Nature Genetics: doi: /ng Supplementary Figure 1

Size: px
Start display at page:

Download "Nature Genetics: doi: /ng Supplementary Figure 1"

Transcription

1 Supplementary Figure 1 Genomic alterations detectable in cfdna of EGFR-mutant p.t790m-positive and p.t790m-negative patients. (a-b) Lolliplots of gene level alterations in EGFR-mutant p.t790m mutant positive compared to EGFR-mutant p.t790m mutant negative samples. Alterations in AR and PDGFRA in cfdna of EGFR-mutant p.t790m positive (n=440) and EGFR-mutant p.t790m mutant negative (n=682) are indicated. (c) Concurrent genomic alterations detectable in EGFR-mutant NSCLC patients encoding the EGFR p.c797s mutation. Frequency of non-synonymous genomic alterations of known or predicted functional significance: single nucleotide variants (SNV), copy number gains (CNG), insertions or deletions (INDEL), or gene rearrangements (FUSION) in cancer-related genes detectable by next-generation sequencing of circulating tumor DNA are indicated.

2 Supplementary Figure 2 Effects of demographic variables on genomic alterations detectable in cfdna of advanced EGFR-mutant patients with NSCLC. (a) Effect of age on number of alterations detected in circulating cfdna from 137 samples from 97 patients. Mean patient age = 64. Graph shows number of non-synonymous alterations detectable in plasma samples from patient aged less than 65 (n=61) compared to age 65 or greater (n=76). Mean ± S.E.M. indicated. P-value determined by two-tailed, unpaired T-Test with Bonferroni correction (t=1.978, df=135). (b) Number of cfdna alterations detectable in plasma samples by gender. Female (n=87), male (n=50). Mean ± S.E.M. indicated. P-value determined by two-tailed, unpaired T-Test with Bonferroni correction (t=0.7072, df=135). (c) Number of cfdna alterations detectable in plasma samples by smoking status: never (n=99), former (n=31). Mean ± S.E.M. indicated. P-value determined by two-tailed unpaired T-Test with Bonferroni correction (t=0.2455, df=128). (d) Number of non-synonymous and predicted functional genomic alterations detectable in cfdna from 73 patients with known clinical/radiographic response to subsequent EGFR TKI treatment. The number of alterations in patients who subsequently responded (radiographic PR by clinician assessment, see Online Methods) to TKI treatment (n=37) was compared to non-responders (radiographic SD or PD, see methods, n=36). Mean ± S.E.M. indicated, p-value determined by two-tailed, unpaired T-Test with Bonferroni correction (t=5.439, df=71).

3 Supplementary Figure 3 Effects of detectable cfdna alterations on EGFR TKI clinical response. (a-b) Somatic mutations (SNV or Indel) (blue) of known or predicted functional significance (Methods) and copy-number gains (red), or both (pink) detected in patients who responded, n = 37 (a) or did not respond, n = 36 (b) to subsequent EGFR TKI treatment (see Online Methods). (c) Forest plot demonstrating effect of cfdna detectable gene level alterations on EGFR TKI PFS determined by Coxproportional Hazard Ratio (HR) with 95% CI. (d) Kaplan-Meier curves demonstrating difference in median PFS to EGFR TKI treatment (logrank test) in patients with cfdna detectable alterations in CDK4 or CDK6. (e) Pathway level alterations detectable in cfdna of patients who responded to subsequent EGFR TKI treatment (see methods) versus patients who did not respond (see methods). Q- values determined by two-tailed Fisher s Exact test with Benjamini-Hochbeg correction for multiple hypothesis testing. (f-h) Forest plot and Kaplan-Meier curves assessing the effects of indicated cfdna detectable pathway alterations on PFS. See also Supplementary Data Sets 3 and 4.

4 Supplementary Figure 4 Effects of detectable cfdna alterations on overall survival. (a-d) Forest plots assessing the effects of indicated cfdna detectable gene and pathway alterations on OS. (a-b) Effect of gene level (a) and pathway level (b) alterations on OS in response to EGFR TKI treatment. HR with 95% CI and p-values determined by Coxproportional regression test (methods). (c-d) Effect of gene level (c) and pathway level (d) alterations on OS in response to osimertinib treatment. HR with 95% CI and p-values determined by Cox-proportional regression test (Online Methods).

5 Supplementary Figure 5 Patient-level evolution of genomic alterations detected in cfdna of advanced-stage patients with EGFR-mutant NSCLC. (a-g) cfdna alterations detectable by clinical assay in patients with EGFR mutations. Mutant allele frequency of detected cfdna alterations are indicated, as is line of therapy and clinical response pre-and post-assay. Computed-tomography (CT) scans of the chest and abdomen are shown, demonstrating sites of metastases (red arrows). Scale bar = 5 cm, ND (no alteration detected). PR (Partial Response), PD (Progressive Disease), SD (Stable Disease). Plasma copy number gain (CNG) of is reported as + and as ++ (see Online Methods).

6 Supplementary Figure 6 Clinical, radiographic, and histopathologic longitudinal analysis of a patient with EGFR-mutant NSCLC. (a) Radiographic images (computed tomography (CT) scans Chest) and sites of tissue acquisition (tumor site indicated by red arrow) from EGFR-mutant lung cancer patient at the time initial presentation, followed by surgical resection of EGFR-mutant lung adenocarcinoma (right lung upper lobectomy, R1), at the time of development of metastatic disease (mediastinal lymph node metastasis, R2), upon progression to first line treatment with erlotinib (left lung metastases core needle biopsy, R3), and at autopsy after treatment with the 2 nd line EGFR TKI rociletinib followed by PD and death (left lung metastasis, R4; right rib metastasis, R5; right lung metastasis, R6; spine metastasis, R7). Treatment immediately prior to imaging is indicated. Clinician assessment of radiographic response is indicated (PR Partial Response, SD Stable Disease, PD Progressive Disease). Clinical histopathological diagnosis is indicated (LUAD = lung adenocarcinoma). Scale bar = 5 cm. (b) Representative images of hematoxylin and eosin (H&E) stained histopathological specimens obtained from surgery, biopsy, or autopsy as described in (a). Clinical histopathological assessment of all specimens revealed LUAD with no evidence of small cell lung cancer transformation. Scale bar = 50 microns.

7 Supplementary Figure 7 Copy number analysis of EGFR-mutant lung adenocarcinoma tumor specimens from patients. Each panel represents allele specific floating point copy number state profile for an individual sample for all autologous chromosomes. Arm level GISTIC events for lung adenocarcinoma are indicated on relevant chromosomal arms by the background color, red for a significant arm gain, blue for a significant arm loss. Genes of interest are annotated along the bottom of each panel. Regions of chromosomal loss or gain were determined by analysis of whole-exome sequencing (see Online Methods) of the indicated samples as described in Figure 5. Cancer-related genes in regions of copy-number gain of than 1.5X ploidy (Blue) or copy-number loss of 0.5X ploidy (Red) are indicated.

8 Supplementary Figure 8 Schematic of clonal evolution in a patient with EGFR-mutant lung adenocarcinoma. Top panel displays the subclonal phylogeny over the course of the patient s disease with the two posited independent origins of the EGFR p.t790m SNV. Bottom panel shows the region specific subclonal phylogenies also shown in figure 5c. Below each sample phylogeny there is a beehive plot containing 100 hexagons that each represent 1% of the cells present in a sample. These illustrate the relationships between subclonal clusters by displaying their cellular prevalence in that sample. In a subclonal phylogeny each cluster linked to another is present in a subset of the cells containing the previous cluster. Therefore populations of cells will contain the mutations from multiple clusters and these can be considered subclones. The subclones present in a region are indicated to the right of the subclonal phylogeny for a sample and may contain multiple clusters of mutations. The prevalence of a subclone in each sample can be inferred from the proportion of hexagons the clusters that it consists of occupy.

9 Supplementary Figure 9 Relative frequency of co-occurring genomic alterations in early- versus late-stage EGFR-mutant NSCLC. Data available from The Cancer Genome Atlas (TCGA) were analyzed to determine the relative frequency of co-occurring alterations detectable in TP53, SMAD4, CTNNB1, and CDK6 in early (stage I or II) versus late (stage III or IV) EGFRmutant NSCLC. P-values determined by two-tailed Fischer s exact test. DEL (Deletion), INS (Insertion), SNP (Single Nucleotide Polymorphism).

10 Supplementary Figure 10 Prediction of mutational clonality determined by cfdna analysis. (a) Relative mutant allele frequency compared to maximum mutant allele frequency (corrected for copy-number) from the case presented in Fig. 5. The algorithm described in Online Methods was applied to predict clonality of the six mutational alleles. Based on the distribution of percentage of Max-maf (corrected for copy number gain, the cut-off of < 0.2 was defined as subclonal, >=0.2 as clonal. (b) Clonal/subclonal calls based on cfdna analysis were compared to whole exome sequencing of tumor samples (Fig. 5a). This method demonstrated 100% sensitivity and specificity when comparing cfdna clonality assessments to tumor clonality assessments for the 6 mutant alleles analyzed.

11 Supplementary Note Introduction: Specific therapeutically-targetable somatic genetic alterations drive the growth of many cancers, including non-small cell lung cancer (NSCLC), the major subtype of lung cancer, the leading cause of cancer mortality 1-9. An example of the impact of such oncogenic driver alterations is the improved outcomes achieved by treatment of NSCLC patients harboring oncogenic forms of EGFR that encode for constitutively activated mutant proteins (e.g. EGFR p.leu858arg and EGFR p.glu746_ala750del). with a single-agent EGFR tyrosine kinase inhibitor (TKI) such as erlotinib. However, genetically-driven resistance to single-agent targeted therapy limits patient survival (reviewed in 10 ). A common mechanism of targeted cancer therapy resistance is a second-site mutation in the drug target that interferes with the ability of the targeted agent to block the oncogenic driver protein. This second-site mutation typically occurs in the setting of retention of the original oncogenic driver mutation (e.g. EGFR p.leu858arg and EGFR p.glu746_ala750del), creating a compound mutant allele. For instance, acquired resistance to first- and second-generation EGFR TKIs occurs via the additional EGFR p.thr790met resistance mutation in approximately 50-60% of cases (e.g. resulting in EGFR p.leu858arg and p.thr790met ) 11. The third-generation EGFR TKI osimertinib is effective against lung cancers harboring both traditional activating mutations in EGFR (EGFR p.leu858arg and EGFR p.glu746_ala750del) and the additional EGFR p.thr790met mutation 5, and is FDA-approved for the treatment of EGFR p.thr790met-positive patients. However, even in patients whose tumors harbor EGFR p.thr790met, the objective response rate (ORR) to osimertinib is only approximately 60-70% and complete responses are rare 4,5. Further, all patients who respond to osimertinib eventually develop disease progression (median PFS months) 4,5 and succumb to their drug-resistant cancer. While mechanisms of acquired resistance to osimertinib are known, such as the EGFR p.cys797ser mutation 12,13, the basis of non-response or incomplete response to osimertinib therapy is poorly understood. Results: Functional significance of co-occurring genomic alteration. Similar to our larger cohort of EGFRmutant NSCLC patients (Fig. 1-4), this case highlights the co-occurrence of genetic alterations within the WNT (CTNNB1 variant p.ser37phe), PI3K (PIK3CA variant p.gly106val), and cell cycle pathways (CDK6 CNG, and CDKN2A loss). We hypothesized such co-occurring alterations might function non-redundantly to drive tumor metastasis or limit targeted therapy response. We examined the functional role(s) of oncogenic β-catenin p.ser37phe and PIK3CA p.gly106val that co-occurred with oncogenic EGFR in this cancer. β-catenin nuclear expression and the levels of phosphorylated AKT (as a measure of β-catenin and PI3K activation, respectively) confirmed activation of each pathway particularly in specimens with

12 these activating alterations (Fig. 6a). Expression of β-catenin p.ser37phe in EGFR-mutant NSCLC cells decreased EGFR TKI response by suppressing apoptosis, without significantly enhancing growth (Fig. 6bd). Expression of β-catenin p.ser37phe also promoted cellular invasion, but not migration (Fig. 6e-g). A trend towards increased frequency of CTNNB1 alterations in advanced-stage compared to early-stage EGFR-mutant lung adenocarcinomas in the TCGA dataset (Supplementary Fig. 9) is consistent with a role for CTNNB1 alterations in metastatic EGFR-mutant NSCLC progression and preclinical studies 14. Expression of PIK3CA p.gly106val did not limit EGFR TKI response, consistent with recent clinical data 15, but promoted invasion and migration (Fig. 6b-g). The emergence of the PIK3CA variant encoding p.gly106val upon metastasis but before EGFR TKI treatment, coupled with the finding of,pik3ca variant encoding p.his1047arg 16,17, at a metastatic site (R5) lacking the PIK3CA variant p.gly106val (Fig. 5a-c) suggests that tumor metastasis is partially dependent on PI3K pathway activation. Clonality assessments of somatic variants. To estimate the relative proportions of cfdna that would differentiate a mutant allele as clonal or subclonal, as a benchmark we correlated tumor-based clonality analysis with cfdna mutational analysis performed in EGFR-mutant clinical specimens (tumor and plasma cfdna) from the advanced-stage patient profiled above (see Fig. 5a-c). Based on this analysis, we estimated clonal alterations may be detectable as low as 20% of the maximum MAF (corrected for copy number gain, see methods) in cfdna, but likely to be subclonal when detected at <20%. This method demonstrated 100% sensitivity and specificity when comparing cfdna to tumor DNA (Supplementary Fig. 10). EGFR encoding variant p.cys797ser, which causes acquired osimertinib resistance 12, was frequently subclonal (47% (7/15) clonal; P = 0.08 compared to EGFR variant p.thr790met). Co-alterations in CTNNB1 (clonal in 47/63; 95% CI 63.1%-86.1%), TP53 (clonal in 492/752; 95% CI 61.9%-68.9%), and PIK3CA (clonal in 72/108; 95% CI 57.3%-76.0%) were frequently clonal, while AR mutations were more frequently subclonal in EGFR-mutant samples (clonal in 12/21; 95% CI 33.6%~ 80.6%). These data support a model wherein both clonal and subclonal evolution of several co-occurring oncogene and tumor suppressor co-alterations, beyond mutant EGFR alone, can influence advanced-stage EGFR-mutant NSCLC progression and targeted therapy response. Discussion: The data demonstrate a new role for oncogenic β-catenin as a co-driver of tumor progression with mutant EGFR that can also limit EGFR TKI response in lung cancer, extending a prior case report 18. Intriguingly, while WNT pathway alterations did not influence PFS in response to EGFR TKI treatment, there was a trend towards worse OS in patients whose cfdna harbored these alterations, suggesting a potential role in driving tumor metastases and highlighting putative functional specialization among co-occurring genetic alterations.

13 We identify CDK6 alterations as more frequent in EGFR-mutant mutation-positive patients and show that cell cycle gene (e.g. CDK4/6) alterations are a biomarker of non-response to EGFR TKI treatment, broadly as well as to osimertinib treatment specifically in EGFR-mutant lung cancer. This finding provides the rationale for novel clinical trials testing an EGFR TKI plus a CDK4/6 inhibitor to enhance response in EGFR-mutant lung cancer patients with CDK4/6 gene amplification. Preclinical NSCLC models have shown synergy between EGFR and CDK4/6 co-inhibition (with patient-ready drugs including the FDAapproved CDK4/6 inhibitor palbociclib) 19,20. The availability of clinical CDK4/6 inhibitors (e.g. palbociclib, ribociclib) makes these combination therapy trials possible immediately. We report that genomic complexity increases during EGFR TKI treatment, and that multiple subclonal oncogenic events are present at terminal TKI resistance and death. This increased number of cooccurring alterations present in advanced lines of therapy offers new evidence that may help explain the variable and incomplete clinical efficacy of next-generation mutant EGFR-targeted drugs (e.g. osimertinib) as well as the lack of consistent efficacy observed to date in the acquired resistance setting of other targeted agents (e.g. MET kinase inhibitors) against a particular mechanism associated with acquired resistance (e.g. MET gene amplification). Our data strongly suggest that early (pro-active) and potentially dynamic 21 use of one or more co-targeting strategies will be critical to forestall cancer evolution to a more complex drug-resistant state. The data also offer a novel rationale for testing immunotherapy (with anti- PD1 or anti-pdl1 antibodies) in such genomically-complex EGFR TKI-resistant cancers. Current approved immunotherapies are not typically effective in EGFR-mutant NSCLC patients, but our findings identify a sub-population of these patients as potential immunotherapy responders. This new hypothesis arising from our data is reminiscent of findings in other advanced-stage tumor types with high genetic diversity in which immunotherapy is effective, such as smoking-related lung cancers (which are typically EGFR mutation-negative), melanomas, and carcinomas with mismatch-repair deficiency 22,23. These are clinical trials that could initiate immediately and define a new population of cancer patients who may benefit from existing immunotherapy. We link clinical outcomes to genetic interactions in both a large-scale survey of advanced-stage oncogene-driven lung cancer, as well as a deep and comprehensive analysis of 7 tumors collected longitudinally from a typical EGFR-mutant lung cancer patient. Many of the genetic interactions identified were not anticipated by prior literature. For instance, we show how co-occurring oncogenic mutations in EGFR, β-catenin(ctnnb1) and PIK3CA can cooperatively interact within a tumor, via non-redundant functions, to promote metastatic progression or limit EGFR TKI response. Future studies beyond the scope here will be required to assess the roles of additional co-alterations identified and with predicted functional impact, such as mutation of CHD4, an epigenetic regulator 24 and TLR4 an activator of NF-κB 25. It is notable that both epigenetic regulation 26 and NF-κB 27,28 can promote EGFR inhibitor tolerance and resistance. Likewise, our examination of the largest cohort of EGFR-mutant/T790M-positive samples to date shows an abundance of co-occurring functional genetic alterations, offering novel genetic explanations for the typically incomplete and temporary clinical responses to osimertinib and new

14 therapeutic strategies to enhance these responses. While a functional analysis of all potential genetic interactions identified is beyond the scope here, our data open new avenues for studying the cooperative roles of co-occurring alterations driving lung cancer. Supplementary References: 1. Sequist, L.V. et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol 26, (2008). 2. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12, (2011). 3. Sequist, L.V. et al. Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med 372, (2015). 4. Mok, T.S. et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med (2016). 5. Janne, P.A. et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med 372, (2015). 6. Shaw, A.T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368, (2013). 7. Shaw, A.T. & Engelman, J.A. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370, (2014). 8. Planchard, D. et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)- mutant metastatic non-small cell lung cancer: an open-label, multicentre phase 2 trial. Lancet Oncol 17, (2016). 9. Shaw, A.T. et al. Crizotinib in ROS1-Rearranged Non-Small-Cell Lung Cancer. N Engl J Med (2014). 10. Bivona, T.G. & Doebele, R.C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat Med 22, (2016). 11. Yu, H. et al. Analysis of Mechanisms of Acquired Resistance to EGFR TKI therapy in 155 patients with EGFR-mutant Lung Cancers. Clin Cancer Res 19, (2013). 12. Thress, K.S. et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med 21, (2015). 13. Piotrowska, Z. et al. Heterogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor. Cancer Discov 5, (2015). 14. Nguyen, D.X. et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, (2009). 15. Eng, J. et al. Impact of Concurrent PIK3CA Mutations on Response to EGFR Tyrosine Kinase Inhibition in EGFR-Mutant Lung Cancers and on Prognosis in Oncogene-Driven Lung Adenocarcinomas. J Thorac Oncol 10, (2015). 16. Trejo, C.L. et al. Mutationally activated PIK3CA(H1047R) cooperates with BRAF(V600E) to promote lung cancer progression. Cancer Res 73, (2013). 17. Wallin, J.J. et al. Active PI3K pathway causes an invasive phenotype which can be reversed or promoted by blocking the pathway at divergent nodes. PLoS One 7, e36402 (2012). 18. Sequist, L.V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 3, 75ra26 (2011). 19. Yu, Z. et al. Resistance to an irreversible epidermal growth factor receptor (EGFR) inhibitor in EGFR-mutant lung cancer reveals novel treatment strategies. Cancer Res 67, (2007). 20. Liu, M. et al. PD , a selective cyclin D kinase 4/6 inhibitor, sensitizes lung cancer cells to treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Oncotarget 7, (2016). 21. Jonsson, V.D. et al. Novel computational method for predicting polytherapy switching strategies to overcome tumor heterogeneity and evolution. Sci Rep 7, (2017). 22. Topalian, S.L. et al. Safety, activity, and immune correlates of anti-pd-1 antibody in cancer. N Engl J Med 366, (2012).

15 23. Le, D.T. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 372, (2015). 24. Lai, A.Y. & Wade, P.A. Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11, (2011). 25. Krauthammer, M. et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44, (2012). 26. Sharma, S.V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, (2010). 27. Bivona, T.G. et al. FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, (2011). 28. Blakely, C.M. et al. NF-kappaB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. Cell Rep 11, (2015).

16 EGFR.mutation2postive EGFR.mutation2negative Total&Samples Total&#&of&patients Date&range March&2015&=&April&2016 Jan&2016&April&2016 Male 346&(34.4%) 457&(45.7%) Female 660&(65.6%) 542&(54.3%) Mean&Age Adenocarcinoma 747&(74.3%) 558&(55.9%) NSCLC=NOS 259&(25.7%) 441&(44.1%) Stage&III/IV Supplementary Table 1. EGFR-mutant positive and EGFR-mutant negative patient characteristics.

17 Gene CCND1 CCND2 CCNE1* CDK4* CDK6* CDKN2A CDKN2B FBXW7 JAK2 JAK3 MPL SRC ATM BRCA1 BRCA2 MLH1 TERT ARID1A EZH2 GATA3 HNF1A MYC* NFE2L2 VHL IDH1 IDH2 ALK NTRK1 RET ROS1 AR* ESR1 NOTCH1 CDH1 SMO SMAD4 NPM1 STK11 TP53 AKT1 PIK3CA* PTEN RHEB ARAF BRAF* GNA11 GNAQ GNAS HRAS KRAS* MAP2K1 MAP2K2 NF1 NRAS* PTPN11 RAF1* RIT1 EGFR* ERBB2* FGFR1* FGFR2* FGFR3 KIT MET* PDGFRA* APC CTNNB1 RHOA Pathway Cell Cycle Cell Cycle Cell Cycle Cell Cycle Cell Cycle Cell Cycle Cell Cycle Cell Cycle Cytokine signaling Cytokine signaling Cytokine signaling Cytokine signaling DNA Repair DNA Repair DNA Repair DNA Repair DNA Repair Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Epigenetic Modification/Transcription Factor Fusion Fusion Fusion Fusion Hormone signaling Hormone signaling Other signaling (SHH, TGF- b, NOTCH, ECM) Other signaling (SHH, TGF- b, NOTCH, ECM) Other signaling (SHH, TGF- b, NOTCH, ECM) Other signaling (SHH, TGF- b, NOTCH, ECM) P53 pathway P53 pathway P53 pathway PI3K/AKT/MTOR PI3K/AKT/MTOR PI3K/AKT/MTOR PI3K/AKT/MTOR RTK RTK RTK RTK RTK RTK RTK RTK WNT- APC- Beta- catenin WNT- APC- Beta- catenin WNT- APC- Beta- catenin Supplementary Table 2. Genes included in clinical cell-free DNA analysis of EGFR-mutant positive and EGFR-mutant negative patients. Targeted exome sequencing was performed on the indicated genes (n=68) to identify somatic variants in cfdna. (*) Indicates genes also assessed for copy-number gain (CNG). Genes were assigned to one of 12 primary cancer-related pathway based on known function.

18 EGFR-mutation EGFR-mutation Statistical comparisons 1 positive negative Total patients Average genetic 2.58±1.70 (N= ±1.99 without P = alterations ± SEM without EGFR) EGFR) (95% CI: ~ 0.119) 2 (beyond EGFR) per d= patient Patients with at least 1 variant of known/likely functional impact (other than EGFR) 92.9% (1043/1122) 96.7% (913/944) P = 2.2E-4 (95% CI: 1.7% ~ 5.7%) 2 4 OR=1.04 Genetic co-alterations with known/likely functional impact 89.8% (3030/3375) 83.9% (2163/2578) P = 3.84E-11 (95%CI: 4.0%~7.6%) 2 4 OR=1.07 Co-alterations classified as likely passenger events CTNNB1 co-alterations 5.3% (60/1122) CDK6 co-alterations 7.0% (79/1122) AR co-alterations 5.1% (57/1122) TP53 co-alterations 54.6% (613/1122) 10.2% (345/3375) 16.1% (415/2578) P = 1.3E-11 (95% CI: -7.7% ~ -4.1%) 2 4 OR= % (17/944) 3.2% (30/944) 2.6% (25/944) 50% (475/944) P = 1.9E-05, q = 1.7E-04 (95%CI: 1.9% ~ 5.2%) 2 4 OR=2.97 P = 1.0E-04, q = 7.6E-04 (95% CI: 1.9%~ 5.8%) 2 4 OR=2.22 P = 4.7E-03, q = 0.02 (95% CI: 0.7% ~ 4.2%) 2 4 OR=1.92 P = 5.1E-02, q = 0.14 (95% CI: -0.1%~ 8.7%) 2 4 OR=1.09 Notes: (1) EGFR-mutation-positive compared to EGFR-mutation-negative cohort, P-values determined by Fisher s test. The Benjamini-Hochberg method was used to correct for multiple hypothesis testing and generate q- values. (2) 95% CI is the range of mean difference between two cohort (3) d represents effect size derived from t-test. (4) OR represents odds ratio derived from proportions test Supplementary Table 3. Statistical analysis of genomic alterations detectable in the cfdna of EGFR-mutation positive compared to EGFR-mutation negative patients.

19 EGFR p.t790m positive EGFR p.t790m negative Statistical comparisons 1 Total patients Average genetic alterations 2.41± ± 1.77 without P =4.5E-04 ±SEM per patient (beyond EGFR) (95% CI: ~ 0.617) 2 EGFR) d=0.22 Patients with at least 1 variant of known/likely functional impact (other than EGFR) Genetic co-mutations with known/likely functional impact 100% (440/440) 89.9%(613/682) P = 1.38E-11 (95% CI: 7.7% ~12.6%) 2 4 OR= /%(1474/1615) 88.4%(1556/1760) P = 7.3E-03 (95% CI: 0.77% ~ 4.95%) 2 4 OR=1.032 Co-mutations classified as likely passenger events 8.7% (141/1615) 11.6%(204/1760) CTNNB1 co-alterations 7.5% (33/440) CDK6 co-alterations 9.8% (43/440) AR co-alterations 6.8% (30/440) KRAS co-alterations 4.8% (21/440) MYC co-alterations 10.7% (47/440) PDGFRA co-alterations 4.8% (21/440) BRCA1 co-alterations 7.0% (31/440) CCNE1 co-alterations 8.9% (39/440) TP53 co-alterations 57% (252/440) 4.0% (27/682) 5.3% (36/682) 3.9% (27/682) 2.5% (17/682) 6.0% (41/682) (1.6%) (11/682) 3.5% (24/682) 5.7% (39/682) 53% (361/682) P = 7.3E-03 (95% CI: ~ -4.95) 2 4 OR=0.75 P = 0.014, q = 0.12 (95% CI: 0.49%~ 6.5% ) 2 4 OR=1.89 P = , q = 0.08 (95% CI: 1.1% ~ 7.9%) 2 4 OR=1.85 P = 0.037, q = 0.23 (95% CI: -0.01% ~ 5.8%) 2 4 OR=1.72 P = 0.04, q = 0.24 (95% CI: -0.22% ~ 4.8%) 2 4 OR=1.92 P = 0.006, q = 0.08 (95% CI: 1.1% ~ 8.3%) 2 4 OR=1.78 P = 0.003, q = 0.06 (95% CI: 0.77% ~ 5.6%) 2 4 OR=2.96 P = 0.01, q = 0.10 (95% CI: 0.6% ~ 6.3%) 2 4 OR=2.00 P = 0.054, q = 0.27 (95% CI: -0.22% ~ 6.5%) 2 4 OR=1.55 P = 0.15, q = 0.62 (95% CI: -0.8%~ 11.3%) 2 4 OR=1.08 Notes: (1) EGFR p.t790m positive compared to EGFR p.t790m negative cohort, P-values determined by Fisher s test. The Benjamini-Hochberg method was used to correct for multiple hypothesis testing and generate q- values. (2) 95% CI is the range of mean difference between two cohort (3) d represents effect size derived from t-test. (4) OR represents odds ratio derived from proportions test Supplementary Table 4. Statistical analysis of genomic alterations detectable in the cfdna of EGFR p.t790m-positive positive compared to EGFR p.t790m -negative patients.

20 Total&#&of&samples 137 Total&#&of&patients 97 Date&range May&2015&;&June&2017 Male 53&(38.6%) Female 84&(61.4%) Median&Age 65.3 Stage&III/IV 137&(100%) Never&smoker 106&(77.4%) Former&smoker 31&(22.6%) Median&No.&alterations 3 No.$of$previous$anti0cancer$therapies 0 21&(15%) 1 65&(47.4%) 2 34&(24.8%) 3 11&(8.0%) >3 6&(4.4%) EGFR$TKI$therapy$prior$to$G360$assay Erlotinib 64&(46.7%) Afatinib 7&(5.1%) Rociletinib 11&(8.0%) Osimertinib 9&(6.6%) Afatinib&+&Cetuximab 6&(4.4%) Supplementary Table 5. Demographic information from 137 samples collected from 97 patients with clinical data available.

21 EGFR%TKI%treated Osimertinib%treated Total&#&of&samples Total&#&of&patients Date&range May&2015&<&March&2017 June&2015&<&Feb&2017 Male 27&(37.0%) 53&(38.6%) Female 46&(63.0%) 84&(61.4%) Median&Age Stage&III/IV 73&(100%) 41&(100%) Never&smoker 59&(80.8%) 31&(75.6%) Former&smoker 14&(19.2%) 10&(24.4%) Median&No.&alterations 3 4 Type%of%EGFR%mutation Exon&19&deletion 44&(60.3%) 23&(56.1%) L858R 23&(31.5%) 16&(39.0%) T790M 39&(53.4%) 35&(85.4%) No.%of%previous%anti<cancer%therapies 0 18&(24.7%) 0&(0%) 1 36&(49.3%) 26&(63.4%) 2 12&(16.4%) 9&(21.9%) 3 5&(6.8%) 4&(9.7%) >3 2&(2.7%) 2&(4.9%) EGFR%TKI%therapy%prior%to%G360%assay Erlotinib 33&(45.2%) 27&(65.9%) Afatinib 5&(6.8%) 3&(7.3%) Rociletinib 5&(6.8%) 4&(9.8%) Osimertinib 1&(1.5%) 0&(0%) Afatinib&+&Cetuximab 4&(5.5%) 3&(7.3%) EGFR%TKI%therapy%after%G360%assay Erlotinib 17(23.3%) 0 Afatinib 2&(2.7%) 0 Rociletinib 3&(4.1%) 0 Osimertinib 41&(56.2%) 41(100%) Afatinib&+&Cetuximab 3(4.1%) 0 Other&combination&TKI&therapy 4(5.5%) 0 Supplementary Table 6. Demographic information from 73 samples collected from 64 patients with EGFR TKI clinical response data available.

Genomic Medicine: What every pathologist needs to know

Genomic Medicine: What every pathologist needs to know Genomic Medicine: What every pathologist needs to know Stephen P. Ethier, Ph.D. Professor, Department of Pathology and Laboratory Medicine, MUSC Director, MUSC Center for Genomic Medicine Genomics and

More information

SureSelect Cancer All-In-One Custom and Catalog NGS Assays

SureSelect Cancer All-In-One Custom and Catalog NGS Assays SureSelect Cancer All-In-One Custom and Catalog NGS Assays Detect all cancer-relevant variants in a single SureSelect assay SNV Indel TL SNV Indel TL Single DNA input Single AIO assay Single data analysis

More information

Targeted Agent and Profiling Utilization Registry (TAPUR ) Study. February 2018

Targeted Agent and Profiling Utilization Registry (TAPUR ) Study. February 2018 Targeted Agent and Profiling Utilization Registry (TAPUR ) Study February 2018 Precision Medicine Therapies designed to target the molecular alteration that aids cancer development 30 TARGET gene alterations

More information

Dr David Guttery Senior PDRA Dept. of Cancer Studies and CRUK Leicester Centre University of Leicester

Dr David Guttery Senior PDRA Dept. of Cancer Studies and CRUK Leicester Centre University of Leicester Dr David Guttery Senior PDRA Dept. of Cancer Studies and CRUK Leicester Centre University of Leicester dsg6@le.ac.uk CFDNA/CTDNA Circulating-free AS A LIQUID DNA BIOPSY (cfdna) Tumour Biopsy Liquid Biopsy

More information

IntelliGENSM. Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community.

IntelliGENSM. Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community. IntelliGENSM Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community. NGS TRANSFORMS GENOMIC TESTING Background Cancers may emerge as a result of somatically

More information

Molecular Testing in Lung Cancer

Molecular Testing in Lung Cancer Molecular Testing in Lung Cancer Pimpin Incharoen, M.D. Assistant Professor, Thoracic Pathology Department of Pathology, Ramathibodi Hospital Genetic alterations in lung cancer Source: Khono et al, Trans

More information

Next generation histopathological diagnosis for precision medicine in solid cancers

Next generation histopathological diagnosis for precision medicine in solid cancers Next generation histopathological diagnosis for precision medicine in solid cancers from genomics to clinical application Aldo Scarpa ARC-NET Applied Research on Cancer Department of Pathology and Diagnostics

More information

Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San

Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San Osamu Tetsu, MD, PhD Associate Professor Department of Otolaryngology-Head and Neck Surgery School of Medicine, University of California, San Francisco Lung Cancer Classification Pathological Classification

More information

Plasma-Seq conducted with blood from male individuals without cancer.

Plasma-Seq conducted with blood from male individuals without cancer. Supplementary Figures Supplementary Figure 1 Plasma-Seq conducted with blood from male individuals without cancer. Copy number patterns established from plasma samples of male individuals without cancer

More information

Clinical Grade Genomic Profiling: The Time Has Come

Clinical Grade Genomic Profiling: The Time Has Come Clinical Grade Genomic Profiling: The Time Has Come Gary Palmer, MD, JD, MBA, MPH Senior Vice President, Medical Affairs Foundation Medicine, Inc. Oct. 22, 2013 1 Why We Are Here A Shared Vision At Foundation

More information

Next Generation Sequencing in Clinical Practice: Impact on Therapeutic Decision Making

Next Generation Sequencing in Clinical Practice: Impact on Therapeutic Decision Making Next Generation Sequencing in Clinical Practice: Impact on Therapeutic Decision Making November 20, 2014 Capturing Value in Next Generation Sequencing Symposium Douglas Johnson MD, MSCI Vanderbilt-Ingram

More information

Frequency(%) KRAS G12 KRAS G13 KRAS A146 KRAS Q61 KRAS K117N PIK3CA H1047 PIK3CA E545 PIK3CA E542K PIK3CA Q546. EGFR exon19 NFS-indel EGFR L858R

Frequency(%) KRAS G12 KRAS G13 KRAS A146 KRAS Q61 KRAS K117N PIK3CA H1047 PIK3CA E545 PIK3CA E542K PIK3CA Q546. EGFR exon19 NFS-indel EGFR L858R Frequency(%) 1 a b ALK FS-indel ALK R1Q HRAS Q61R HRAS G13R IDH R17K IDH R14Q MET exon14 SS-indel KIT D8Y KIT L76P KIT exon11 NFS-indel SMAD4 R361 IDH1 R13 CTNNB1 S37 CTNNB1 S4 AKT1 E17K ERBB D769H ERBB

More information

Lung Cancer Genetics: Common Mutations and How to Treat Them David J. Kwiatkowski, MD, PhD. Mount Carrigain 2/4/17

Lung Cancer Genetics: Common Mutations and How to Treat Them David J. Kwiatkowski, MD, PhD. Mount Carrigain 2/4/17 Lung Cancer Genetics: Common Mutations and How to Treat Them David J. Kwiatkowski, MD, PhD Mount Carrigain 2/4/17 Histology Adenocarcinoma: Mixed subtype, acinar, papillary, solid, micropapillary, lepidic

More information

Liquid biopsy: the experience of real life case studies

Liquid biopsy: the experience of real life case studies Liquid biopsy: the experience of real life case studies 10 th September 2018 Beatriz Bellosillo Servicio de Anatomía Patológica Hospital del Mar, Barcelona Agenda Introduction Experience in colorectal

More information

Molecular Targets in Lung Cancer

Molecular Targets in Lung Cancer Molecular Targets in Lung Cancer Robert Ramirez, DO, FACP Thoracic and Neuroendocrine Oncology November 18 th, 2016 Disclosures Consulting and speaker fees for Ipsen Pharmaceuticals, AstraZeneca and Merck

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Molecular Analysis for Targeted Therapy for Non-Small Cell Lung File Name: Origination: Last CAP Review: Next CAP Review: Last Review: molecular_analysis_for_targeted_therapy_for_non_small_cell_lung_cancer

More information

Disclosures Genomic testing in lung cancer

Disclosures Genomic testing in lung cancer Disclosures Genomic testing in lung cancer No disclosures Objectives Understand how FISH and NGS provide complementary data for the evaluation of lung cancer Recognize the challenges of performing testing

More information

Identification and clinical detection of genetic alterations of pre-neoplastic lesions Time for the PML ome? David Sidransky MD Johns Hopkins

Identification and clinical detection of genetic alterations of pre-neoplastic lesions Time for the PML ome? David Sidransky MD Johns Hopkins Identification and clinical detection of genetic alterations of pre-neoplastic lesions Time for the PML ome? David Sidransky MD Johns Hopkins February 3-5, 2016 Lansdowne Resort, Leesburg, VA Molecular

More information

Tissue or Liquid Biopsy? ~For Diagnosis, Monitoring and Early detection of Resistance~

Tissue or Liquid Biopsy? ~For Diagnosis, Monitoring and Early detection of Resistance~ 16 th Dec. 2016. ESMO Preceptorship Program Non-Small-Cell Lung Cancer @Singapore Tissue or Liquid Biopsy? ~For Diagnosis, Monitoring and Early detection of Resistance~ Research Institute for Disease of

More information

Personalised cancer care Information for Medical Specialists. A new way to unlock treatment options for your patients

Personalised cancer care Information for Medical Specialists. A new way to unlock treatment options for your patients Personalised cancer care Information for Medical Specialists A new way to unlock treatment options for your patients Contents Optimised for clinical benefit 4 Development history 4 Full FIND IT panel vs

More information

What is the status of the technologies of "precision medicine?

What is the status of the technologies of precision medicine? Session 2: What is the status of the technologies of "precision medicine? Gideon Blumenthal, MD, Clinical Team Leader, Thoracic and Head/Neck Oncology, Center for Drug Evaluation and Research (CDER), U.S.

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): The authors have presented data demonstrating activation of AKT as a common resistance mechanism in EGFR mutation positive, EGFR TKI resistant

More information

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview

7/6/2015. Cancer Related Deaths: United States. Management of NSCLC TODAY. Emerging mutations as predictive biomarkers in lung cancer: Overview Emerging mutations as predictive biomarkers in lung cancer: Overview Kirtee Raparia, MD Assistant Professor of Pathology Cancer Related Deaths: United States Men Lung and bronchus 28% Prostate 10% Colon

More information

MET skipping mutation, EGFR

MET skipping mutation, EGFR New NSCLC biomarkers in clinical research: detection of MET skipping mutation, EGFR T790M, and other important biomarkers Fernando López-Ríos Laboratorio de Dianas Terapéuticas Hospital Universitario HM

More information

NCCN Non-Small Cell Lung Cancer V Meeting June 15, 2018

NCCN Non-Small Cell Lung Cancer V Meeting June 15, 2018 Guideline Page and Request Illumina Inc. requesting to replace Testing should be conducted as part of broad molecular profiling with Consider NGS-based assays that include EGFR, ALK, ROS1, and BRAF as

More information

EBUS-TBNA Diagnosis and Staging of Lung Cancer

EBUS-TBNA Diagnosis and Staging of Lung Cancer EBUS-TBNA Diagnosis and Staging of Lung Cancer Nirag Jhala MD, MIAC Professor of Pathology and Lab Med. Director of Anatomic Pathology and Cytopathology Lewis Katz School of Medicine@ Temple University

More information

Evolución Clonal de los Tumores y Biopsia Líquida en Cáncer de Pulmón

Evolución Clonal de los Tumores y Biopsia Líquida en Cáncer de Pulmón Evolución Clonal de los Tumores y Biopsia Líquida en Cáncer de Pulmón Ignacio I. Wistuba, M.D. Professor and Chair Department of Translational Molecular Pathology The University of Texas M. D. Anderson

More information

The Center for PERSONALIZED DIAGNOSTICS

The Center for PERSONALIZED DIAGNOSTICS The Center for PERSONALIZED DIAGNOSTICS Precision Diagnostics for Personalized Medicine A joint initiative between The Department of Pathology and Laboratory Medicine & The Abramson Cancer Center The (CPD)

More information

Personalized Medicine: Lung Biopsy and Tumor

Personalized Medicine: Lung Biopsy and Tumor Personalized Medicine: Lung Biopsy and Tumor Mutation Testing Elizabeth H. Moore, MD Personalized Medicine: Lung Biopsy and Tumor Mutation Testing Genomic testing has resulted in a paradigm shift in the

More information

Targeted Therapy for NSCLC: EGFR and ALK Fadlo R. Khuri, MD

Targeted Therapy for NSCLC: EGFR and ALK Fadlo R. Khuri, MD EGFR and ALK Fadlo R. Khuri, MD President, American University of Beirut Professor of Medicine July 26, 2018 A great year end! Targeted Therapy for NSCLC: Evolving Landscape of Lung Adenocarcinoma NSCLC

More information

Precision Genetic Testing in Cancer Treatment and Prognosis

Precision Genetic Testing in Cancer Treatment and Prognosis Precision Genetic Testing in Cancer Treatment and Prognosis Deborah Cragun, PhD, MS, CGC Genetic Counseling Graduate Program Director University of South Florida Case #1 Diana is a 47 year old cancer patient

More information

Optimum Sequencing of EGFR targeted therapy in NSCLC. Dr. Sema SEZGİN GÖKSU Akdeniz Univercity, Antalya, Turkey

Optimum Sequencing of EGFR targeted therapy in NSCLC. Dr. Sema SEZGİN GÖKSU Akdeniz Univercity, Antalya, Turkey Optimum Sequencing of EGFR targeted therapy in NSCLC Dr. Sema SEZGİN GÖKSU Akdeniz Univercity, Antalya, Turkey Lung cancer NSCLC SCLC adeno squamous EGFR ALK ROS1 BRAF HER2 KRAS EGFR Transl Lung Cancer

More information

Supplementary Figure 1. Copy Number Alterations TP53 Mutation Type. C-class TP53 WT. TP53 mut. Nature Genetics: doi: /ng.

Supplementary Figure 1. Copy Number Alterations TP53 Mutation Type. C-class TP53 WT. TP53 mut. Nature Genetics: doi: /ng. Supplementary Figure a Copy Number Alterations in M-class b TP53 Mutation Type Recurrent Copy Number Alterations 8 6 4 2 TP53 WT TP53 mut TP53-mutated samples (%) 7 6 5 4 3 2 Missense Truncating M-class

More information

Diagnostica Molecolare!

Diagnostica Molecolare! Diagnostica Molecolare! Aldo Scarpa Unità Diagnostica Molecolare Azienda Ospedaliera Universitaria Integrata di Verona e ARC-NET Centro di Ricerca Applicata sul Cancro PDTA CARCINOMA POLMONARE - IL PAZIENTE

More information

Accel-Amplicon Panels

Accel-Amplicon Panels Accel-Amplicon Panels Amplicon sequencing has emerged as a reliable, cost-effective method for ultra-deep targeted sequencing. This highly adaptable approach is especially applicable for in-depth interrogation

More information

Joachim Aerts Erasmus MC Rotterdam, Netherlands. Drawing the map: molecular characterization of NSCLC

Joachim Aerts Erasmus MC Rotterdam, Netherlands. Drawing the map: molecular characterization of NSCLC Joachim Aerts Erasmus MC Rotterdam, Netherlands Drawing the map: molecular characterization of NSCLC Disclosures Honoraria for advisory board/consultancy/speakers fee Eli Lilly Roche Boehringer Ingelheim

More information

Lihong Ma 1 *, Zhengbo Song 2 *, Yong Song 1, Yiping Zhang 2. Original Article

Lihong Ma 1 *, Zhengbo Song 2 *, Yong Song 1, Yiping Zhang 2. Original Article Original Article MET overexpression coexisting with epidermal growth factor receptor mutation influence clinical efficacy of EGFR-tyrosine kinase inhibitors in lung adenocarcinoma patients Lihong Ma 1

More information

Fluxion Biosciences and Swift Biosciences Somatic variant detection from liquid biopsy samples using targeted NGS

Fluxion Biosciences and Swift Biosciences Somatic variant detection from liquid biopsy samples using targeted NGS APPLICATION NOTE Fluxion Biosciences and Swift Biosciences OVERVIEW This application note describes a robust method for detecting somatic mutations from liquid biopsy samples by combining circulating tumor

More information

D Ross Camidge, MD, PhD

D Ross Camidge, MD, PhD i n t e r v i e w D Ross Camidge, MD, PhD Dr Camidge is Director of the Thoracic Oncology Clinical Program and Associate Director for Clinical Research at the University of Colorado Cancer Center in Aurora,

More information

Changing demographics of smoking and its effects during therapy

Changing demographics of smoking and its effects during therapy Changing demographics of smoking and its effects during therapy Egbert F. Smit MD PhD. Dept. Pulmonary Diseases, Vrije Universiteit Medical Centre, Amsterdam, The Netherlands Smoking prevalence adults

More information

Protein Domain-Centric Approach to Study Cancer Somatic Mutations from High-throughput Sequencing Studies

Protein Domain-Centric Approach to Study Cancer Somatic Mutations from High-throughput Sequencing Studies Protein Domain-Centric Approach to Study Cancer Somatic Mutations from High-throughput Sequencing Studies Dr. Maricel G. Kann Assistant Professor Dept of Biological Sciences UMBC 2 The term protein domain

More information

Looking Beyond the Standard-of- Care : The Clinical Trial Option

Looking Beyond the Standard-of- Care : The Clinical Trial Option 1 Looking Beyond the Standard-of- Care : The Clinical Trial Option Terry Mamounas, M.D., M.P.H., F.A.C.S. Medical Director, Comprehensive Breast Program UF Health Cancer Center at Orlando Health Professor

More information

Illumina s Cancer Research Portfolio and Dedicated Workflows

Illumina s Cancer Research Portfolio and Dedicated Workflows Illumina s Cancer Research Portfolio and Dedicated Workflows Michael Sohn Clinical Sales Specialist Spain&Italy 2017 2017 Illumina, Inc. All rights reserved. Illumina, 24sure, BaseSpace, BeadArray, BlueFish,

More information

Targeting Acquired Resistance to EGFR Kinase Inhibitors: Beyond T790M Mutation

Targeting Acquired Resistance to EGFR Kinase Inhibitors: Beyond T790M Mutation Targeting Acquired Resistance to EGFR Kinase Inhibitors: Beyond T790M Mutation James Chih-Hsin Yang, MD, PhD National Taiwan University Hospital National Taiwan University Cancer Center Taipei, Taiwan

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Kris MG, Johnson BE, Berry LD, et al. Using Multiplexed Assays of Oncogenic Drivers in Lung Cancers to Select Targeted Drugs. JAMA. doi:10.1001/jama.2014.3741 etable 1. Trials

More information

OTRAS TERAPIAS BIOLÓGICAS EN CPNM: Selección y Secuencia Óptima del Tratamiento

OTRAS TERAPIAS BIOLÓGICAS EN CPNM: Selección y Secuencia Óptima del Tratamiento OTRAS TERAPIAS BIOLÓGICAS EN CPNM: Selección y Secuencia Óptima del Tratamiento Dolores Isla Servicio de Oncología Médica HCU Lozano Besa de Zaragoza 2008 Selection Factors in Advanced NSCLC ( 8y ago)

More information

Supplementary Materials for

Supplementary Materials for www.sciencetranslationalmedicine.org/cgi/content/full/3/75/75ra26/dc1 Supplementary Materials for Genotypic and Histological Evolution of Lung Cancers Acquiring Resistance to EGFR Inhibitors Lecia V. Sequist,*

More information

The oncologist s point of view: the promise and challenges of increasing options for targeted therapies in NSCLC

The oncologist s point of view: the promise and challenges of increasing options for targeted therapies in NSCLC The oncologist s point of view: the promise and challenges of increasing options for targeted therapies in NSCLC Egbert F. Smit Department of Thoracic Oncology, Netherlands Cancer Institute, and Department

More information

Predictive biomarker profiling of > 1,900 sarcomas: Identification of potential novel treatment modalities

Predictive biomarker profiling of > 1,900 sarcomas: Identification of potential novel treatment modalities Predictive biomarker profiling of > 1,900 sarcomas: Identification of potential novel treatment modalities Sujana Movva 1, Wenhsiang Wen 2, Wangjuh Chen 2, Sherri Z. Millis 2, Margaret von Mehren 1, Zoran

More information

Supplementary Tables. Supplementary Figures

Supplementary Tables. Supplementary Figures Supplementary Files for Zehir, Benayed et al. Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients Supplementary Tables Supplementary Table 1: Sample

More information

Detecting Oncogenic Mutations in Whole Blood

Detecting Oncogenic Mutations in Whole Blood WHITE PAPER Detecting Oncogenic Mutations in Whole Blood Analytical validation of Cynvenio Biosystems LiquidBiopsy circulating tumor cell (CTC) capture and next-generation sequencing (NGS) September 2013

More information

EXAMPLE. - Potentially responsive to PI3K/mTOR and MEK combination therapy or mtor/mek and PKC combination therapy. ratio (%)

EXAMPLE. - Potentially responsive to PI3K/mTOR and MEK combination therapy or mtor/mek and PKC combination therapy. ratio (%) Dr Kate Goodhealth Goodhealth Medical Clinic 123 Address Road SUBURBTOWN NSW 2000 Melanie Citizen Referring Doctor Your ref Address Dr John Medico 123 Main Street, SUBURBTOWN NSW 2000 Phone 02 9999 9999

More information

Improving outcomes for NSCLC patients with brain metastases

Improving outcomes for NSCLC patients with brain metastases Improving outcomes for NSCLC patients with brain metastases Martin Schuler West German Cancer Center, Essen, Germany In Switzerland, afatinib is approved as monotherapy for patients with non-small cell

More information

Supplementary Figure 1. Cytoscape bioinformatics toolset was used to create the network of protein-protein interactions between the product of each

Supplementary Figure 1. Cytoscape bioinformatics toolset was used to create the network of protein-protein interactions between the product of each Supplementary Figure 1. Cytoscape bioinformatics toolset was used to create the network of protein-protein interactions between the product of each mutated gene and the panel of 125 cancer-driving genes

More information

NGS in tissue and liquid biopsy

NGS in tissue and liquid biopsy NGS in tissue and liquid biopsy Ana Vivancos, PhD Referencias So, why NGS in the clinics? 2000 Sanger Sequencing (1977-) 2016 NGS (2006-) ABIPrism (Applied Biosystems) Up to 2304 per day (96 sequences

More information

Genomic tests to personalize therapy of metastatic breast cancers. Fabrice ANDRE Gustave Roussy Villejuif, France

Genomic tests to personalize therapy of metastatic breast cancers. Fabrice ANDRE Gustave Roussy Villejuif, France Genomic tests to personalize therapy of metastatic breast cancers Fabrice ANDRE Gustave Roussy Villejuif, France Future application of genomics: Understand the biology at the individual scale Patients

More information

Jennifer Hauenstein Oncology Cytogenetics Emory University Hospital Atlanta, GA

Jennifer Hauenstein Oncology Cytogenetics Emory University Hospital Atlanta, GA Comparison of Genomic Coverage using Affymetrix OncoScan Array and Illumina TruSight Tumor 170 NGS Panel for Detection of Copy Number Abnormalities in Clinical GBM Specimens Jennifer Hauenstein Oncology

More information

Case Studies. Ravi Salgia, MD, PhD

Case Studies. Ravi Salgia, MD, PhD Case Studies Ravi Salgia, MD, PhD Professor and Arthur & Rosalie Kaplan Chair Medical Oncology and Therapeutics Research Associate Director for Clinical Sciences Research City of Hope 04-21-2018 Objectives

More information

K-Ras signalling in NSCLC

K-Ras signalling in NSCLC Targeting the Ras-Raf-Mek-Erk pathway Egbert F. Smit MD PhD Dept. Pulmonary Diseases Vrije Universiteit VU Medical Centre Amsterdam, The Netherlands K-Ras signalling in NSCLC Sun et al. Nature Rev. Cancer

More information

Clinically Useful Next Generation Sequencing and Molecular Testing in Gliomas MacLean P. Nasrallah, MD PhD

Clinically Useful Next Generation Sequencing and Molecular Testing in Gliomas MacLean P. Nasrallah, MD PhD Clinically Useful Next Generation Sequencing and Molecular Testing in Gliomas MacLean P. Nasrallah, MD PhD Neuropathology Fellow Division of Neuropathology Center for Personalized Diagnosis (CPD) Glial

More information

GENETIC TESTING FOR TARGETED THERAPY FOR NON-SMALL CELL LUNG CANCER (NSCLC)

GENETIC TESTING FOR TARGETED THERAPY FOR NON-SMALL CELL LUNG CANCER (NSCLC) CANCER (NSCLC) Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures, medical devices and drugs are

More information

PIK3CA mutations are found in approximately 7% of

PIK3CA mutations are found in approximately 7% of Original Article Impact of Concurrent PIK3CA Mutations on Response to EGFR Tyrosine Kinase Inhibition in EGFR-Mutant Lung Cancers and on Prognosis in Oncogene-Driven Lung Adenocarcinomas Juliana Eng, MD,*

More information

Clinical Grade Biomarkers in the Genomic Era Observations & Challenges

Clinical Grade Biomarkers in the Genomic Era Observations & Challenges Clinical Grade Biomarkers in the Genomic Era Observations & Challenges IOM Committee on Policy Issues in the Clinical Development & Use of Biomarkers for Molecularly Targeted Therapies March 31-April 1,

More information

Molecular Pathology and Lung Cancer. A. John Iafrate MD-PhD Department of Pathology Massachusetts General Hospital Boston, MA

Molecular Pathology and Lung Cancer. A. John Iafrate MD-PhD Department of Pathology Massachusetts General Hospital Boston, MA Molecular Pathology and Lung Cancer A. John Iafrate MD-PhD Department of Pathology Massachusetts General Hospital Boston, MA aiafrate@partners.org Disclosures Preliminary patent application NGS AMP Fusion

More information

Targeted therapy in NSCLC: do we progress? Prof. Dr. V. Surmont. Masterclass 27 september 2018

Targeted therapy in NSCLC: do we progress? Prof. Dr. V. Surmont. Masterclass 27 september 2018 Targeted therapy in NSCLC: do we progress? Prof. Dr. V. Surmont Masterclass 27 september 2018 Outline Introduction EGFR TKI ALK TKI TKI for uncommon driver mutations Take home messages The promise of

More information

LUNG CANCER. pathology & molecular biology. Izidor Kern University Clinic Golnik, Slovenia

LUNG CANCER. pathology & molecular biology. Izidor Kern University Clinic Golnik, Slovenia LUNG CANCER pathology & molecular biology Izidor Kern University Clinic Golnik, Slovenia 1 Pathology and epidemiology Small biopsy & cytology SCLC 14% NSCC NOS 4% 70% 60% 50% 63% 62% 61% 62% 59% 54% 51%

More information

Personalized Genetics

Personalized Genetics Personalized Genetics Understanding Your Genetic Test Results Tracey Evans, MD September 29, 2017 Genetics 101 Punnett Square Genetic Pedigree 2 Genetics 101 Punnett Square Genetic Pedigree 3 It s not

More information

Breast Cancer: ASCO Poster Review

Breast Cancer: ASCO Poster Review Breast Cancer: ASCO Poster Review Carmen Criscitiello, MD, PhD Istituto Europeo di Oncologia Milano HER2+ SUBTYPE Research questions in early HER2+ BC De-escalation of toxicity without compromising efficacy

More information

ECMC cfdna consensus meeting

ECMC cfdna consensus meeting ECMC cfdna consensus meeting State of the art for cfdna technologies 24 th November 2014 Applications of ctdna analysis for drug development Potential of ctdna analysis to: Identify the right patients

More information

Positive response to Icotinib in metastatic lung adenocarcinoma with acquiring EGFR Leu792H mutation after AZD9291 treatment: a case report

Positive response to Icotinib in metastatic lung adenocarcinoma with acquiring EGFR Leu792H mutation after AZD9291 treatment: a case report Wang and Chen BMC Cancer (2019) 19:131 https://doi.org/10.1186/s12885-019-5352-7 CASE REPORT Open Access Positive response to Icotinib in metastatic lung adenocarcinoma with acquiring EGFR Leu792H mutation

More information

Secuenciación masiva: papel en la toma de decisiones

Secuenciación masiva: papel en la toma de decisiones Secuenciación masiva: papel en la toma de decisiones Cancer is a Genetic Disease Development of cancer is driven by the acquisition of somatic genetic alterations: Nonsynonymous point mutations: missense.

More information

Transform genomic data into real-life results

Transform genomic data into real-life results CLINICAL SUMMARY Transform genomic data into real-life results Biomarker testing and targeted therapies can drive improved outcomes in clinical practice New FDA-Approved Broad Companion Diagnostic for

More information

Dr Yvonne Wallis Consultant Clinical Scientist West Midlands Regional Genetics Laboratory

Dr Yvonne Wallis Consultant Clinical Scientist West Midlands Regional Genetics Laboratory Dr Yvonne Wallis Consultant Clinical Scientist West Midlands Regional Genetics Laboratory Personalised Therapy/Precision Medicine Selection of a therapeutic drug based on the presence or absence of a specific

More information

Comprehensive Genomic Profiling, in record time. Accurate. Clinically Proven. Fast.

Comprehensive Genomic Profiling, in record time. Accurate. Clinically Proven. Fast. Comprehensive Genomic Profiling, in record time Accurate. ly Proven. Fast. PCDx advantages Comprehensive genomic profiling, in record time PCDx Comprehensive Genomic Profiling (CGP) provides precise information

More information

Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma

Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma Cancer Medicine ORIGINAL RESEARCH Open Access Mutation and prognostic analyses of PIK3CA in patients with completely resected lung adenocarcinoma Zhengbo Song 1,2, Xinmin Yu 1 & Yiping Zhang 1,2 1 Department

More information

Lung Cancer Update 2016 BAONS Oncology Care Update

Lung Cancer Update 2016 BAONS Oncology Care Update Lung Cancer Update 2016 BAONS Oncology Care Update Matthew Gubens, MD, MS Assistant Professor Chair, Thoracic Oncology Site Committee UCSF Helen Diller Family Comprehensive Cancer Center Disclosures Consulting

More information

Successes and Challenges in Treating Squamous Cell Carcinoma of the Lung

Successes and Challenges in Treating Squamous Cell Carcinoma of the Lung Successes and Challenges in Treating Squamous Cell Carcinoma of the Lung Noemi Reguart,MD, PhD Hospital Clinic de Barcelona Barcelona, Spain SC-CRP-02660 Conversations in Oncology 2018 is a standalone

More information

Reflex Testing Guidelines for Immunotherapy in Non-Small Cell Lung Cancer

Reflex Testing Guidelines for Immunotherapy in Non-Small Cell Lung Cancer Reflex Testing Guidelines for Immunotherapy in Non-Small Cell Lung Cancer Jimmy Ruiz, MD Assistant Professor Thoracic Oncology Program Wake Forest Comprehensive Cancer Center Disclosures I have no actual

More information

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors

Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors Q: How is the strength of recommendation determined in the new molecular testing guideline? A: The strength of recommendation is determined by the strength of the available data (evidence). Strong Recommendation:

More information

Reviewers' comments: Reviewer #1 (Remarks to the Author):

Reviewers' comments: Reviewer #1 (Remarks to the Author): Reviewers' comments: Reviewer #1 (Remarks to the Author): In this study the authors analysed 18 deep penetrating nevi for oncogenic genomic changes (single nucleotide variations, insertions/deletions,

More information

Advances in Pathology and molecular biology of lung cancer. Lukas Bubendorf Pathologie

Advances in Pathology and molecular biology of lung cancer. Lukas Bubendorf Pathologie Advances in Pathology and molecular biology of lung cancer Lukas Bubendorf Pathologie Agenda The revolution of predictive markers Liquid biopsies PD-L1 Molecular subtypes (non-squamous NSCLC) Tsao AS et

More information

Patricia Aoun MD, MPH Professor and Vice-Chair for Clinical Affairs Medical Director, Clinical Laboratories Department of Pathology City of Hope

Patricia Aoun MD, MPH Professor and Vice-Chair for Clinical Affairs Medical Director, Clinical Laboratories Department of Pathology City of Hope Patricia Aoun MD, MPH Professor and Vice-Chair for Clinical Affairs Medical Director, Clinical Laboratories Department of Pathology City of Hope National Medical Center Disclosures I have no disclosures

More information

Qué hemos aprendido hasta hoy? What have we learned so far?

Qué hemos aprendido hasta hoy? What have we learned so far? Qué hemos aprendido hasta hoy? What have we learned so far? Luís Costa Hospital de Santa Maria & Instituto de Medicina Molecular Faculdade de Medicina de Lisboa Disclosures Research Grants: Amgen; Novartis;

More information

Management Strategies for Lung Cancer Sensitive or Resistant to EGRF Inhibitors

Management Strategies for Lung Cancer Sensitive or Resistant to EGRF Inhibitors Management Strategies for Lung Cancer Sensitive or Resistant to EGRF Inhibitors Conor E. Steuer, MD Assistant Professor The Winship Cancer Institute of Emory University July 27, 2017 1 Lung Cancer One

More information

Recent Advances in Lung Cancer: Updates from ASCO 2017

Recent Advances in Lung Cancer: Updates from ASCO 2017 Recent Advances in Lung Cancer: Updates from ASCO 2017 Charu Aggarwal, MD, MPH Assistant Professor of Medicine Division of Hematology-Oncology Abramson Cancer Center University of Pennsylvania 6/15/2017

More information

Inhibidores de EGFR Noemi Reguart, MD, PhD Hospital Clínic Barcelona IDIPAPS

Inhibidores de EGFR Noemi Reguart, MD, PhD Hospital Clínic Barcelona IDIPAPS Inhibidores de EGFR Noemi Reguart, MD, PhD Hospital Clínic Barcelona IDIPAPS Driver Mutations to Classify Lung Cancer Unknown 36% KRAS 25% EGFR 15% ALK 4% HER2 2% Double Mut 2% BRAF 2% PIK3CA

More information

Emerging Algorithm for Optimal Sequencing of EGFR TKIs in EGFR Mutation Positive NSCLC

Emerging Algorithm for Optimal Sequencing of EGFR TKIs in EGFR Mutation Positive NSCLC Emerging Algorithm for Optimal Sequencing of EGFR TKIs in EGFR Mutation Positive NSCLC Keunchil Park, MD, PhD Samsung Medical Center, Sungkyunkwan University School of Medicine Faculty Disclosure Consulting

More information

State of the Art Treatment of Lung Cancer Ravi Salgia, MD, PhD

State of the Art Treatment of Lung Cancer Ravi Salgia, MD, PhD State of the Art Treatment of Lung Cancer Ravi Salgia, MD, PhD Professor and Chair Arthur & Rosalie Kaplan Chair Medical Oncology and Therapeutics Research Nothing to disclose DISCLOSURE Objectives Lung

More information

Exon 19 L747P mutation presented as a primary resistance to EGFR-TKI: a case report

Exon 19 L747P mutation presented as a primary resistance to EGFR-TKI: a case report Case Report Exon 19 L747P mutation presented as a primary resistance to EGFR-TKI: a case report Yu-Ting Wang, Wei-Wei Ning, Jing Li, Jian-n Huang Department of Respiratory Medicine, the First ffiliated

More information

Giorgio V. Scagliotti Università di Torino Dipartimento di Oncologia

Giorgio V. Scagliotti Università di Torino Dipartimento di Oncologia Giorgio V. Scagliotti Università di Torino Dipartimento di Oncologia giorgio.scagliotti@unito.it Politi K & Herbst R. Clin. Cancer Res. 2015; 21:2213 Breast Colorectal Gastric/GE Junction Tumor Type Head

More information

Novel treatments for SCC Andrés Felipe Cardona, MD MS PhD.

Novel treatments for SCC Andrés Felipe Cardona, MD MS PhD. Novel treatments for SCC Andrés Felipe Cardona, MD MS PhD. Clinical and Transla,onal Oncology Group Ins,tute of Oncology, Fundación Santa fe de Bogotá Clinical Epidemiology Cochrane Colombian Branch /

More information

Diagnostic application of SNParrays to brain cancers

Diagnostic application of SNParrays to brain cancers Diagnostic application of SNParrays to brain cancers Adriana Olar 4/17/2018 No disclosures 55 yo M, focal motor seizure T2 T1-post C DIAGNOSIS BRAIN, LEFT FRONTAL LOBE, BIOPSY: - DIFFUSE GLIOMA, OLIGODENDROGLIAL

More information

Dr. Andres Wiernik. Lung Cancer

Dr. Andres Wiernik. Lung Cancer Dr. Andres Wiernik Lung Cancer Lung Cancer Facts - Demographics World Incidence: 1 8 million / year World Mortality: 1 6 million / year 5-year survival rates vary from 4 17% depending on stage and regional

More information

Targeted Molecular Diagnostics for Targeted Therapies in Hematological Disorders

Targeted Molecular Diagnostics for Targeted Therapies in Hematological Disorders Targeted Molecular Diagnostics for Targeted Therapies in Hematological Disorders Richard D. Press, MD, PhD Dept of Pathology Knight Cancer Institute Knight Diagnostic Labs Oregon Health & Science University

More information

EGFR TKI sequencing: does order matter?

EGFR TKI sequencing: does order matter? EGFR TKI sequencing: does order matter? Nicolas Girard Thorax Institut Curie-Montsouris, Paris, France In Switzerland, afatinib is approved as monotherapy for patients with non-small cell lung cancer (Stage

More information

KEY FINDINGS 1. Potential Clinical Benefit in Non-Small Cell Lung Cancer with Gefitinib, Erlotinib, Afatinib due to EGFR E746_A750del. 2. Potential Cl

KEY FINDINGS 1. Potential Clinical Benefit in Non-Small Cell Lung Cancer with Gefitinib, Erlotinib, Afatinib due to EGFR E746_A750del. 2. Potential Cl PATIENT INFO SAMPLE REFERING PHYSICIAN COPY TO (if different from ordering) Name: John Smith Date Collected: 10/23/2016 Name: Oncologist, M.D. Name: Pathologist, M.D. DOB: 04/22/1937 Date Received: 10/24/2016

More information

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Medical Policy An independent licensee of the Blue Cross Blue Shield Association Circulating Tumor DNA Management of Non-Small-Cell Lung Cancer (Liquid Biopsy) Page 1 of 36 Medical Policy An independent licensee of the Blue Cross Blue Shield Association Title: Circulating Tumor DNA

More information

SUBJECT: GENOTYPING - EPIDERMAL GROWTH

SUBJECT: GENOTYPING - EPIDERMAL GROWTH MEDICAL POLICY SUBJECT: GENOTYPING - EPIDERMAL GROWTH Clinical criteria used to make utilization review decisions are based on credible scientific evidence published in peer reviewed medical literature

More information

Refining Prognosis of Early Stage Lung Cancer by Molecular Features (Part 2): Early Steps in Molecularly Defined Prognosis

Refining Prognosis of Early Stage Lung Cancer by Molecular Features (Part 2): Early Steps in Molecularly Defined Prognosis 5/17/13 Refining Prognosis of Early Stage Lung Cancer by Molecular Features (Part 2): Early Steps in Molecularly Defined Prognosis Johannes Kratz, MD Post-doctoral Fellow, Thoracic Oncology Laboratory

More information