An Overview of Cytogenetics. Bridget Herschap, M.D. 9/23/2013

Size: px
Start display at page:

Download "An Overview of Cytogenetics. Bridget Herschap, M.D. 9/23/2013"

Transcription

1 An Overview of Cytogenetics Bridget Herschap, M.D. 9/23/2013

2 Objectives } History and Introduction of Cytogenetics } Overview of Current Techniques } Common cytogenetic tests and their clinical application } Use of cytogenetic in the future

3 Introduction } Cytogenetics is the study of structure, function, and evolution of chromosomes. } At the end of the 19th century the first tentative steps were taken into the field of human cytogenetics. } Cytogenetics has been used for many years for various applications, from clinical diagnostics to basic genomic research.

4 Introduction } In the ensuing years, human cytogenetics has been transformed by technological advances that have combined innovations in molecular biology, chemistry and instrumentation. } The resolution and sensitivity of analyses have improved more than 10,000-fold in a very short time, first with the introduction of banding technology and later with fluorescence in situ hybridization (FISH). } Cytogeneticists can now extract far more information about the human genome than just chromosome number.

5 History } Flemming published in 1882 the first drawn illustrations of human chromosomes. } In1888 the term chromosome (Greek for stained body ) was coined. } Only a couple of years later, it was already anticipated that chromosomes probably constitute the physical basis of heredity.

6 History } Mammalian cell cultures were not yet possible and quality slide were difficult to produce. } Researchers had to deal with biopsies, tissue sections or squashed tumor cell samples. } Unable to obtain reproducible chromosome count } Conflicting reports of chromosome number } Von Winiwarter counted a different number in males (n = 47) as in females (n = 48). } Painter published in 1923 several studies of a chromosome number of 48 based on a study of meiotic chromosomes in several testis biopsies taken from incarcerated, castrated males who had been sentenced to death.

7 Breakthrough } Cells kept for several minutes in a hypotonic salt solution instead of an isotonic one before fixation gave a much better spreading of the chromosomes. } Ordinary water accidentally applied instead of a salt solution for washing the cells. } The addition of colchicine to cell cultures captured the cells in their metaphase stage. } Subsequently, the cells are not able to finish mitosis and an increasing number of metaphases become available for microscopic studies.

8

9 Tjio and Levan } Before a renewed, careful control has been made of the chromosome number in spermatogonial mitoses of man we do not wish to generalize our present findings into a statement that the chromosome number of man is 2n = 46, but it is hard to avoid the conclusion that this would be the most natural explanation of our observations."

10 History } Human cytogeneticists were dealt a good hand by evolution. } Fortunately, differences in the relative size of human chromosomes and the position of the centromeric constriction allowed cytogeneticists to match up the 23 pairs and classify them into seven groups (A to G) with relative ease

11 History: BCR-ABL } 1960: The first acquired (not constitutional) chromosome abnormality, the Philadelphia chromosome, was recognized in bone marrow cells of a patient suffering from chronic myeloid leukemia. } 13 years before it became apparent that this was not a simple deletion but the result of a reciprocal translocation between the chromosomes 9 and 22. } After almost another 13 years, it was discovered that this translocation resulted in a new fusion gene between BCR and ABL.

12 Cytogenetics: from the bench to the clinic } 1966: Cells cultured from amniotic fluid could be used to determine the chromosome content of the fetus. } This is the technique that is still most widely used for prenatal chromosome studies. } Studies of abortions and miscarriages revealed numerical aberrations in over 50% of abortions. } Resulting in a tetra- or triploidy, a trisomy (e.g., chromosomes 13, 18, 21, and often 16) or monosomy (45,X).

13 History } Until the early 1970s, all cytogenetic studies were performed on solid stained chromosomes which hampered identification of individual chromosomes and the detection of most of the structural aberrations. } Therefore, many efforts were made to develop a technique for a clear discrimination between the various chromosome pairs. } For routine use in a clinical setting, the G-banding technique based on the application of trypsin followed by Giemsa staining became the most accepted method worldwide.

14 History } Resolution of chromosome studies remained relatively limited with an approximate count of 500 bands per haploid genome. } However, synchronizing lymphocyte cultures, lead to increased number of cells being in pro-metaphase or even prophase stage instead of metaphase. } In these much longer chromosomes, regular metaphase bands appeared to split-up in many sub-bands, thus increasing resolution from 500 to over 1000 bands in a haploid genome (6 million base pairs 50 genes per band).

15 High Resolution Banding Fig. 3. Balanced translocation between chromosomes 11 and 22. At the right side of the picture are the chromosomes 11 and 22 of a normal metaphase cell, while the left side shows high resolution chromosomes from a prometaphase. The aberrant chromosomes are presented as der(11) and der(22). Fig. 4. High resolution banding of chromosomes 15 from 3 different patients with Prader Willi syndrome. From left to right, the ideogram of a normal #15, than in the middle the normal #15 while on the right side the #15 with a deletion of the most proximal band is shown. Both the normal and abnormal #15 are from the same cell.

16 An Overview of Cytogenetics Microscope to Molecule

17 Microscope to Molecule } Once a rearranged chromosome has been identified, the next step is to position the translocation breakpoints or deletion boundaries relative to genes on molecular maps. } This step can be accomplished by using techniques that physically separate abnormal and normal chromosomes so that they can be independently assayed for gene content. } Three methods have been particularly useful in achieving this: } somatic-cell-hybrid technology } fluorescence-activated cell (chromosome) sorting (FACS) } FISH

18 FISH } Fig. 6. Various applications of FISH. (a) Simultaneous chromosome paints of the X-chromosomes (pink) and their centromeres (yellow). (b) Interphase FISH with probes specific for the Y-chromosome (red) and the X-chromosome centromere (blue) on uncultured amniocytes of a fetus with a 47,XXY karyotype. (c) Detection of a submicroscopic deletion in the long arm of a chromosome 22 in a patient with DiGeorge syndrome. The normal chromosome 22 shows two signals (one from the DiGeorge region and one from the tip of the long arm as a control signal), while at the second chromosome 22, only the control signal appears to be present since the DiGeorge region is absent (arrow). (d) Spectral karyotyping (SKY) of the complete chromosome complement, where all chromosome pairs have their own (artificial) color.

19 FISH } Despite the development of high-resolution chromosome banding, numerous patients still showing clear clinical symptoms were found to have no visible aberrations at the cytogenetic level. } The next advance to revolutionize cytogenetics, FISH, provided a direct link between microscope and sequence.

20 FISH } Each probe is a cloned piece of the genome that is conjugated to a reporter molecule, such as biotin. } After denaturation, the probe is allowed to seek out its complement in the chromosomal DNA, and these locations are then marked with a fluorescent reagent, such as avidin-fitc, that binds to the reporter attached to the DNA probe.

21 Molecular cytogenetics } The gap between cytogenetics and molecular studies became smaller. } As molecular biologists filled in the genome maps, large collections of molecular reagents in the form of cloned, mapped segments of the human genome (cosmids, BACs, PACs, and YACs) became available with which abnormal chromosomes could be characterized by FISH to identify affected genes. } For example, FISH analyses identified clones that cross the two breakpoints of the pericentric inversion of chromosome 16 seen in patients with AML. } This finding set the stage for the identification of the two genes (MYH11, smooth muscle myosin heavy chain 11, and CBFB, the -subunit of core-binding factor) that, when aberrantly fused, cause the leukemic transformation.

22 } Even more importantly, FISH opened up the nuclei of non-dividing cells to karyotype analysis. } Conventional cytogenetics requires the capture of cells in mitosis, and many samples, particularly those from solid tumors, produce few, if any, analyzable metaphases.

23 Interphase FISH } Because DNA is packaged 10,000-fold more loosely in interphase nuclei than in metaphase chromosomes, abnormalities that are not resolvable by metaphase FISH can be detected by interphase FISH. } Shifts in relative spot position reveal structural rearrangements, such as translocations and inversions.

24 Interphase FISH } Interphase analysis is also useful when cells are rare, such as in minimal residual disease or micrometastasis. } Interphase FISH with centromere probes also allows the rapid screening of large numbers of cells to identify chromosomal instability in tumour cell nuclei.

25 } a Outline of the spectral karyotyping (SKY) protocol. SKY and multicolour fluorescence in situ hybridization (M-FISH) differ only in the method used to measure the spectral characteristics of each pixel in the image (see main text). Cot-1 DNA is enriched in repetitive sequences, and by binding to repetitive sequences in the fluorescently tagged probes, it suppresses their hybridization to target chromosomes. b The application of SKY to normal interphase and metaphase human cells; the highly rearranged karyotype of a bladder cancer cell is shown in c. Arrows point to inter-chromosomal rearrangements.

26 CGH: a surrogate for chromosomes } The next transformation of cytogenetics came with the realization that genome-wide scans for the loss or gain of chromosomal material could be conducted without even looking directly at the subject's chromosomes. The technique that made this possible is called comparative genome hybridization (CGH).

27 CGH: a surrogate for chromosomes } Metaphase chromosomes are replaced as the target by large numbers of mapped clones that are spotted onto a standard glass slide. } increased the resolution of screening for genomic copy number gains and losses } In array CGH, the test and normal reference genomes, which are used as probes, are differentially labelled and co-hybridized to a microarray. } The array is then imaged and the relative fluorescence intensities are calculated for each mapped clone, with the resulting intensity ratio reflecting the DNA copy number difference. } The resolution of the analysis is restricted only by clone size and by the density of clones on the array.

28

29 CGH } Important in cancer cytogenetics, in which it is used to identify chromosomal regions that are recurrently lost or gained in tumors. } For example, CGH led the way to the identification of PIK3CA, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K), as an oncogene in ovarian cancer. } DNA-amplification techniques have also been developed to find genetic alterations in small samples of rare cells, such as rogue cells found in blood that have escaped a primary tumor and might foreshadow metastasis.

30 Limitations } For rearrangements that do not involve genomic imbalances, such as balanced chromosome translocations and inversions, the use of CGH is limited. } In addition, whole-genome copy number changes (ploidy changes) cannot be detected. } Furthermore, CGH provides no information about the structural arrangements of chromosome segments that are involved in gains and losses. } Despite these limitations, CGH has become one of the most widely used cytogenetic techniques in both basic research and molecular diagnostics.

31 Future of CGH } These analyses should generate prognostic markers, identify new tumor-suppressor genes or oncogenes and, ultimately, lead to a better understanding of the cancer process. } It is hoped that technological advances, such as array- CGH, will reduce the time and cost of cytogenetic analyses so that they can be accessed by more families.

32

33

34 Conclusion } Although cytogenetics is moving into the direction of molecular approaches instead of microscopy, these developments by no means imply that the old fashioned banding techniques practiced for over 30 years now will disappear from the laboratories. } Karyotyping remains the single (and simple) technique to obtain a quick overview of the complete human genome.

35 Conclusion } Cytogenetics continues to reinvent itself to aid explorations of chromosome structure, function and evolution. } Banding techniques, which are unchanged from the 1970s apart from the introduction of digital image handling, are now combined with state-of-the-art multicolour FISH and molecular analysis.

36 References } } } } } } Albertson, D. G. et al. Chromosome aberrations in solid tumors. Nature Genet. 34, (2003). BAC Resource Consortium. Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409, (2001). Dominique F.C.M Smeets, Historical prospective of human cytogenetics: from microscope to microarray, Clinical Biochemistry, Volume 37, Issue 6, June 2004, Pages , ISSN , j.clinbiochem ( pii/s ) Takagi N. and Sasaki M, A phylogenetic study of bird karyotypes. Chromosoma 21. V. 1974, Volume 46,pp Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet Oct;6(10): Zitzelsberger, H. F., O'Brien, B. & Weier, H. U. G. in FISH Technology (eds Rautenstrauss, B. & Liehr, T.) (Springer, Heidelberg, 2002).

Understanding the Human Karyotype Colleen Jackson Cook, Ph.D.

Understanding the Human Karyotype Colleen Jackson Cook, Ph.D. Understanding the Human Karyotype Colleen Jackson Cook, Ph.D. SUPPLEMENTAL READING Nussbaum, RL, McInnes, RR, and Willard HF (2007) Thompson and Thompson Genetics in Medicine, 7th edition. Saunders: Philadelphia.

More information

CYTOGENETICS Dr. Mary Ann Perle

CYTOGENETICS Dr. Mary Ann Perle CYTOGENETICS Dr. Mary Ann Perle I) Mitosis and metaphase chromosomes A) Chromosomes are most fully condensed and clearly distinguishable during mitosis. B) Mitosis (M phase) takes 1 to 2 hrs and is divided

More information

Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination. May 4, 2010

Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination. May 4, 2010 Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination May 4, 2010 Examination Length = 3 hours Total Marks = 100 (7 questions) Total Pages = 8 (including cover sheet and 2 pages of prints)

More information

Karyology. Preparation and study of karyotypes is part of Cytogenetics.

Karyology. Preparation and study of karyotypes is part of Cytogenetics. Chromosomal Karyotyping Karyology Karyotyping - process of pairing and ordering all chromosomes of an organism, thus providing a genome-wide snapshot of an individual's chromosomes. Karyotypes describe

More information

Structural Variation and Medical Genomics

Structural Variation and Medical Genomics Structural Variation and Medical Genomics Andrew King Department of Biomedical Informatics July 8, 2014 You already know about small scale genetic mutations Single nucleotide polymorphism (SNPs) Deletions,

More information

Chromosome Abnormalities

Chromosome Abnormalities Chromosome Abnormalities Chromosomal abnormalities vs. molecular mutations Simply a matter of size Chromosomal abnormalities are big errors Two types of abnormalities 1. Constitutional problem present

More information

Cytogenetics 101: Clinical Research and Molecular Genetic Technologies

Cytogenetics 101: Clinical Research and Molecular Genetic Technologies Cytogenetics 101: Clinical Research and Molecular Genetic Technologies Topics for Today s Presentation 1 Classical vs Molecular Cytogenetics 2 What acgh? 3 What is FISH? 4 What is NGS? 5 How can these

More information

Reporting cytogenetics Can it make sense? Daniel Weisdorf MD University of Minnesota

Reporting cytogenetics Can it make sense? Daniel Weisdorf MD University of Minnesota Reporting cytogenetics Can it make sense? Daniel Weisdorf MD University of Minnesota Reporting cytogenetics What is it? Terminology Clinical value What details are important Diagnostic Tools for Leukemia

More information

Cytogenetic analyses in malignant hematological disorders

Cytogenetic analyses in malignant hematological disorders Cytogenetic analyses in malignant hematological disorders general concepts Lucienne Michaux Lessenreeks 21/11/2017 Plan Definition History Pathophysiology of malignant hematological disorders Techniques

More information

Role of FISH in Hematological Cancers

Role of FISH in Hematological Cancers Role of FISH in Hematological Cancers Thomas S.K. Wan PhD,FRCPath,FFSc(RCPA) Honorary Professor, Department of Pathology & Clinical Biochemistry, Queen Mary Hospital, University of Hong Kong. e-mail: wantsk@hku.hk

More information

Oncology Genetics: Cytogenetics and FISH 17/09/2014

Oncology Genetics: Cytogenetics and FISH 17/09/2014 Oncology Genetics: Cytogenetics and FISH 17/09/2014 Chris Wragg Head of Oncology Genomics, BGL BGL Bristol Genetics Laboratory (BGL) CPA accredited Genetics laboratory serving a core population of 4-5million

More information

Fluorescence in-situ Hybridization (FISH) ETO(RUNX1T1)/AML1(RUNX1) or t(8;21)(q21.3;q22)

Fluorescence in-situ Hybridization (FISH) ETO(RUNX1T1)/AML1(RUNX1) or t(8;21)(q21.3;q22) PML/RARA t(15;17) Translocation Assay Result : nuc ish(pml 2)(RARA 2)[200] : 200/200(100%) interphase nuclei show normal 2O 2G signals for PML/RARA : is Negative for t(15;17)(q22;q21.1) 2 Orange 2 Green

More information

Significance of Chromosome Changes in Hematological Disorders and Solid Tumors

Significance of Chromosome Changes in Hematological Disorders and Solid Tumors Significance of Chromosome Changes in Hematological Disorders and Solid Tumors Size of Components of Human Genome Size of haploid genome! Estimated genetic constitution! Size of average chromosome

More information

Significance of Chromosome Changes in Hematological Disorders and Solid Tumors

Significance of Chromosome Changes in Hematological Disorders and Solid Tumors Significance of Chromosome Changes in Hematological Disorders and Solid Tumors Size of Components of Human Genome Size of haploid genome 3.3 X 10 9 DNA basepairs Estimated genetic constitution 30,000

More information

CHAPTER-VII : SUMMARY AND CONCLUSIONS

CHAPTER-VII : SUMMARY AND CONCLUSIONS CHAPTER-VII : SUMMARY AND CONCLUSIONS 199 SUMMARY AND CONCLUSIONS t The rapid development of human genetics during the past couple of decades and the discovery of numerous cytogenetic abnormalities have

More information

An International System for Human Cytogenetic Nomenclature (2013)

An International System for Human Cytogenetic Nomenclature (2013) ISCN 2013 An International System for Human Cytogenetic Nomenclature (2013) Editors Lisa G. Shaffer Jean McGowan-Jordan Michael Schmid Recommendations of the International Standing Committee on Human Cytogenetic

More information

Determination of Genomic Imbalances by Genome-wide Screening Approaches

Determination of Genomic Imbalances by Genome-wide Screening Approaches Overview Determination of Genomic Imbalances by Genome-wide Screening Approaches Károly Szuhai Introduction/Methodologies Applications/Results Conclusion Approaches Introduction/Methodologies Chromosome

More information

Chromosomal Aberrations

Chromosomal Aberrations Chromosomal Aberrations Chromosomal Aberrations Abnormalities of chromosomes may be either numerical or structural and may involve one or more autosomes, sex chromosomes, or both simultaneously. Numerical

More information

Cell Division Questions. Mitosis and Meiosis

Cell Division Questions. Mitosis and Meiosis Cell Division Questions Mitosis and Meiosis 1 10 Do not write outside the box 5 Figure 3 shows a pair of chromosomes at the start of meiosis. The letters represent alleles. Figure 3 E E e e F F f f 5 (a)

More information

TITLE: Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation

TITLE: Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation AD Award Number: DAMD17-99-1-9237 TITLE: Identification of Chromosomes Alterations in Primary Breast Cancer Using Premature Chromosome Condensation PRINCIPAL INVESTIGATOR: Constance A. Griffin, M.D. CONTRACTING

More information

APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis

APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis Dr. Ramesh Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008

More information

Meiosis. Formation of gamete = egg & sperm. Occurs only in ovaries and tees. Makes cells with haploid chromosome number

Meiosis. Formation of gamete = egg & sperm. Occurs only in ovaries and tees. Makes cells with haploid chromosome number Meiosis Formation of gamete = egg & sperm Occurs only in ovaries and tees Makes cells with haploid chromosome number Meiosis Diploid= Full set of chromosomes 46 chromosomes in humans Found in most body

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

CHROMOSOME. Chromosomes are act as factors which distinguished one species from another.

CHROMOSOME. Chromosomes are act as factors which distinguished one species from another. CHROMOSOMES The chromosome comes from Greek Chroma = color CHROMOSOME Soma= body (the colored body) Chromosomes are act as factors which distinguished one species from another. Chromosomes are formed of

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a

More information

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors.

A. Incorrect! All the cells have the same set of genes. (D)Because different types of cells have different types of transcriptional factors. Genetics - Problem Drill 21: Cytogenetics and Chromosomal Mutation No. 1 of 10 1. Why do some cells express one set of genes while other cells express a different set of genes during development? (A) Because

More information

CHAPTER 17 CHROMOSOME REARRANGEMENTS

CHAPTER 17 CHROMOSOME REARRANGEMENTS CHROMOSOME REARRANGEMENTS CHAPTER 17 Figure 1. Comparing an ideogram of the human chromosome 2 to the equivalent chromosomes in chimpanzees, we notice that the human chromosome 2 likely came from a fusion

More information

Biology is the only subject in which multiplication is the same thing as division. AP Biology

Biology is the only subject in which multiplication is the same thing as division. AP Biology Biology is the only subject in which multiplication is the same thing as division Chapter 12. The Cell Cycle: Cell Growth, Cell Division Where it all began You started as a cell smaller than a period at

More information

Cytogenetics Technologies, Companies & Markets

Cytogenetics Technologies, Companies & Markets Cytogenetics Technologies, Companies & Markets By Prof. K. K. Jain MD, FRACS, FFPM Jain PharmaBiotech Basel, Switzerland November 2018 A Jain PharmaBiotech Report A U T H O R ' S B I O G R A P H Y Professor

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a

More information

Karyotype = a test to identify and evaluate the size, shape, and number of chromosomes in a sample of body cells.

Karyotype = a test to identify and evaluate the size, shape, and number of chromosomes in a sample of body cells. Karyotype = a test to identify and evaluate the size, shape, and number of chromosomes in a sample of body cells. Homologous chromosomes are arranged by size, banding patterns, and centromere placement.

More information

Mitosis & Meiosis. Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair

Mitosis & Meiosis. Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair Mitosis & Meiosis Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair The pair is called homologous chromosomes The homologous chromosomes contain the same gene

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division The Cell Cycle: Cell Growth, Cell Division 2007-2008 2007-2008 Getting from there to here Going from egg to baby. the original

More information

Karyotypes Detect Chromosome Mutations

Karyotypes Detect Chromosome Mutations Karyotypes Detect Chromosome Mutations Chromosomes may become altered during meiosis. These mutations involve large sections that involve many genes. Chromosome may have sections deleted, duplicated, inverted,

More information

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Sexual reproduction Life Cycles mitosis Chromosomes Consists of a long DNA molecule (represents thousands of genes) Also consists

More information

Why do cells reproduce?

Why do cells reproduce? Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis Examples of Cell

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Getting from there to here Going from egg to baby. the original

More information

Prenatal Diagnosis: Are There Microarrays in Your Future?

Prenatal Diagnosis: Are There Microarrays in Your Future? Financial Disclosure UCSF Antepartum Intrapartum Management Course June 8 I have no financial relationship with any aspect of private industry Prenatal Diagnosis: Are There Microarrays in Your Future?

More information

New and Developing Technologies for Genetic Diagnostics National Genetics Reference Laboratory (Wessex) Salisbury, UK - July 2010 BACs on Beads

New and Developing Technologies for Genetic Diagnostics National Genetics Reference Laboratory (Wessex) Salisbury, UK - July 2010 BACs on Beads New and Developing Technologies for Genetic Diagnostics National Genetics Reference Laboratory (Wessex) Salisbury, UK - July 2010 BACs on Beads Susan Gross, MD Division of Reproductive Genetics Professor

More information

Omnis cellula e cellula

Omnis cellula e cellula Chapter 12 The Cell Cycle Omnis cellula e cellula 1855- Rudolf Virchow German scientist all cells arise from a previous cell Every cell from a cell In order for this to be true, cells must have the ability

More information

Chromosome pathology

Chromosome pathology Chromosome pathology S. Dahoun Department of Gynecology and Obstetrics, University Hospital of Geneva Cytogenetics is the study of chromosomes and the related disease states caused by abnormal chromosome

More information

Acute Promyelocytic Leukemia with i(17)(q10)

Acute Promyelocytic Leukemia with i(17)(q10) CASE REPORT Acute Promyelocytic Leukemia with i(17)(q10) Junki Inamura 1, Katsuya Ikuta 2, Nodoka Tsukada 1, Takaaki Hosoki 1, Motohiro Shindo 2 and Kazuya Sato 1 Abstract We herein report a rare chromosomal

More information

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan General Embryology 2019 School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan https://www.facebook.com/dramjad-shatarat What is embryology? Is the science that

More information

Chapter 10 Chromosomes and Cell Reproduction

Chapter 10 Chromosomes and Cell Reproduction Chapter 10 Chromosomes and Cell Reproduction Chromosomes Organisms grow by dividing of cells Binary Fission form of asexual reproduction that produces identical offspring (Bacteria) Eukaryotes have two

More information

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014 Challenges of CGH array testing in children with developmental delay Dr Sally Davies 17 th September 2014 CGH array What is CGH array? Understanding the test Benefits Results to expect Consent issues Ethical

More information

Addressing the challenges of genomic characterization of hematologic malignancies using microarrays

Addressing the challenges of genomic characterization of hematologic malignancies using microarrays Addressing the challenges of genomic characterization of hematologic malignancies using microarrays Sarah South, PhD, FACMG Medical Director, ARUP Laboratories Department of Pediatrics and Pathology University

More information

-19. -Mousa Salah. -Shahd Alqudah. -Dr Belal

-19. -Mousa Salah. -Shahd Alqudah. -Dr Belal التزام -19 -Mousa Salah -Shahd Alqudah -Dr Belal 1 P a g e In the previous lecture we talked about the numerical chromosomal abnormalities, they are either autosomal or sex, and we said that the chromosomal

More information

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION Section I Chromosomes Formation of New Cells by Cell Division New cells are formed when old cells divide. 1. Cell division is the same as cell reproduction.

More information

The Cell Cycle CAMPBELL BIOLOGY IN FOCUS SECOND EDITION URRY CAIN WASSERMAN MINORSKY REECE

The Cell Cycle CAMPBELL BIOLOGY IN FOCUS SECOND EDITION URRY CAIN WASSERMAN MINORSKY REECE CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 9 The Cell Cycle Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION Overview: The Key

More information

Part II The Cell Cell Division, Chapter 2 Outline of class notes

Part II The Cell Cell Division, Chapter 2 Outline of class notes Part II The Cell Cell Division, Chapter 2 Outline of class notes 1 Cellular Division Overview Types of Cell Division Chromosomal Number The Cell Cycle Mitoses Cancer Cells In Vitro Fertilization Infertility

More information

BHS training course. Laboratory Hematology Cytogenetics. Lucienne Michaux. Centrum voor Menselijke Erfelijkheid, UZLeuven

BHS training course. Laboratory Hematology Cytogenetics. Lucienne Michaux. Centrum voor Menselijke Erfelijkheid, UZLeuven BHS training course Laboratory Hematology Cytogenetics Lucienne Michaux Centrum voor Menselijke Erfelijkheid, UZLeuven 18/11/2017 Organization of the Lecture Definition and principles Tools Applications

More information

BIOLOGY 4/6/2015. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II.

BIOLOGY 4/6/2015. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II. 2 Cell Cycle - Mitosis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Overview II. Mitotic Phase I. Prophase II. III. Telophase IV. Cytokinesis III. Binary fission

More information

BIOLOGY. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II.

BIOLOGY. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II. 2 Cell Cycle - Mitosis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Overview II. Mitotic Phase I. Prophase II. III. Telophase IV. Cytokinesis III. Binary fission

More information

NEW YORK STATE DEPARTMENT OF HEALTH CLINICAL LABORATORY EVALUATION PROGRAM. Crosswalk of Proposed Revisions to Cytogenetics Standards

NEW YORK STATE DEPARTMENT OF HEALTH CLINICAL LABORATORY EVALUATION PROGRAM. Crosswalk of Proposed Revisions to Cytogenetics Standards 2014 Standard 2014 Guidance 2016 Standard 2016 Guidance Cytogenetics Standard 1 (CG S1) The laboratory shall request clinical information necessary for proper initiation of test procedures and interpretation

More information

Chapter 2. Mitosis and Meiosis

Chapter 2. Mitosis and Meiosis Chapter 2. Mitosis and Meiosis Chromosome Theory of Heredity What structures within cells correspond to genes? The development of genetics took a major step forward by accepting the notion that the genes

More information

Supplementary note: Comparison of deletion variants identified in this study and four earlier studies

Supplementary note: Comparison of deletion variants identified in this study and four earlier studies Supplementary note: Comparison of deletion variants identified in this study and four earlier studies Here we compare the results of this study to potentially overlapping results from four earlier studies

More information

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes & Karyotypes The form of cell division by which gametes, with half the number of chromosomes, are produced. Homologous Chromosomes Pair of chromosomes (maternal and paternal) that are similar in shape,

More information

The questions below refer to the following terms. Each term may be used once, more than once, or not at all.

The questions below refer to the following terms. Each term may be used once, more than once, or not at all. The questions below refer to the following terms. Each term may be used once, more than once, or not at all. a) telophase b) anaphase c) prometaphase d) metaphase e) prophase 1) DNA begins to coil and

More information

Chapter 8. The Cellular Basis of Reproduction and Inheritance. Lecture by Mary C. Colavito

Chapter 8. The Cellular Basis of Reproduction and Inheritance. Lecture by Mary C. Colavito Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education,

More information

1. The diagram shows four stages in mitosis. Only one pair of homologous chromosomes is shown. A B C D ... (1) ... (1)

1. The diagram shows four stages in mitosis. Only one pair of homologous chromosomes is shown. A B C D ... (1) ... (1) 1. The diagram shows four stages in mitosis. Only one pair of homologous chromosomes is shown. X A B C D (a) Place stages A, B, C and D in the correct order.... (b) Name the structures labelled X.... Describe

More information

Mitosis in Onion Root Tip Cells

Mitosis in Onion Root Tip Cells Mitosis in Onion Root Tip Cells A quick overview of cell division The genetic information of plants, animals and other eukaryotic organisms resides in several (or many) individual DNA molecules, or chromosomes.

More information

Structural Chromosome Aberrations

Structural Chromosome Aberrations Structural Chromosome Aberrations 2 Structural chromosome aberrations or chromosome mutations represent apart from aneuploidies the most frequent pathologic findings in applied chromosome diagnostics.

More information

Chromosomes and Cell Cycle

Chromosomes and Cell Cycle Chromosomes and Cell Cycle Cell Basics There are trillions of cells in your body Cells are microscopic Cells have DNA inside a structure called the nucleus The nucleus is enclosed by a structure called

More information

scfish: A Primer Peter K. Rogan, Ph.D. Joan H. M. Knoll, Ph.D., FACMG, FCCMG Children s Mercy Hospitals and Clinics Tuesday, July 29, 2003

scfish: A Primer Peter K. Rogan, Ph.D. Joan H. M. Knoll, Ph.D., FACMG, FCCMG Children s Mercy Hospitals and Clinics Tuesday, July 29, 2003 scfish: A Primer Peter K. Rogan, Ph.D. Joan H. M. Knoll, Ph.D., FACMG, FCCMG Children s Mercy Hospitals and Clinics Tuesday, July 29, 2003 FISH: A Molecular Cytogenetic Test Complementary nucleic acid

More information

Variations in Chromosome Structure & Function. Ch. 8

Variations in Chromosome Structure & Function. Ch. 8 Variations in Chromosome Structure & Function Ch. 8 1 INTRODUCTION! Genetic variation refers to differences between members of the same species or those of different species Allelic variations are due

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive LL - LL-ROHINI (NATIONAL REFERENCE 135091533 Age 28 Years Gender Male 1/9/2017 120000AM 1/9/2017 105415AM 4/9/2017 23858M Ref By Final LEUKEMIA DIAGNOSTIC COMREHENSIVE ROFILE, ANY 6 MARKERS t (1;19) (q23

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 12 The Cell Cycle Lectures by Erin

More information

General Biology. Overview: The Key Roles of Cell Division The continuity of life is based upon the reproduction of cells, or cell division

General Biology. Overview: The Key Roles of Cell Division The continuity of life is based upon the reproduction of cells, or cell division General Biology Course No: BNG2003" Credits: 3.00 " " " 8. The Cell Cycle Prof. Dr. Klaus Heese Overview: The Key Roles of Cell Division The continuity of life is based upon the reproduction of cells,

More information

Science Lesson Plan Submission Profile Report

Science Lesson Plan Submission Profile Report Science Lesson Plan Submission Profile Report Date Published: 05/19/2008 Page One 1. Lesson Plan Title: Cell Division and Mitosis 2. Subject Area: Living Environment 3. Topic(s): Mitosis 4. Suggested Grade

More information

General Biology. Overview: The Key Roles of Cell Division. Unicellular organisms

General Biology. Overview: The Key Roles of Cell Division. Unicellular organisms General Biology Course No: BNG2003 Credits: 3.00 8. The Cell Cycle Prof. Dr. Klaus Heese Overview: The Key Roles of Cell Division The continuity of life is based upon the reproduction of cells, or cell

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division Biology is the only subject in which multiplication is the same thing as division 2007-2008 The Cell Cycle: Cell Growth, Cell Division Ch. 10 Where it all began You started as a cell smaller than a period

More information

CHROMOSOMAL MICROARRAY (CGH+SNP)

CHROMOSOMAL MICROARRAY (CGH+SNP) Chromosome imbalances are a significant cause of developmental delay, mental retardation, autism spectrum disorders, dysmorphic features and/or birth defects. The imbalance of genetic material may be due

More information

Clinical Interpretation of Cancer Genomes

Clinical Interpretation of Cancer Genomes IGENZ Ltd, Auckland, New Zealand Clinical Interpretation of Cancer Genomes Dr Amanda Dixon-McIver www.igenz.co.nz 1992 Slovenia and Croatia gain independence USA and Russia declare the Cold War over Steffi

More information

Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation

Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation Journal of Sciences, Islamic Republic of Iran 15(4): 321-325 (2004) University of Tehran, ISSN 1016-1104 Detection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour

More information

What s the Human Genome Project Got to Do with Developmental Disabilities?

What s the Human Genome Project Got to Do with Developmental Disabilities? What s the Human Genome Project Got to Do with Developmental Disabilities? Disclosures Neither speaker has anything to disclose. Phase Two: Interpretation Officially started in October 1990 Goals of the

More information

Ploidy and Human Cell Types. Cell Cycle and Mitosis. DNA and Chromosomes. Where It All Began 11/19/2014. Chapter 12 Pg

Ploidy and Human Cell Types. Cell Cycle and Mitosis. DNA and Chromosomes. Where It All Began 11/19/2014. Chapter 12 Pg Ploidy and Human Cell Types Cell Cycle and Mitosis Chapter 12 Pg. 228 245 Cell Types Somatic cells (body cells) have 46 chromosomes, which is the diploid chromosome number. A diploid cell is a cell with

More information

Mitosis THE CELL CYCLE. In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for..

Mitosis THE CELL CYCLE. In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for.. Mitosis THE CELL CYCLE In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for.. Development from a fertilized cell Growth Repair Cell

More information

Chapter 12 The Cell Cycle: Cell Growth, Cell Division

Chapter 12 The Cell Cycle: Cell Growth, Cell Division Chapter 12 The Cell Cycle: Cell Growth, Cell Division 2007-2008 Where it all began You started as a cell smaller than a period at the end of a sentence And now look at you How did you get from there to

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

The Cell Cycle. Chapter 12. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

The Cell Cycle. Chapter 12. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Chapter 12 The Cell Cycle PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Mitosis in Onion Root Tip Cells

Mitosis in Onion Root Tip Cells Mitosis in Onion Root Tip Cells A quick overview of cell division The genetic information of plants, animals and other eukaryotic organisms resides in several (or many) individual DNA molecules, or chromosomes.

More information

The Cell Cycle Guided Reading

The Cell Cycle Guided Reading Name Date Period 1. List three things that multi-celled organisms need cell division for. a. b. c. 2. Why do single-celled organisms need to go through cell division? 3. What is the cell cycle? 4. True

More information

Association for Molecular Pathology Promoting Clinical Practice, Basic Research, and Education in Molecular Pathology

Association for Molecular Pathology Promoting Clinical Practice, Basic Research, and Education in Molecular Pathology Association for Molecular Pathology Promoting Clinical Practice, Basic Research, and Education in Molecular Pathology 9650 Rockville Pike, Bethesda, Maryland 20814 Tel: 301-634-7939 Fax: 301-634-7990 Email:

More information

Chapter 8 The Cell Cycle

Chapter 8 The Cell Cycle What molecule stores your genetic information or determines everything about you? DNA a nucleic acid How are DNA molecules arranged in the nucleus? As you can see DNA is: Chapter 8 The Cell Cycle 1. Arranged

More information

The Process of Cell Division

The Process of Cell Division Lesson Overview 10.2 The Process of Cell Division THINK ABOUT IT What role does cell division play in your life? Does cell division stop when you are finished growing? Chromosomes What is the role of chromosomes

More information

Mitosis. An Introduction to Genetics. An Introduction to Cell Division

Mitosis. An Introduction to Genetics. An Introduction to Cell Division Mitosis An Introduction to Genetics An Introduction to Cell Division DNA is Packaged in Chromosomes Cell Cycle Mitosis and Cytokinesis Variations in Cell Division Cell Division and Cancer An Introduction

More information

ACMG/CAP Cytogenetics CY

ACMG/CAP Cytogenetics CY www.cap.org Cytogenetics Analytes/procedures in bold type are regulated for proficiency testing by the Centers for Medicare & Medicaid Services ACMG/CAP Cytogenetics CY Analyte CY Challenges per Shipment

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 12 The Cell Cycle Lectures by Erin

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

Human Chromosome Complement

Human Chromosome Complement Human Chromosome Complement Introduction : Today I will be talking on the module human chromosome complement. The basic objective of this lecture is to make you all understand the structure of chromosome,

More information

Excellence in Cytogenetic Diagnostics

Excellence in Cytogenetic Diagnostics Cytogenetics Excellence in Cytogenetic Diagnostics Capricorn Scientific was founded more than 4 years ago to manufacture products for biomedical research, diagnostics and production. Today we provide a

More information

Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing?

Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing? /, Vol. 6, No. 22 Integration of microarray analysis into the clinical diagnosis of hematological malignancies: How much can we improve cytogenetic testing? Jess F. Peterson 1,2,6, Nidhi Aggarwal 3, Clayton

More information

Chromosomes with two centromeres and the breakage-fusion-bridge cycle

Chromosomes with two centromeres and the breakage-fusion-bridge cycle CHROMOSOMES THAT CAUSE CANCER: Chromosomes with two centromeres and the breakage-fusion-bridge cycle Ruth MacKinnon @ruthnmackinnon http://www.theleukaemiaproject.com/ Victorian Cancer Cytogenetics Service

More information

Comparative genomic hybridization of primary skeletal Ewing's sarcoma

Comparative genomic hybridization of primary skeletal Ewing's sarcoma Turkish Journal of Cancer Vol.31/ No. 1/2001 Comparative genomic hybridization of primary skeletal Ewing's sarcoma İBRAHİM KESER 1, ELISABETH BURCKHARDT 2, NURDAN TUNALI 3, MUALLA ALKAN 2 1 Department

More information

Chromosome Structure & Recombination

Chromosome Structure & Recombination Chromosome Structure & Recombination (CHAPTER 8- Brooker Text) April 4 & 9, 2007 BIO 184 Dr. Tom Peavy Genetic variation refers to differences between members of the same species or those of different

More information

Name. A.P. Biology Chapter 12 The Cell Cycle

Name. A.P. Biology Chapter 12 The Cell Cycle A.P. Biology Chapter 12 The Cell Cycle Name Living species MUST possess the ability to r if they are to flourish. The Cell Cycle follows the life of a cell from its o until its d. The Key Roles Of Cell

More information

Volume 7, Issue 1 January 2012

Volume 7, Issue 1 January 2012 The Hong Kong College of Pathologists, Incorporated in Hong Kong with Limited Liability Volume 7, Issue 1 January 2012 Editorial note: Chronic lymphocytic leukaemia (CLL) is the commonest chronic lymphoproliferative

More information

Cell Division and Inheritance

Cell Division and Inheritance Cell Division and Inheritance Continuing life relies on reproduction Individual organism replacing dead or damaged cells Species making more of same species Reproduction Cells divide, grow, divide again

More information

Clinical Genomics. Ina E. Amarillo, PhD FACMGG

Clinical Genomics. Ina E. Amarillo, PhD FACMGG Clinical Genomics Ina E. Amarillo, PhD FACMGG Associate Medical Director, Cytogenetics Lab (CaTG), Lab and Genomic Medicine Assistant Professor, Pathology and Immunology Outline Clinical Genomics Testing

More information