defining the Helper T Cell Contribution to Helicobacter pylori Gastritis. Brian M. Gray

Defining the Helper T Cell Contribution to Helicobacter pylori Gastritis. Brian M. Gray Defining the Helper T Cell Contribution to Helicobacter pylori Gastritis by Brian M. Gray A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Microbiology

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms. Table 2: Innate Immunity: First Lines of Defense

I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms. Table 2: Innate Immunity: First Lines of Defense I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms Table 2: Innate Immunity: First Lines of Defense Innate Immunity involves nonspecific physical & chemical barriers that are adapted for

More information

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine Innate immune regulation of T-helper (Th) cell homeostasis in the intestine Masayuki Fukata, MD, Ph.D. Research Scientist II Division of Gastroenterology, Department of Medicine, F. Widjaja Foundation,

More information

Helicobacter pylori Persistence: an Overview of Interactions between H. pylori and Host Immune Defenses

Helicobacter pylori Persistence: an Overview of Interactions between H. pylori and Host Immune Defenses CLINICAL MICROBIOLOGY REVIEWS, Oct. 2006, p. 597 613 Vol. 19, No. 4 0893-8512/06/$08.00 0 doi:10.1128/cmr.00006-06 Copyright 2006, American Society for Microbiology. All Rights Reserved. Helicobacter pylori

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? Abbas Chapter 2: Sarah Spriet February 8, 2015 Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? a. Dendritic cells b. Macrophages c. Monocytes

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 16 THE ADAPTIVE IMMUNE RESPONSE WHY IS THIS IMPORTANT? The adaptive immune system protects us from many infections The adaptive immune system has memory so we are not infected by the same pathogen

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS Exoskeleton made of chitin forms the first barrier to pathogens Digestive system is protected by a chitin-based barrier and lysozyme,

More information

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology By Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology Lecture objectives: At the end of the lecture you should be able to: Enumerate features that characterize acquired immune response

More information

Darwinian selection and Newtonian physics wrapped up in systems biology

Darwinian selection and Newtonian physics wrapped up in systems biology Darwinian selection and Newtonian physics wrapped up in systems biology Concept published in 1957* by Macfarland Burnet (1960 Nobel Laureate for the theory of induced immune tolerance, leading to solid

More information

Central tolerance. Mechanisms of Immune Tolerance. Regulation of the T cell response

Central tolerance. Mechanisms of Immune Tolerance. Regulation of the T cell response Immunoregulation: A balance between activation and suppression that achieves an efficient immune response without damaging the host. Mechanisms of Immune Tolerance ACTIVATION (immunity) SUPPRESSION (tolerance)

More information

Mechanisms of Immune Tolerance

Mechanisms of Immune Tolerance Immunoregulation: A balance between activation and suppression that achieves an efficient immune response without damaging the host. ACTIVATION (immunity) SUPPRESSION (tolerance) Autoimmunity Immunodeficiency

More information

Chapter 35 Active Reading Guide The Immune System

Chapter 35 Active Reading Guide The Immune System Name: AP Biology Mr. Croft Chapter 35 Active Reading Guide The Immune System Section 1 Phagocytosis plays an important role in the immune systems of both invertebrates and vertebrates. Review the process

More information

Innate Immunity. Chapter 3. Connection Between Innate and Adaptive Immunity. Know Differences and Provide Examples. Antimicrobial peptide psoriasin

Innate Immunity. Chapter 3. Connection Between Innate and Adaptive Immunity. Know Differences and Provide Examples. Antimicrobial peptide psoriasin Chapter Know Differences and Provide Examples Innate Immunity kin and Epithelial Barriers Antimicrobial peptide psoriasin -Activity against Gram (-) E. coli Connection Between Innate and Adaptive Immunity

More information

Effector Mechanisms of Cell-Mediated Immunity

Effector Mechanisms of Cell-Mediated Immunity Effector Mechanisms of Cell-Mediated Immunity Dr. Julia Rempel Section of Hepatology 789-3825 jdrempel@cc.umanitoba.ca 804D JBRC Topics: I. Types of Cell-Mediated Immunity II. Migration of Effector T Lymphocytes

More information

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system Aims Immune system Lymphatic organs Inflammation Natural immune system Adaptive immune system Major histocompatibility complex (MHC) Disorders of the immune system 1 2 Immune system Lymphoid organs Immune

More information

PATHOGENICITY OF MICROORGANISMS

PATHOGENICITY OF MICROORGANISMS PATHOGENICITY OF MICROORGANISMS Some microorganisms are : 1- Harmless microorganism, as normal flora 2- Harmfull microorganism, as pathogenic. A pathogenic microorganism is defined as one that causes or

More information

Subject Index. Bcl-2, apoptosis regulation Bone marrow, polymorphonuclear neutrophil release 24, 26

Subject Index. Bcl-2, apoptosis regulation Bone marrow, polymorphonuclear neutrophil release 24, 26 Subject Index A1, apoptosis regulation 217, 218 Adaptive immunity, polymorphonuclear neutrophil role 31 33 Angiogenesis cancer 178 endometrium remodeling 172 HIV Tat induction mechanism 176 inflammatory

More information

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus T cell precursors migrate from the bone marrow via the blood to the thymus to mature 1 2 The cellular organization of the thymus The proportion of thymus that produces T cells decreases with age 3 4 1

More information

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity 1 2 3 4 5 6 7 8 9 The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 In innate immunity, recognition and

More information

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Andrew H. Lichtman, M.D. Ph.D. Department of Pathology Brigham and Women s Hospital and Harvard

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Lymphoid System: cells of the immune system. Answer Sheet

Lymphoid System: cells of the immune system. Answer Sheet Lymphoid System: cells of the immune system Answer Sheet Q1 Which areas of the lymph node have most CD3 staining? A1 Most CD3 staining is present in the paracortex (T cell areas). This is towards the outside

More information

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii Ringworm fungus HIV Influenza Candida Staph aureus Mycobacterium tuberculosis Listeria Salmonella Streptococcus Levels

More information

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas Chapter 04: Antigen Recognition in the Adaptive Immune System Test Bank MULTIPLE CHOICE 1. Most T lymphocytes

More information

Nonspecific External Barriers skin, mucous membranes

Nonspecific External Barriers skin, mucous membranes Immune system Chapter 36 BI 103 Plant-Animal A&P Levels of Defense Against Disease Nonspecific External Barriers skin, mucous membranes Physical barriers? Brainstorm with a partner If these barriers are

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins,

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins, Cytokines http://highered.mcgraw-hill.com/sites/0072507470/student_view0/chapter22/animation the_immune_response.html Cytokines modulate the functional activities of individual cells and tissues both under

More information

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization! Topic 8 Specific Immunity (adaptive) (18) Topics - 3 rd Line of Defense - B cells - T cells - Specific Immunities 1 3 rd Line = Prophylaxis via Immunization! (a) A painting of Edward Jenner depicts a cow

More information

Putting it Together. Stephen Canfield Secondary Lymphoid System. Tonsil Anterior Cervical LN s

Putting it Together. Stephen Canfield Secondary Lymphoid System. Tonsil Anterior Cervical LN s Putting it Together Stephen Canfield smc12@columbia.edu Secondary Lymphoid System Tonsil Anterior Cervical LN s Axillary LN s Mediastinal/Retroperitoneal LN s Thoracic Duct Appendix Spleen Inguinal LN

More information

Adaptive Immune System

Adaptive Immune System Short Course on Immunology Adaptive Immune System Bhargavi Duvvuri Ph.D IIIrd Year (Immunology) bhargavi@yorku.ca Supervisor Dr.Gillian E Wu Professor, School of Kinesiology and Health Sciences York University,

More information

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above 1. (3 points) Immediately after a pathogen enters the body, it faces the cells and soluble proteins of the innate immune system. Which of the following are characteristics of innate immunity? a. inflammation

More information

Advances in Cancer Immunotherapy

Advances in Cancer Immunotherapy Advances in Cancer Immunotherapy Immunology 101 for the Non-Immunologist Arnold H. Zea, PhD azea@lsuhsc.edu Disclosures No relevant financial relationships to disclose This presentation does not contain

More information

Acquired Immunity Cells are initially and require before they can work Responds to individual microbes

Acquired Immunity Cells are initially and require before they can work Responds to individual microbes 1 of 10 THE IMMUNE SYSTEM CHAPTER 43; PAGES 898 921 WHY DO WE NEED AN IMMUNE SYSTEM? It s a dirty, dirty world out there and we are vastly outnumbered Bacteria and parasites are everywhere The body has

More information

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 16 Adaptive Immunity The Body s Third Line of Defense Adaptive Immunity Adaptive immunity

More information

Immunology. Anas Abu-Humaidan M.D. Ph.D. Transplant immunology+ Secondary immune deficiency

Immunology. Anas Abu-Humaidan M.D. Ph.D. Transplant immunology+ Secondary immune deficiency Immunology Anas Abu-Humaidan M.D. Ph.D. Transplant immunology+ Secondary immune deficiency Transplant Immunology Transplantation is the process of moving cells, tissues or organs from one site to another

More information

Independent Study Guide The Innate Immune Response (Chapter 15)

Independent Study Guide The Innate Immune Response (Chapter 15) Independent Study Guide The Innate Immune Response (Chapter 15) I. General types of immunity (Chapter 15 introduction) a. Innate i. inborn ii. pattern recognition b. Adaptive i. "learned" through exposure

More information

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Capillary exchange Fluid movement in capillaries Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Lymphatic vessels Lymphatic capillaries permeate

More information

Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II

Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II MECHANISMS OF AUTOIMMUNITY The possibility that an individual s immune system may react against autologous antigens and cause tissue injury

More information

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R CSLO7. Describe functions of host defenses and the immune system in combating infectious diseases and explain how immunizations protect against specific diseases. PowerPoint Lecture Presentations prepared

More information

The development of T cells in the thymus

The development of T cells in the thymus T cells rearrange their receptors in the thymus whereas B cells do so in the bone marrow. The development of T cells in the thymus The lobular/cellular organization of the thymus Immature cells are called

More information

Newly Recognized Components of the Innate Immune System

Newly Recognized Components of the Innate Immune System Newly Recognized Components of the Innate Immune System NOD Proteins: Intracellular Peptidoglycan Sensors NOD-1 NOD-2 Nod Protein LRR; Ligand Recognition CARD RICK I-κB p50 p65 NF-κB Polymorphisms in Nod-2

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host 17 Adaptive Immunity: Specific Defenses of the Host SLOs Differentiate between innate and adaptive immunity, and humoral and cellular immunity. Define antigen, epitope, and hapten. Explain the function

More information

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3. A summary of innate and acquired immunity General iology INNATE IMMUNITY Rapid responses to a broad range of microbes Course No: NG00 Credits:.00 External defenses Invading microbes (pathogens). The Immune

More information

Blood and Immune system Acquired Immunity

Blood and Immune system Acquired Immunity Blood and Immune system Acquired Immunity Immunity Acquired (Adaptive) Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated

More information

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS LYMPHOCYTES & IMMUNOGLOBULINS Dr Mere Kende, Lecturer SMHS Immunity Immune- protection against dangers of non-self/invader eg organism 3 components of immune system 1 st line: skin/mucosa/cilia/hair/saliva/fatty

More information

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow.

Chapter 11. B cell generation, Activation, and Differentiation. Pro-B cells. - B cells mature in the bone marrow. Chapter B cell generation, Activation, and Differentiation - B cells mature in the bone marrow. - B cells proceed through a number of distinct maturational stages: ) Pro-B cell ) Pre-B cell ) Immature

More information

The Innate Immune Response

The Innate Immune Response The Innate Immune Response FUNCTIONS OF THE IMMUNE SYSTEM: Recognize, destroy and clear a diversity of pathogens. Initiate tissue and wound healing processes. Recognize and clear damaged self components.

More information