Chromosome Mutations

Size: px
Start display at page:

Download "Chromosome Mutations"

Transcription

1 Chromosome Mutations

2 Variation in Chromosome Number Euploidy: having full sets of chromosomes Haploid Diploid Triploid Aneuploidy: having anything other than full sets of chromosomes Monosomy Trisomy

3 Variation in Chromosome Number Polyploidy: having more than two full sets of chromosomes Triploid (3n) Tetraploid (4n)

4 Gross Chromosome Anomalies

5 CHROMOSOME ABERRATIONS Normal human 2n = distinct pairs of homologous chromosomes Sex chromosomes are heteromorphic What happens when things aren t normal? Missing or extra chromosomes Missing or extra parts of chromosomes Rearrangement of segments of chromosomes

6 Variations in Chromosome Aneuploidy Number One or more individual chromosomes added or missing Polyploidy (Autopolyploidy) Multiple complete sets of chromosomes from same species Allopolyploidy Multiples of different genomes Note Table 6.1

7 Nondisjunction Reason for most aneuploidy Failure of chromosomes to separate during meiosis Primary nondisjunction Meiosis I Homologs fail to separate Secondary nondisjunction Meiosis II Chromatids fail to separate

8 Nondisjunction Fig. 6-1

9 Aneuploidy Only human conditions that typically survive are... 2n +/- 1 Examples: Klinefelter syndrome (47, XXY) Turner syndrome (45, X) Down syndrome (47, 21+) Patau syndrome (47, 13+) Edwards syndrome (47, 18+)

10 Trisomy 21 (47, 21+) Down Syndrome Fig. 6-3

11 Down Syndrome Trisomy 21 (47,21+) Mental retardation Similar physical characteristics Very affectionate Nondisjunction of maternal gametes Incidence increases with age

12 Down Syndrome Fig. 6-4

13 Spontaneous Abortion Aneuploidy is associated with reduced viability: 30% of spontaneously aborted fetuses have some kind of chromosome abnormality 90% of fetuses with chromosome abnormalities are spontaneously aborted 15-20% of all pregnancies are spontaneously aborted

14 Polyploidy (Autopolyploidy) Multiple complete sets of chromosomes Causes Failure of all chromosomes to segregate during meiosis (diploid gamete) Double fertilization Plants Most common Often results in desirable qualities I.e., larger size, larger fruit, more vigorous, seedless Maintained in plants that can be propagated asexually

15 Polyploidy (Allopolyploidy) Hybridization of two closely related species May be sustainable in nature if... Chromosome sets are non-homologous Form balanced gametes Ex., American cotton Fig. 6-8

16 Changes in Chromosome Structure

17 Chromosome Breakage Chromosomes may break and reattach Mistakes are often made during reattachment Spontaneous or induced Chemicals Radiation

18 Aberrations in Chromosome Structure Deletions Part of the chromosome is lost Fig. 6-11

19 Deletions Aberrations in Chromosome Duplications Structure A segment of a chromosome is duplicated within the genome Fig. 6-11

20 Aberrations in Chromosome Structure Deletions Duplications Inversions Part of a chromosome gets turned around Fig. 6-11

21 Aberrations in Chromosome Structure Deletions Duplications Inversions Translocations A segment of one chromosome gets moved to another chromosome Fig. 6-11

22 Deletions Terminal deletions The end of a chromosome is lost Ex., Cri-du-chat syndrome Partial monosomy Part of chromosome 5 lost (46,5p-) Symptoms Mental retardation Internal anatomic malformations Malformed glottis & larynx

23 Cri-du-chat Syndrome 46, 5p- Fig. 6-11

24 Deletions Intercalary deletions More central portion of a chromosome is lost Requires formation of compensation loop during synapsis Results in homozygous loss of chromosome segment Fig. 6-10

25 Duplications Some are a normal part of the genome Gene redundancy Ex., rrna E. coli: 0.7% of genome = rdna

26 Duplications Some are due to unequal crossover events Results in duplication and a deletion Fig. 6-12

27 Duplications Ex., Bar-eye Drosophila Duplication of region of X chromosome causes reduction in compound eye facets Fig. 7-13

28 Duplications May be a mechanism for evolution of new genes Duplication of genes allows original to maintain its function, while copy can mutate to form a new gene

29 Inversions Rearrangement of genetic information Fig. 6-14

30 Inversions Potential problems during meiosis Homologs cannot synapse normally One has to form an inversion loop

31 Inversions Potential problems during meiosis Homologs cannot synapse normally One has to form an inversion loop Crossover within the loop can result in abnormal chromosomes

32 Inversions Paracentric inversion Centromere not part of inversion loop Results in Normal chromosome Dicentric chromosome with duplication & deletion Inversion Acentric chromosome with duplication & deletion See Fig. 6-15

33 Pericentric inversion Centromere is part of inversion loop Results in Normal chromosome 2 chromosomes with duplication & deletion Chromosome with inversion Inversions See Fig. 6-15

34 Translocations Nonreciprocal translocation Part of one chromosome breaks off and attaches to another chromosome Reciprocal translocation Exchange of genetic material between two nonhomologous chromosomes

35 Reciprocal Translocation Causes unusual homolog pairing during synapsis Cross-like pattern Fig. 6-16

36 Reciprocal Translocation Orientation of homologs can result in unbalanced gametes Fig. 6-16

37 Robertsonian Translocation Break on p arm of two non-homologous acrocentric chromosomes Small segments are lost Large segments fuse together

38 Familial Down Syndrome Heritable form of Down syndrome Fig. 7-17

39 Fragile Sites Regions of chromosomes susceptible to breakage May be due to regions of loosely coiled chromatin Linked to types of mental retardation and cancer Ex., Fragile X syndrome (Martin-Bell Syndrome) Most common form of inherited mental retardation Fig. 7-18

40 Fragile X Due to trinucleotide repeats (CGG) in gene FMR-1 Normally 6-50 repeats Syndrome expressed with >230 repeats Repeats may result in the inactivation of the gene FMR-1 Produces RNA binding protein involved with transport of mrna s Prominent in developing brain cells

Chromosome Abnormalities

Chromosome Abnormalities Chromosome Abnormalities Chromosomal abnormalities vs. molecular mutations Simply a matter of size Chromosomal abnormalities are big errors Two types of abnormalities 1. Constitutional problem present

More information

Variations in Chromosome Structure & Function. Ch. 8

Variations in Chromosome Structure & Function. Ch. 8 Variations in Chromosome Structure & Function Ch. 8 1 INTRODUCTION! Genetic variation refers to differences between members of the same species or those of different species Allelic variations are due

More information

CYTOGENETICS Dr. Mary Ann Perle

CYTOGENETICS Dr. Mary Ann Perle CYTOGENETICS Dr. Mary Ann Perle I) Mitosis and metaphase chromosomes A) Chromosomes are most fully condensed and clearly distinguishable during mitosis. B) Mitosis (M phase) takes 1 to 2 hrs and is divided

More information

Chromosome Structure & Recombination

Chromosome Structure & Recombination Chromosome Structure & Recombination (CHAPTER 8- Brooker Text) April 4 & 9, 2007 BIO 184 Dr. Tom Peavy Genetic variation refers to differences between members of the same species or those of different

More information

Mutations Quick Questions and Notes (#1) QQ#1: What do you know about mutations?

Mutations Quick Questions and Notes (#1) QQ#1: What do you know about mutations? Mutations Quick Questions and Notes (#1) QQ#1: What do you know about mutations? mutation basics Definition: a change in the genetic material of a cell Note: not all mutations are bad Can occur in 2 types

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

The Living Environment Unit 3 Genetics Unit 11 Complex Inheritance and Human Heredity-class key. Name: Class key. Period:

The Living Environment Unit 3 Genetics Unit 11 Complex Inheritance and Human Heredity-class key. Name: Class key. Period: Name: Class key Period: Chapter 11 assignments Pages/Sections Date Assigned Date Due Topic: Recessive Genetic Disorders Objective: Describe some recessive human genetic disorders. _recessive_ alleles are

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

Mutations. New inherited traits, or mutations, may appear in a strain of plant or animal.

Mutations. New inherited traits, or mutations, may appear in a strain of plant or animal. Genetic Mutations Mutations New inherited traits, or mutations, may appear in a strain of plant or animal. The first individual showing the new trait is called a mutant. 2 Types of Mutations Chromosomal

More information

Cell Division and Inheritance

Cell Division and Inheritance Cell Division and Inheritance Continuing life relies on reproduction Individual organism replacing dead or damaged cells Species making more of same species Reproduction Cells divide, grow, divide again

More information

Chromosomal Aberrations

Chromosomal Aberrations Chromosomal Aberrations Chromosomal Aberrations Abnormalities of chromosomes may be either numerical or structural and may involve one or more autosomes, sex chromosomes, or both simultaneously. Numerical

More information

Chromosomal Basis of Inherited Disorders

Chromosomal Basis of Inherited Disorders Chromosomal Basis of Inherited Disorders Bởi: OpenStaxCollege Inherited disorders can arise when chromosomes behave abnormally during meiosis. Chromosome disorders can be divided into two categories: abnormalities

More information

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE !! www.clutchprep.com Chromosomal theory of inheritance: chromosomes are the carriers of genetic material. Independent Assortment alleles for different characters sort independently of each other during

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Chromosomal Abnormalities and Karyotypes Creating a Karyotype

Chromosomal Abnormalities and Karyotypes Creating a Karyotype Chromosomal Abnormalities and Karyotypes Creating a Karyotype The Normal Human Karyotype The normal human karyotype is composed of SEVEN groups of chromosomes A G plus the sex chromosomes X and Y. The

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Locating Genes on Chromosomes A century

More information

Structural Chromosome Aberrations

Structural Chromosome Aberrations Structural Chromosome Aberrations 2 Structural chromosome aberrations or chromosome mutations represent apart from aneuploidies the most frequent pathologic findings in applied chromosome diagnostics.

More information

Ch. 15 The Chromosomal Basis of Inheritance

Ch. 15 The Chromosomal Basis of Inheritance Ch. 15 The Chromosomal Basis of Inheritance Nov 12 12:58 PM 1 Essential Question: Are chromosomes the basis of inheritance? Nov 12 1:00 PM 2 1902 Walter S. Sutton, Theodor Boveri, et al Chromosome Theory

More information

Chapter 5 Human Chromosomes and Chromosome Behavior

Chapter 5 Human Chromosomes and Chromosome Behavior Chapter 5 Human Chromosomes and Chromosome Behavior 1 Human Chromosomes Humans contain 46 chromosomes, including 22 pairs of homologous autosomes and two sex chromosomes Karyotype = stained and photographed

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

-19. -Mousa Salah. -Shahd Alqudah. -Dr Belal

-19. -Mousa Salah. -Shahd Alqudah. -Dr Belal التزام -19 -Mousa Salah -Shahd Alqudah -Dr Belal 1 P a g e In the previous lecture we talked about the numerical chromosomal abnormalities, they are either autosomal or sex, and we said that the chromosomal

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS SHORT ANSWER QUESTIONS-Please type your awesome answers on a separate sheet of paper. 1. What is an X-linked inheritance pattern? Use a specific example to explain the role of the father and mother in

More information

Section Chapter 14. Go to Section:

Section Chapter 14. Go to Section: Section 12-3 Chapter 14 Go to Section: Content Objectives Write these Down! I will be able to identify: The origin of genetic differences among organisms. The possible kinds of different mutations. The

More information

The Cell Cycle. Chapter 10

The Cell Cycle. Chapter 10 The Cell Cycle Chapter 10 Why Do Cells Divide? Unicellular 1. Reproduction Multicellular 1. Grow 2. Repair 3. Development/reproduction Types of Division Prokaryotic cells Binary fission = asexual reproduction

More information

The Case of the Cumbersome Chromosomes: An Introduction to Workshop Genetics.

The Case of the Cumbersome Chromosomes: An Introduction to Workshop Genetics. Volume 24: Mini Workshops 253 The Case of the Cumbersome Chromosomes: An Introduction to Workshop Genetics. Tammy Tobin-Janzen Biology Department Susquehanna University Selinsgrove, PA 17870 Tammy is an

More information

CHAPTER 17 CHROMOSOME REARRANGEMENTS

CHAPTER 17 CHROMOSOME REARRANGEMENTS CHROMOSOME REARRANGEMENTS CHAPTER 17 Figure 1. Comparing an ideogram of the human chromosome 2 to the equivalent chromosomes in chimpanzees, we notice that the human chromosome 2 likely came from a fusion

More information

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;)

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;) MEIOSIS: Genetic Variation / Mistakes in Meiosis (Sections 11-3,11-4;) RECALL: Mitosis and Meiosis differ in several key ways: MITOSIS: MEIOSIS: 1 round of cell division 2 rounds of cell division Produces

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Chromosomal Mutations

Chromosomal Mutations Notes 2/17 Chromosomal Mutations A chromosome mutation is an unpredictable change that occurs in a chromosome. These changes are most often brought on by problems that occur during meiosis or by mutagens

More information

Chapter 10 Chromosomes and Cell Reproduction

Chapter 10 Chromosomes and Cell Reproduction Chapter 10 Chromosomes and Cell Reproduction Chromosomes Organisms grow by dividing of cells Binary Fission form of asexual reproduction that produces identical offspring (Bacteria) Eukaryotes have two

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Karyotypes Detect Chromosome Mutations

Karyotypes Detect Chromosome Mutations Karyotypes Detect Chromosome Mutations Chromosomes may become altered during meiosis. These mutations involve large sections that involve many genes. Chromosome may have sections deleted, duplicated, inverted,

More information

Topic 4 Year 10 Biology

Topic 4 Year 10 Biology Topic 4 Year 10 Biology TOPIC 4 CHROMOSOMES & CELL DIVISION Things to cover: 1. Chromosomes 2. Karyotypes inc. chromosomal disorders 3. Cell division inc. mitosis, meiosis & fertilisation Work to do: 1.

More information

CONTROL OF CELL DIVISION

CONTROL OF CELL DIVISION CONTROL OF CELL DIVISION Regulation of cell division is necessary to determine when and how cells should divide. Types of Regulators: Internal regulators: Cyclins proteins that regulate the timing of the

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION Section I Chromosomes Formation of New Cells by Cell Division New cells are formed when old cells divide. 1. Cell division is the same as cell reproduction.

More information

Chromosomes and Human Inheritance. Chapter 11

Chromosomes and Human Inheritance. Chapter 11 Chromosomes and Human Inheritance Chapter 11 11.1 Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomes and Sex Chromosomes

More information

Chromosome pathology

Chromosome pathology Chromosome pathology S. Dahoun Department of Gynecology and Obstetrics, University Hospital of Geneva Cytogenetics is the study of chromosomes and the related disease states caused by abnormal chromosome

More information

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan General Embryology 2019 School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan https://www.facebook.com/dramjad-shatarat What is embryology? Is the science that

More information

Chromosomes and Gene Expression. Exceptions to the Rule other than sex linked traits

Chromosomes and Gene Expression. Exceptions to the Rule other than sex linked traits Chromosomes and Gene Expression Exceptions to the Rule other than sex linked traits Chromosome Inactivation If girls have two X chromosomes, do they produce more proteins than boys with only one X chromosome???

More information

Mutations. A2 Biology For WJEC

Mutations. A2 Biology For WJEC 12. Mutation is a change in the amount, arrangement or structure in the DNA of an organism. 13. There are two types of mutations, chromosome mutations and gene mutations. Mutations A2 Biology For WJEC

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Chapter 15: The Chromosomal Basis of Inheritance 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2. Explain the law

More information

Chapter 6. Variation in Chromosome Number and Structure

Chapter 6. Variation in Chromosome Number and Structure Chapter 6. Variation in Chromosome Number and Structure 1. Cytogenetics & Cytological Technique 2. Analysis of Mitotic Chromosomes 3. Cytogenetic Variation 1 The cultivation of wheat originated some 10,000

More information

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes & Karyotypes The form of cell division by which gametes, with half the number of chromosomes, are produced. Homologous Chromosomes Pair of chromosomes (maternal and paternal) that are similar in shape,

More information

Human Genetic Mutations

Human Genetic Mutations Human Genetic Mutations 2 Main Types of Mutations 1.) Chromosomal Mutations 2.) Gene Mutations What are chromosomes? Humans have 23 pairs of chromosomes, with one chromosome from each parent. The chromosomes

More information

Genetics - Problem Drill 06: Pedigree and Sex Determination

Genetics - Problem Drill 06: Pedigree and Sex Determination Genetics - Problem Drill 06: Pedigree and Sex Determination No. 1 of 10 1. The following is a pedigree of a human trait. Determine which trait this is. (A) Y-linked Trait (B) X-linked Dominant Trait (C)

More information

Chromosomes. Bacterial chromosomes are circular. Most higher organisms have linear chromosomes with a centromere that attaches them to the spindle

Chromosomes. Bacterial chromosomes are circular. Most higher organisms have linear chromosomes with a centromere that attaches them to the spindle 1 Chromosomes Bacterial chromosomes are circular Most higher organisms have linear chromosomes with a centromere that attaches them to the spindle Centromere can be in the center (metacentric), off-center

More information

Chapter 3 Chromosomal Aberrations

Chapter 3 Chromosomal Aberrations MEDICAL GENETICS Chapter 3 Chromosomal Aberrations Abnormalities of chromosomes may be either numerical or structural and may involve one or more autosomes, sex chromosomes, or both simultaneously. Numerical

More information

Sexual Reproduction and Genetics. Section 1. Meiosis

Sexual Reproduction and Genetics. Section 1. Meiosis Chromosomes and Chromosome Number! Human body cells have 46 chromosomes! Each parent contributes 23 chromosomes! Homologous chromosomes one of two paired chromosomes, one from each parent Chromosomes and

More information

Click on Karyotyping under human biology and read the Introduction page: 1. What causes a dark band on the chromosome?

Click on Karyotyping under human biology and read the Introduction page: 1. What causes a dark band on the chromosome? Karyotyping Activity Name: In this activity, you will use a computer model to look at chromosomes and prepare a karyotype. You will diagnose patients for abnormalities and learn the correct notation for

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Period Chapter 15: The Chromosomal Basis of Inheritance Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2.

More information

CHROMOSOMAL THEORY OF INHERITANCE

CHROMOSOMAL THEORY OF INHERITANCE AP BIOLOGY EVOLUTION/HEREDITY UNIT Unit 1 Part 7 Chapter 15 ACTIVITY #10 NAME DATE PERIOD CHROMOSOMAL THEORY OF INHERITANCE The Theory: Genes are located on chromosomes Chromosomes segregate and independently

More information

MOLECULAR MECHANISMS FOR CONSTITUTIONAL CHROMOSOMAL REARRANGEMENTS IN HUMANS

MOLECULAR MECHANISMS FOR CONSTITUTIONAL CHROMOSOMAL REARRANGEMENTS IN HUMANS Annu. Rev. Genet. 2000. 34:297 329 Copyright c 2000 by Annual Reviews. All rights reserved MOLECULAR MECHANISMS FOR CONSTITUTIONAL CHROMOSOMAL REARRANGEMENTS IN HUMANS Lisa G. Shaffer 1 and James R. Lupski

More information

TEXT Introduction During evolutionary history of organisms, the genomes of organisms are continuously being rearranged and reshaped.

TEXT Introduction During evolutionary history of organisms, the genomes of organisms are continuously being rearranged and reshaped. TEXT Introduction During evolutionary history of organisms, the genomes of organisms are continuously being rearranged and reshaped. These rearrangements may change the position of a segment within a chromosome,

More information

Mitosis & Meiosis. Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair

Mitosis & Meiosis. Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair Mitosis & Meiosis Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair The pair is called homologous chromosomes The homologous chromosomes contain the same gene

More information

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section A: Relating Mendelism to Chromosomes

CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE. Section A: Relating Mendelism to Chromosomes CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE Section A: Relating Mendelism to Chromosomes 1. Mendelian inheritance has its physical basis in the behavior of chromosomes during sexual life cycles 2.

More information

Chapter 8. The Cellular Basis of Reproduction and Inheritance. Lecture by Mary C. Colavito

Chapter 8. The Cellular Basis of Reproduction and Inheritance. Lecture by Mary C. Colavito Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education,

More information

Relating Mendelian Inheritance to the Behavior of Chromosomes

Relating Mendelian Inheritance to the Behavior of Chromosomes Chapter 15 Relating Mendelian Inheritance to the Behavior of Chromosomes 1. Explain how the observations of cytologists and geneticists provided the basis for the chromosome theory of inheritance. 2. Explain

More information

Concepts of Genetics William S. Klug Michael R. Cummings Charlotte Spencer Michael Palladino Tenth Edition

Concepts of Genetics William S. Klug Michael R. Cummings Charlotte Spencer Michael Palladino Tenth Edition Concepts of Genetics William S. Klug Michael R. Cummings Charlotte Spencer Michael Palladino Tenth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies

More information

BSC 2010C SI EXAM 3 REVIEW REVIEW SESSION AT: Wednesday, 12 2 PM In CB2 Room 105

BSC 2010C SI EXAM 3 REVIEW REVIEW SESSION AT: Wednesday, 12 2 PM In CB2 Room 105 BSC 2010C SI EXAM 3 REVIEW REVIEW SESSION AT: Wednesday, 7/26 @ 12 2 PM In CB2 Room 105 Ch. 10 1) Where does the light cycle happen? Thylakoid membrane 2) Where does the calvin cycle happen? Stroma Ch.

More information

cells divide? Growth Development Repair Asexual reproduction Formation of gametes

cells divide? Growth Development Repair Asexual reproduction Formation of gametes mitosis and meiosis cells divide? Growth Development Repair Asexual reproduction Formation of gametes How does a cell know when to divide? the cell cycle A repeating process of cell growth and division

More information

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors.

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors. Genetics - Problem Drill 21: Cytogenetics and Chromosomal Mutation No. 1 of 10 1. Why do some cells express one set of genes while other cells express a different set of genes during development? (A) Because

More information

GENE EXPRESSION. Individuality & Mutations

GENE EXPRESSION. Individuality & Mutations GENE EXPRESSION Individuality & Mutations I. Are all genes turned on in all cells? The answer is NO! Every body cell contains your DNA (genetic make-up) Cells use only genes specific for function EX. Red

More information

Much ha happened since Mendel

Much ha happened since Mendel Chapter 15 Chromosomal Basis of Inheritance Much ha happened since Mendel We can show genes are located at particular loci on chromosomes Using fluorescent dye to mark a particular gene 1 The use of these

More information

Gene Expression and Mutation

Gene Expression and Mutation Gene Expression and Mutation GENE EXPRESSION: There are hormonal and environmental factors that may cause the expression of some genetic information. Some examples are: 1. The two- colour pattern of some

More information

Chapter 11. Chromosomes and Human Inheritance

Chapter 11. Chromosomes and Human Inheritance Chapter 11 Chromosomes and Human Inheritance Human Chromosomes Human body cells have 23 pairs of homologous chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Autosomesand Sex Chromosomes Paired

More information

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance Genetics Review Alleles These two different versions of gene A create a condition known as heterozygous. Only the dominant allele (A) will be expressed. When both chromosomes have identical copies of the

More information

MUCOM Medical Genetics. Prepared by: Dr. Mohammed Hussein Assi M.B.Ch.B M.Sc DCH (UK) MRCPCH

MUCOM Medical Genetics. Prepared by: Dr. Mohammed Hussein Assi M.B.Ch.B M.Sc DCH (UK) MRCPCH MUCOM 2017-2018 Medical Genetics Prepared by: Dr. Mohammed Hussein Assi M.B.Ch.B M.Sc DCH (UK) MRCPCH Single-Gene Disorders Basic Definitions Chromosomes There are two types of chromosomes: autosomes (1-22)

More information

STRUCTURAL CHROMOSOMAL ABERRATIONS

STRUCTURAL CHROMOSOMAL ABERRATIONS STRUCTURAL CHROMOSOMAL ABERRATIONS Structural chromosomal aberrations cause structural abnormalities in chromosome structure. They alter the sequence or the kind of genes present in chromosome. These are

More information

MOLECULAR BASIS OF DISEASES.

MOLECULAR BASIS OF DISEASES. Molecular Basis of Diseases 1 MOLECULAR BASIS OF DISEASES. Assembled by: Prof. Janos Szabad University of Szeged, Department of Biology Szeged, April 2010 INTRODUCTION Life of every human starts with fusion

More information

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13 Chromosomes, Mapping, and the Meiosis-Inheritance Connection Chapter 13 Chromosome Theory Chromosomal theory of inheritance - developed in 1902 by Walter Sutton - proposed that genes are present on chromosomes

More information

The questions below refer to the following terms. Each term may be used once, more than once, or not at all.

The questions below refer to the following terms. Each term may be used once, more than once, or not at all. The questions below refer to the following terms. Each term may be used once, more than once, or not at all. a) telophase b) anaphase c) prometaphase d) metaphase e) prophase 1) DNA begins to coil and

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance Lecture Outline Overview: Locating Genes on Chromosomes Today we know that genes Gregor Mendel s hereditary factors are located on chromosomes. A century

More information

Cellular Reproduction Chapter 8

Cellular Reproduction Chapter 8 Cellular Reproduction Chapter 8 1. Importance of Cell Division 2. Eukaryotic Cell Cycle 3. Eukaryotic Chromosomes 4. Mitosis 5. Cytokinesis in animal and plant cells 6. Sexual Iife cycle 7. Meiosis 8.

More information

AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance

AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance I. Chapter 15.1: Mendelian inheritance has its physical basis in the behavior of chromosomes. a. Chromosome theory of inheritance: i. Mendelian

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

WHEN DO MUTATIONS OCCUR?

WHEN DO MUTATIONS OCCUR? WHEN DO MUTATIONS OCCUR? While most DNA replicates with fairly high accuracy, mistakes do happen. DNA polymerase sometimes inserts the wrong nucleotide or too many or too few nucleotides into a sequence.

More information

Genes are found on Chromosomes! Genes are found on Chromosomes! I. Types of Mutations

Genes are found on Chromosomes! Genes are found on Chromosomes! I. Types of Mutations Genes are found on Chromosomes! genes and chromosomes are made up of DNA, which is the genetic material for all life on earth genes are found on a specific region on a chromosome; called a locus (loci)

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

Chapter 11 Patterns of Chromosomal Inheritance

Chapter 11 Patterns of Chromosomal Inheritance Inheritance of Chromosomes How many chromosomes did our parents gametes contain when we were conceived? 23, 22 autosomes, 1 sex chromosome Autosomes are identical in both male & female offspring For the

More information

Meiosis, Karyotypes, & Nondisjunction. Ch 11 & 14

Meiosis, Karyotypes, & Nondisjunction. Ch 11 & 14 Meiosis, Karyotypes, & Nondisjunction Ch 11 & 14 WORDS (AND CONCEPTS) TO KNOW Human somatic cells have chromosomes (replicated) homologous chromosomes = two chromosomes w/ same genes (tetrad) sister chromatids

More information

Gene Expression. From a gene to a protein

Gene Expression. From a gene to a protein Gene Expression From a gene to a protein Central Dogma (Crick 1958) Determines the genetic flow of information Central Dogma First step in decoding a genetic message from DNA is to copy (transcribe) it

More information

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance Units of Heredity: Chromosomes and Inheritance Ch. 12 12.1 in Humans X-chromosomes also have non genderspecific genes Called X-linked genes Vision Blood-clotting X-linked conditions Conditions caused by

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

Recombina*on of Linked Genes: Crossing Over. discovered that genes can be linked. the linkage was incomplete

Recombina*on of Linked Genes: Crossing Over. discovered that genes can be linked. the linkage was incomplete Recombina*on of Linked Genes: Crossing Over Fig. 15-10 Testcross parents Gray body, normal wings (F 1 dihybrid) Black body, vestigial wings (double mutant) Morgan discovered that genes can be linked the

More information

The bases on complementary strands of DNA bond with each other in a specific way A-T and G-C

The bases on complementary strands of DNA bond with each other in a specific way A-T and G-C 1 Bio 1101 Lecture 6 Ch. 8: Cellular Basis of Reproduction 2 3 4 5 6 Cellular Basis of Reproduction & Inheritance In order for an organism to replace dead cells or to grow and produce new cells, existing

More information

BIOLOGY. The Chromosomal Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The Chromosomal Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 15 The Chromosomal Basis of Inheritance Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Where are Mendel s hereditary

More information

DNA, Genes, and Chromosomes. The instructions for life!!!

DNA, Genes, and Chromosomes. The instructions for life!!! DNA, Genes, and Chromosomes The instructions for life!!! Gene Segment of DNA that has the information (the code) for a protein or RNA. A single molecule of DNA has thousands of genes on the molecule. Remember

More information

Biology Unit III Exam» Form C

Biology Unit III Exam» Form C Directions: For each of the following questions, decide which of the choices is best and fill in the corresponding space on the answer document. 1. Which of these sets of chromosomes is found in a single

More information

Why do cells reproduce?

Why do cells reproduce? Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis Examples of Cell

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Evolution of chromosomes and genomes

Evolution of chromosomes and genomes volution of chromosomes and genomes oe Felsenstein GNOM 453, Autumn 2011 volution of chromosomes and genomes p.1/36 Chromosome rearrangements Inversion Translocation Transposition Tetraploidy flip move

More information

Genetic Counseling. Brook Croke, M.S., M.P.H. Genetic Counselor, CooperGenomics UIUC MCB Workshop Series November 13, 2017

Genetic Counseling. Brook Croke, M.S., M.P.H. Genetic Counselor, CooperGenomics UIUC MCB Workshop Series November 13, 2017 Genetic Counseling Brook Croke, M.S., M.P.H. Genetic Counselor, CooperGenomics brook.croke@gmail.com UIUC MCB Workshop Series November 13, 2017 11/13/2017 1 OVERVIEW CELL ANATOMY GENETICS OF HUMAN DISEASE

More information

Medical Genetics. Nondisjunction Definition and Examples. Basic Structure of Chromosomes. See online here

Medical Genetics. Nondisjunction Definition and Examples. Basic Structure of Chromosomes. See online here Medical Genetics Nondisjunction Definition and Examples See online here Nondisjunction connotes failure of separation of homologous chromosomes during cell division. It has significant repercussions and

More information

LECTURE 32 GENETICS OF INVERSIONS. A. Pairing of inversion genotypes:

LECTURE 32 GENETICS OF INVERSIONS. A. Pairing of inversion genotypes: LECTURE 32 GENETICS OF INVERSIONS A. Pairing of inversion genotypes: 1. Characteristic inversion loops form only in chromosomal heterozygotes of both para- and pericentric inversions. Based on the inversion

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance Lecture Outline Overview: Locating Genes Along Chromosomes Today we know that genes Gregor Mendel s hereditary factors are located on chromosomes. A century

More information

Mitosis and Meiosis. Chapters 8 & 10

Mitosis and Meiosis. Chapters 8 & 10 Mitosis and Meiosis Chapters 8 & 10 O Quiz #6: December 6th Learning Goals O Describe what happens during interphase O Identify steps of mitosis/meiosis by picture and function O Explain the diseases that

More information