Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Size: px
Start display at page:

Download "Biological Effects of Ionizing Radiation & Commonly Used Radiation Units"

Transcription

1 INAYA MEDICAL COLLEGE (IMC) RAD LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM

2 How does radiation injure people? - High energy radiation breaks chemical bonds or DNA molecules. + This creates free radicals, like those produced by other insults as well as by normal cellular processes in the body. The free radicals can change chemicals in the body. These changes can disrupt cell function and may kill cells.

3 DNA is the most important molecule that can be changed by radiation Effects of DNA Damage Gene Expression A gene may respond to the radiation by changing its signal to produce protein. This may be protective or damaging. Gene Mutation Sometimes a specific gene is changed so that it is unable to make its corresponding protein properly Chromosome Aberrations Sometimes the damage effects the entire chromosome, causing it to break or recombine in an abnormal way. Sometimes parts of two different chromosomes may be combined Genomic Instability Sometimes DNA damage produces later changes which may contribute to cancer. Cell Killing Damaged DNA may trigger apoptosis, or programmed cell death. If only a few cells are affected, this prevents reproduction of damaged DNA and protects the tissue. Studies have shown that most radiation-induced DNA damage is normally repaired by the body

4 How does this damage from ionizing radiation effect our bodies? Sufficient Cell Killing Sufficient Genetic Alterations Radiation Sickness Cancer

5 Radiation Dose

6 Radiation Dose One of the most confusing things about understanding radiation effects is visualizing how much radiation is involved. It is very difficult to keep the units which measure radiation straight. A number describing the amount of radiation means nothing without evaluating the units, but this is not easy. For example...

7 ...try to match the letter with the amount of radiation involved in each example Amount of potassium 40 in the body Dose to Atomic bomb survivors You can safety hold this amount of alpha radiation One coast to coast flight A diagnostic X-ray A. Billions of becquerels B. About 250 picocuries C millirem D. 0-5 Gy E. 2 millirads

8 Commonly Used Radiation Units Each of these units has a different technical meaning. All are used by experts to talk about radiation. With so many terms, you can see why it is important to know what the unit means when you are evaluating radiation information. RAD Sievert Becquerel Absorbed dose (Gray or rad) Average dose Organ dose Dose commitment Collective dose Effective dose (Sievert or rem) Committed effective dose Equivalent dose Collective equivalent dose Committed equivalent dose Uniform equivalent dose Dose equivalent Collective dose equivalent Ambient dose equivalent Directional dose equivalent Individual dose equivalent Individual dose equivalent, penetrating Individual dose equivalent, superficial Dose and dose-rate effectiveness factor Man-gray Man-sievert Tissue weighting factor Relative biological effectiveness (RBE) Quality factor (Q) Fatality probability coefficient Nominal fatality probability coefficient Radiation weighting factor (w R ) Linear energy transfer (LET) Radioactivity (Becquerel or curie)

9 Understanding Radiation Units Activity The number of times, each second, a radioactive material decays and releases radiation. Exposure Amount of ionization per mass of air due to x and gamma rays. Dose (Absorbed) The amount of radiation energy absorbed into a given mass of tissue. Dose (Equivalent) H & Effective dose equivalent (HE ) Measures the energy per unit mass times adjustments for the type of radiation; Involved Radiation (quality factor) and the biological response in the tissue (a weighting factor). * Equivalent dose converts dose into a measure of risk.

10 Understanding Radiation Units Activity Disintegration/sec=1 Becquerel (Bq) 37 billion Bq = 1 curie Exposure Roentgen Dose (Absorbed) 1 joule/kg=1 Gray(Gy) 1Gray=100 rad =100,000 mrad Dose (Equivalent) Gray x quality factors= Sievert (Sv) 1 Sievert =100 rem =100,000 mrem Standard Units S.I. Units

11 ACTIVITY What is the meaning of activity? This is the expectation rate of spontaneous nuclear transitions in a source. Becquerel = 1 disintegration/second. This is the SI unit for measuring radioactivity. Curie. Defined as 3.7 x disintegrations per second= 3.7 x Bq. This is the activity of 1 gram of radium in equilibrium with its decay products The Rutherford. 1 Rd = 10 6 Bq.

12 ACTIVITY How much is a Becquerel (Bq)? The natural 40 K activity in the body of an adult human of normal weight is Bq. There is an average of about 50 Bq per cubic meter of air inside a home from radon. Even though a 60 Co source of strong gamma radiation containing billions of Bq can kill you if you are standing 5 meters from it, it is harmless at a distance of 100 meters. A Bq has 27 times more disintegrations than a pci, but is still a very small amount of radiation.

13 ACTIVITY How much is a picocurie (pci)? Many times the media reports excess radiation in picocuries. It takes 1,000,000,000,000 pci to make 1 Curie. A Becquerel is 1 disintegration/second. It takes 27 pci to make one Bq, so a pci represents less radioactivity that a Bq and results in very, very little dose.

14 Exposure What is the meaning of exposure? The quantity of X- or gamma-radiation to which an object is exposed. This electromagnetic radiation produces ionization within the object. Amount of ionization per mass of air due to x and gamma rays. This is the amount of ionization produced by photons in air. Since it is impossible to directly measure the absorbed dose in tissue, the measurement of radiation is performed in air. It is measured in roentgen (R) and Sieverts (Sv).

15 Exposure What is the meaning of exposure? Roentgen. Röntgen or Roentgen may refer to: Roentgen (unit), unit of measurement for ionizing radiation, named after Wilhelm Röntgen Wilhelm Röntgen ( ), German physicist, discoverer of X-rays

16 Exposure What is the meaning of exposure? Roentgen. This is defined as the amount of gamma radiation that produces 1 cm 3 of air ionization equal to 1 electrostatic unit (esu). 1 esu = 3.3 x coulombs = 2 x 10 9 ion pairs/cm 3 of air. Equivalent to 2.58 x 10-4 C/kg air ( J/kg of air). 1R is approximately 10-2 Sv.

17 ROENTGEN Roentgen was defined as 1R=1 electrostatic unit (esu)/cm 3 air at standard temp and pressure(stp) = Δ Q by Δ m; Where: Δ Q is the absolute value of total charge of ions of one sign produced in air when all the electrons liberated by photons in air of mass (Δ m). X = Δ Q/ Δ m Conventional units is Roentgen SI unit : c/kg 1R=2.58*10-4 c/kg

18 ABSORBED DOSE What is the meaning of absorbed dose? This is the energy imparted/ given to matter by charged or uncharged ionizing particles.

19 ABSORBED DOSE What is the meaning of absorbed dose? Gray 1Gy = 1 J/kg. This is the SI unit for absorbed dose of ionizing radiation. The Rad. 1 rad = 10-2 Gy (= 10-2 J/kg). This is defined as the amount of radiation that deposits 100 ergs (10-5 J) in each gram of tissue it traverses. Two different types of radiation may, however, produce different degrees of biological damage even though they are both rated as 1 rad.

20 ABSORBED DOSE How much radiation is an X-ray? 1Gray=100 rad =100,000 mrad So, the average chest X-ray may give a dose; 10 millirads = 0.01 rads = Gray. A millirad is comparatively small. Average normal background level of radiation is 370 mrad/year. One Gray is a relatively large amount of radiation. If 3-4 Gray are delivered over a short time to the whole body, they can be deadly.

21 EQUIVALENT DOSE What is the meaning of equivalent dose? This is the quantity used to express on a common scale the risk to exposed persons from all ionizing radiations.

22 Dose Equivalent Since different radiations have different harmful effects on human tissues. It is measured in Sieverts (Sv). H = D Q.F. H = equivalent dose (Sv) D = dose (Gy) Q.F. = radiation quality factor of radiation (no unit) 1 Sv = 1 J/kg = 100 rem Biological effects of ionizing radiation 22

23 EQUIVALENT DOSE What is the meaning of equivalent dose? Sievert 1 Sv = 1 J/kg. The Sievert is equal to the absorbed dose in tissue (Gy) multiplied by the 'quality factor' for the particular type of ionizing radiation. The quality factor is a dimensionless number representing the relative effect produced by the same absorbed doses of different types of radiation. In older terminology the quality factor was referred to as the Relative Biological Effectiveness (next slides) rem (roentgen equivalent man): 1 rem = 10-2 Sv (= 10-2 J/kg). This is defined as the amount of radiation which when absorbed by a person, will produce the same biological effects as the absorption of 1 roentgen of x- ray or gamma-ray radiation.

24 Dose Equivalent Conventional unit is Roentgen equivalent in man(rem) SI unit is Sivert 1rem=10 Sivert RADIATION Q.F. X-rays & gamma rays 1.0 Electron (incld. β-rays) of energy >30kv Thermal ( slow) neutron Fast neutrons 20

25 EQUIVALENT DOSE Radiation Q. Factors Illustration Type and Energy Range X and γ rays, electrons, positrons and muons 1 Neutrons <10 kev 5 Neutrons 10 kev to 100 kev 10 Neutrons >10 kev to 2 MeV 20 Neutrons > 2 MeV to 20 MeV 10 Neutrons >20 MeV 5 Protons, other than recoil protons and energy 2 >2 MeV Alpha particles, fission fragments, nonrelativistic heavy nuclei Q. Factor 20

26 EQUIVALENT DOSE What is Radiation Quality Factor? Different types of radiation behave in different ways. In order to compare the amount of risk or biological change that occurs, quality factors are introduced. Biologic effects of radiation depend not only on dose but also on the type of radiation.

27 EQUIVALENT DOSE What is Radiation Quality factor? For example: The damage produced by 1 Gy of x-radiation is equal to that produced by 1 Gy of gamma radiation. Thus, gamma radiation has a quality factor of 1 or 1 Gy gramma rays x 1 =1 Sv. The damage produced by 20 Gy of x-radiation is equal to that from 1 Gy of alpha radiation. Alpha radiation has a quality factor of 20 or 1 Gy of alpha radiation x 20 = 20 Sv. Quality factors for other types of radiation are between 1 & 20.

28 EQUIVALENT DOSE What is the meaning of equivalent dose? To define the rem quantitively, a relative biological effectiveness (RBE) has been established (number of rem) = (number of rad) x RBE. The following table gives RBE for the usual types of radiation. RELATIVE BIOLOGICAL EFFECTIVENESS Type of radiation rad x RBE = rem x-rays and gamma-rays Beta radiation Protons Alpha particles Fast Neutrons Slow Neutrons

29 EQUIVAENT DOSE How much is a Sievert (Sv)? Radiation induced cancers have been seen in the atomic bomb survivors exposed to as low as 0.2 Sieverts. A Sievert is a relatively large amount of radiation. The annual background radiation exposure for a typical American is Sv, 3.7 msv or 370 millirem. 1 Sv = 100 rem 1000 msv = 100,000 mrem

30 EQUIVAENT DOSE How much is a millirem (mrem)? The annual background radiation exposure for a typical American 370 mrems. The average dose from watching color TV is 2 mrem each year. The granite from Grand Central Station exposes its employees to 120 mrem of radiation each year People in Denver receive 50 mrem more each year than those in LA because of the altitude. The nuclear industry contributes to less than 1 mrem/year to an individual s background radiation. A millimrem is a small unit of measure.

31 EQUIVALENT DOSE EFFECTIVE (H E ) Whole body exposures are rarely uniform. Tissues vary in sensitivity to radiation induced effects Effective dose is a measure of radiation and organ system specific damage in man The effective dose equivalent H E =Sum of H t x W t H t = mean dose equivalent received by the tissue t W t =weighing factor of tissue t

32 EQUIVALENT DOSE EFFECTIVE (H E ) Tissue Weighting Factors Illustration Bone surface Bladder Bone Marrow Gonads Skin Breast Colon Liver Lung Esophagus Stomach Thyroid Remainder

33 Dose-rate The effectiveness of the dose is dependent on the dose-rate Dose 1 bottle of Aspirin or 250,000 mrem of Radiation Dose -Rate Over 50 seconds?? Or over 50 years?? Over 50 seconds?? Or over 50 years?? Death Minimal health risk Death Minimal health risk

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

BIOLOGICAL EFFECTS OF

BIOLOGICAL EFFECTS OF BIOLOGICAL EFFECTS OF RADIATION Natural Sources of Radiation Natural background radiation comes from three sources: Cosmic Radiation Terrestrial Radiation Internal Radiation 2 Natural Sources of Radiation

More information

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden September 2006 The aim of this text is to explain some of the basic quantities and units

More information

Lecture 14 Exposure to Ionizing Radiation

Lecture 14 Exposure to Ionizing Radiation Lecture 14 Exposure to Ionizing Radiation Course Director, Conrad Daniel Volz, DrPH, MPH Assistant Professor, Environmental & Occupational Health, University of Pittsburgh, Graduate School of Public Health

More information

RADIATION RISK ASSESSMENT

RADIATION RISK ASSESSMENT RADIATION RISK ASSESSMENT EXPOSURE and TOXITY ASSESSMENT Osipova Nina, associated professor, PhD in chemistry, Matveenko Irina, Associate professor, PhD in philology TOMSK -2013 The contents 1.What is

More information

Laboratory Safety 197/405. Types of Radiation 198/405

Laboratory Safety 197/405. Types of Radiation 198/405 Laboratory Safety 197/405 Types of Radiation 198/405 Particle Radiation Alpha He nucleus (heavy particle) +2 charge Internal hazard only Beta Electron -1 charge Internal and external hazard Neutron 199/405

More information

Radiologic Units: What You Need to Know

Radiologic Units: What You Need to Know Radiologic Units: What You Need to Know TODD VAN AUKEN M.ED. RT (R)(MR) Agenda Greys, Sieverts, Coulombs per kg, & Becquerel's Conventional Units Other Concepts (LET, Q-Factor, Effective Dose, NCRP Report

More information

Dosimetric Consideration in Diagnostic Radiology

Dosimetric Consideration in Diagnostic Radiology Dosimetric Consideration in Diagnostic Radiology Prof. Ng Kwan-Hoong Department of Biomedical Imaging University of Malaya ngkh@um.edu.my Radiation Dosimetry Workshop, 28-29 March 2014 2 Why do we measure

More information

Radiation Carcinogenesis

Radiation Carcinogenesis Radiation Carcinogenesis November 11, 2014 Dhyan Chandra, Ph.D. Pharmacology and Therapeutics Roswell Park Cancer Institute Email: dhyan.chandra@roswellpark.org Overview - History of radiation and radiation-induced

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 28 Heath Physics 1: Radiation Dose Spiritual Thought 2 The BIG Picture 3 Summary Points Biological systems are most vulnerable to radiation-induced

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects INTRODUCTION TO RADIATION PROTECTION Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects 3/14/2018 1 Wilhelm C.

More information

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer RADIATION HAZARDS A dabbler s perspective by Jess H. Brewer Mortality Paraphrased from memory: Front page of special HEALTH edition of LA Free Press (around 1970): No matter how much money you have, how

More information

Radiation Safety for New Medical Physics Graduate Students

Radiation Safety for New Medical Physics Graduate Students Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training This is intended as

More information

Radiation Health Effects

Radiation Health Effects Radiation Health Effects Elena Buglova Incident and Emergency Centre Department of Nuclear Safety and Security Content Historical background Primary target for cell damage Deterministic effects Stochastic

More information

Ernest Rutherford:

Ernest Rutherford: November 1895: Roentgen discovers x rays February 1896: Becquerel discovers radioactivity Ernest Rutherford 1898-99 Ernest Rutherford: 1898-99 The Electromagnetic Spectrum Interaction of Charged Particles

More information

Review of the Radiobiological Principles of Radiation Protection

Review of the Radiobiological Principles of Radiation Protection 1 Review of the Radiobiological Principles of Radiation Protection Cari Borrás, D.Sc., FACR, FAAPM Radiological Physics and Health Services Consultant Adjunct Assistant Professor (Radiology) GWU School

More information

AN INTRODUCTION TO NUCLEAR MEDICINE

AN INTRODUCTION TO NUCLEAR MEDICINE AN INTRODUCTION TO NUCLEAR MEDICINE WITH RESPECT TO THYROID DISORDERS By: B.Shafiei MD Nuclear Physician Taleghani Medical Center Radioactive: An element with Unstable Nucleus (Excess Energy), can achieve

More information

Dosimetry - Measurement of Ionising Radiation

Dosimetry - Measurement of Ionising Radiation Dosimetry - Measurement of Ionising Radiation Assoc. Prof. Katarína Kozlíková, RN., PhD. IMPhBPhITM FM CU in Bratislava katarina.kozlikova@fmed.uniba.sk Contents Dosimetry Dose Radiation dose Absorbed

More information

RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW

RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW RADON RESEARCH IN MULTI DISCIPLINES: A REVIEW PILLALAMARRI ILA Earth Atmospheric & Planetary Sciences Neutron Activation Analysis Laboratory Massachusetts Institute of Technology Cambridge, MA 02139 IAP

More information

GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL

GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL RADIATION PROTECTION AUTHORITY OF ZIMBABWE (RPAZ) RADIATION PROTECTION ACT [CHAPTER 15:15] GUIDELINES ON IONISING RADIATION DOSE LIMITS AND ANNUAL LIMITS ON INTAKE OF RADIOACTIVE MATERIAL Compiled by Radiation

More information

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND Univerzita Karlova v Praze - 1. Lékařská fakulta Radiation protection NUCLEAR MEDICINE Involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine study

More information

Chapter 8. Ionizing and Non-Ionizing Radiation

Chapter 8. Ionizing and Non-Ionizing Radiation Chapter 8 Ionizing and Non-Ionizing Radiation Learning Objectives By the end of the chapter the reader will be able to: Define the terms ionizing radiation and nonionizing radiation State the differences

More information

PHY138Y Nuclear and Radiation

PHY138Y Nuclear and Radiation PHY38Y Nuclear and Radiation Professor Tony Key MP40 key@physics.utoronto.ca Announcements MP problems set #4 due Sunday at midnight PS#5 WRITTEN now posted! - do in teams, no Lone Wolves!! NB correction

More information

Radiation Protection Program Update: The Details. July 2010

Radiation Protection Program Update: The Details. July 2010 Radiation Protection Program Update: The Details July 2010 Update Topics 2 Changes mandated by Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection (10 CFR 835) How changes

More information

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb Ionizing Radiation Michael J. Vala, CHP Bristol-Myers Squibb michael.vala@bms.com 732-227-5096 2013 American Industrial Hygiene Association, New Jersey Section, Inc. Course Objectives At the end of this

More information

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine Radiation physics and radiation protection University of Szeged Department of Nuclear Medicine Radiation doses to the population 1 Radiation doses to the population 2 Sources of radiation 1 Radiation we

More information

Radiation in Everyday Life

Radiation in Everyday Life Image not found Rincón http://www.rinconeducativo.org/sites/default/files/logo.jpg Educativo Published on Rincón Educativo (http://www.rinconeducativo.org) Inicio > Radiation in Everyday Life Recursos

More information

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5 Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5 Purpose The purpose of this program is to protect employees who may encounter ionizing radiation and its hazards while performing

More information

ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission

ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission 3 September 2009 ICRP Recommendations 1. Reasons for new Recommendations 2. Summary of health risks 3. Summary of changes to

More information

Radiation Safety Guide. Analytical X-Ray Equipment

Radiation Safety Guide. Analytical X-Ray Equipment Radiation Safety Guide Analytical X-Ray Equipment Table of Content Page 1. Radiation 2 A. Radiation Quantities 2 B. Background Radiation 2 C. Biological Effect of Radiation 3 D. Radiation Injury To The

More information

Radioactivity. Alpha particles (α) :

Radioactivity. Alpha particles (α) : Radioactivity It is the property of an element that causes it to emit radiation Discovered by Becquerel (1896) Radiation comes from the nucleus of the atom There are three types of radiation : alpha particles

More information

Nature of Radiation and DNA damage

Nature of Radiation and DNA damage Nature of Radiation and DNA damage Index 1. What is radiation? 2. Ionizing Radiation 3. Interaction of Gamma-radiation with Matter 4. Radiobiology 5. Direct and Indirect action of radiation 6. Steps of

More information

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES May 2011 IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES KEY FACTS Ionizing radiation is a type of energy released by atoms in the form of electromagnetic waves or particles. People are exposed

More information

LET, RBE and Damage to DNA

LET, RBE and Damage to DNA LET, RBE and Damage to DNA Linear Energy Transfer (LET) When is stopping power not equal to LET? Stopping power (-de/dx) gives the energy lost by a charged particle in a medium. LET gives the energy absorbed

More information

biological systems: alters electrolyte balance b. Solids trapped electrons and lattice defects modified conduction bands: impurities, Si bit upsets

biological systems: alters electrolyte balance b. Solids trapped electrons and lattice defects modified conduction bands: impurities, Si bit upsets Lecture 21: Biological Effects of Radiation I. Radiation Chemistry Interaction of Radiation with Matter: Emphasis on effect of medium on incident radiation Biological Effects of Radiation: Emphasis on

More information

Quiz True/False: Large amounts of radiation to insects will cause them to mutate!

Quiz True/False: Large amounts of radiation to insects will cause them to mutate! RADS, REMS & ROENTGENS Jack L. Barr, M.S., R.T.R., F.A.S.R.T. Quiz True/False: Large amounts of radiation to insects will cause them to mutate! LARGE AMOUNTS OF RADIATION WILL CAUSE VEGETABLES TO BECOME

More information

ARRT Specifications Radiation Exposure & Monitoring

ARRT Specifications Radiation Exposure & Monitoring Radiation Protection Review 15% (30) 11% (22) Gina Tice, MSRS, RT(R) Gadsden State Community College ARRT Specifications Radiation Exposure & Monitoring Radiation Protection (45) Biological Aspects of

More information

Learning Objectives. Review of the Radiobiological Principles of Radiation Protection. Radiation Effects

Learning Objectives. Review of the Radiobiological Principles of Radiation Protection. Radiation Effects 1 Review of the Radiobiological Principles of Radiation Protection Cari Borrás, D.Sc., FAAPM, FACR Radiological Physics and Health Services Consultant Washington DC, USA Learning Objectives 1. To understand

More information

Fukushima: What We All Should Know about Radiation

Fukushima: What We All Should Know about Radiation Fukushima: What We All Should Know about Radiation Peter N. Saeta, Harvey Mudd College Physics, 25 March 2011 Outline Radioactivity: what is it, what causes it, and what s a half life? How does ionizing

More information

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014

Chapter 7. What is Radiation Biology? Ionizing Radiation. Energy Transfer Determinants 09/21/2014 Chapter 7 Molecular & Cellular Radiation Biology What is Radiation Biology? A branch of biology concerned with how ionizing radiation effects living systems. Biological damage that occurs from different

More information

IONIZING RADIATION UNITS AND STANDARDS

IONIZING RADIATION UNITS AND STANDARDS IONIZING RADIATION UNITS AND STANDARDS M. Ragheb 1/27/2006 INTRODUCTION Radiation is a natural phenomenon that existed long before the advent of humans, and permeates the known Universe. Humans have used

More information

ICRP = International Commission on. recommendations and guidance on. Functioning since 1928.

ICRP = International Commission on. recommendations and guidance on. Functioning since 1928. ICRP = International Commission on Radiological Protection; An advisory body providing recommendations and guidance on radiation protection; Functioning since 1928. While the use of ionising radiation

More information

Chem 481 Lecture Material 3/11/09

Chem 481 Lecture Material 3/11/09 Chem 481 Lecture Material 3/11/09 Health Physics NRC Dose Limits The NRC has established the following annual dose limits. Organ NRC Limit (mrem/year) Comments Whole Body 5000 (50 msv/yr) Lens of the Eye

More information

Radiation Safety. Bethany Gillett 14th Feb After this lecture, you should be able to:

Radiation Safety. Bethany Gillett 14th Feb After this lecture, you should be able to: Radiation Safety Bethany Gillett bethany.gillett@addenbrookes.nhs.uk 14th Feb 2018 Learning Outcomes After this lecture, you should be able to: Understand different radiation protection quantities Explain

More information

Radiation Protection

Radiation Protection 2007 CERN Accelerator School (The bases of) Radiation Protection Marco Silari CERN, Geneva, Switzerland M. Silari Radiation Protection 21.09.2007 1 Introduction To tell you in one hour all about radiation

More information

Radioactivity. Lecture 8 Biological Effects of Radiation

Radioactivity. Lecture 8 Biological Effects of Radiation Radioactivity Lecture 8 Biological Effects of Radiation Studies of impact of ionizing radiation on the human body - Hiroshima - US-Japanese teams medical tests, autopsies, human organ analysis, on-site

More information

ACUTE RADIATION SYNDROME: Diagnosis and Treatment

ACUTE RADIATION SYNDROME: Diagnosis and Treatment ACUTE RADIATION SYNDROME: Diagnosis and Treatment Badria Al Hatali, MD Medical Toxicologist Department of Environmental and Occupational Health MOH - Oman Objectives Provide a review of radiation basics

More information

Understanding Radiation and Its Effects

Understanding Radiation and Its Effects Understanding Radiation and Its Effects Prepared by Brooke Buddemeier, CHP University of California Lawrence Livermore National Laboratory Presented by Jeff Tappen Desert Research Institute 1 Radiation

More information

RADIOACTIVITY & RADIATION CHARACTERISTICS

RADIOACTIVITY & RADIATION CHARACTERISTICS CEMP TRAINING SESSION 15-17 JULY 2013 RADIOACTIVITY & RADIATION CHARACTERISTICS Instructor: Gary M. Sandquist, PhD, CHP 2013 Training Session Slide 1 Occupational Dose Equivalent Limits General Public

More information

Biological Effects of Radiation

Biological Effects of Radiation Radiation and Radioisotope Applications EPFL Doctoral Course PY-031 Biological Effects of Radiation Lecture 09 Rafael Macian 23.11.06 EPFL Doctoral Course PY-031: Radioisotope and Radiation Applications

More information

Skyscan 1076 in vivo scanning: X-ray dosimetry

Skyscan 1076 in vivo scanning: X-ray dosimetry Skyscan 1076 in vivo scanning: X-ray dosimetry DOSIMETRY OF HIGH RESOLUTION IN VIVO RODENT MICRO-CT IMAGING WITH THE SKYSCAN 1076 An important distinction is drawn between local tissue absorbed dose in

More information

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986 April 12, 2011 The Lesson learned from the Chernobyl Accident and the Data from Atomic Bomb Survivors For Understanding the Fukushima Daiichi Accident and the Robustness of the Human Body to Ionizing Radiation

More information

What is radiation quality?

What is radiation quality? What is radiation quality? Dudley T Goodhead Medical Research Council, UK DoReMi Radiation Quality workshop Brussels. 9-10 July 2013 What is radiation quality? Let s start at the very beginning. A very

More information

Health Physics and the Linear No-Threshold Model

Health Physics and the Linear No-Threshold Model Health Physics and the Linear No-Threshold Model Understanding Radiation and Its Effects John Baunach Vanderbilt University Nashville, TN What is health physics? Outline What organizational bodies govern

More information

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS RAD Conference Proceedings, vol. 2, pp. 104 108, 2017 www.rad-proceedings.org QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS Jozef Sabol *, Bedřich Šesták Crisis Department,

More information

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP)

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP) User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP) Designed for use by the Department of Labor in adjudicating claims under the Energy Employees Occupational Illness Compensation

More information

Medical Physics 4 I3 Radiation in Medicine

Medical Physics 4 I3 Radiation in Medicine Name: Date: 1. This question is about radiation dosimetry. Medical Physics 4 I3 Radiation in Medicine Define exposure. A patient is injected with a gamma ray emitter. The radiation from the source creates

More information

Radiation Physiology and Effects

Radiation Physiology and Effects Sources and types of space radiation Effects of radiation Shielding approaches 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu The Electromagnetic Spectrum Ref: Alan C. Tribble,

More information

Ionizing Radiation. Alpha Particles CHAPTER 1

Ionizing Radiation. Alpha Particles CHAPTER 1 CHAPTER 1 Ionizing Radiation Ionizing radiation is radiation that has sufficient energy to remove electrons from atoms. In this document, it will be referred to simply as radiation. One source of radiation

More information

RADIATION HAZARDS AND SAFETY

RADIATION HAZARDS AND SAFETY RADIATION HAZARDS AND SAFETY Dr. S. P. Tyagi All types of radiation produce changes in the living tissues. The resultant cellular injury causes physiological and pathological changes leading to Radiation

More information

Indoor emissions. foams) > CH 2 =O; plasticizers, especially dialkyl phthalates. Especially a problem with mobile homes. - Regulations in Sweden

Indoor emissions. foams) > CH 2 =O; plasticizers, especially dialkyl phthalates. Especially a problem with mobile homes. - Regulations in Sweden CHEM/TOX 336 Lecture 9 Indoor Air Emissions Radioisotopes in the Environment Indoor emissions From synthetic materials (carpets, plywood, ureaformaldehyde foams) > CH 2 =O; plasticizers, especially dialkyl

More information

Lecture 13 Radiation Onclolgy

Lecture 13 Radiation Onclolgy Lecture 13 Radiation Onclolgy Radiation Oncology: Tumors attacked with ionizing radiation Photons (gamma rays) High Energy Electrons Protons Other particles Brachytherapy: implants of beta emitters Ionizing

More information

Genome Instability is Breathtaking

Genome Instability is Breathtaking Genome Instability is Breathtaking Effects of Alpha Radiation exposure on DNA at a molecular level and consequences to cell health Dr. Aaron Goodarzi A.Goodarzi@ucalgary.ca Radiation what do you think

More information

3/26/2017. Personal Dosimetry Monitoring and Dose Measurements. Agenda. Dosimetric Terms and Definitions Dose Limits External Dosimetry

3/26/2017. Personal Dosimetry Monitoring and Dose Measurements. Agenda. Dosimetric Terms and Definitions Dose Limits External Dosimetry Speaker David Pellicciarini, CHP, MBA Vice President, Pharmacy Safety, Practice and Technical Operations Cardinal Health Nuclear Pharmacy Services david.pellicciarini@cardinalhealth.com Personal Dosimetry

More information

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident JAPAN EARTHQUAKE & TSUNAMI RELIEF ORGANIZATIONS Doctors Without Borders/Médecins Sans Frontières: Doctorswithoutborders.org The

More information

The Basics of Radiation Safety

The Basics of Radiation Safety Cardiac Imaging Symposium 2013 UNIVERSITY OF OTTAWA HEART INSTITUTE The Basics of Radiation Safety Leah Shuparski-Miller Medical Health Physicist Radiation Safety & Emergency Preparedness Department The

More information

Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure

Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure Toxicology Case Files Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure Christina Hernon, MD a, Edward W. Boyer,

More information

Cancer Risk Factors in Ontario. Other Radiation

Cancer Risk Factors in Ontario. Other Radiation Cancer Risk Factors in Ontario Other Radiation OTHer radiation risk factor/ exposure Radon-222 and decay products X-radiation, gamma radiation Cancer The context where high risks were reported Magnitude

More information

Basic radiation protection & radiobiology

Basic radiation protection & radiobiology Basic radiation protection & radiobiology By Dr. Mohsen Dashti Patient care & management 202 Wednesday, October 13, 2010 Ionizing radiation. Discussion issues Protecting the patient. Protecting the radiographer.

More information

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction

Neutrons. ρ σ. where. Neutrons act like photons in the sense that they are attenuated as. Unlike photons, neutrons interact via the strong interaction Neutrons Neutrons act like photons in the sense that they are attenuated as I = I 0 e μx where Unlike photons, neutrons interact via the strong interaction μ = The cross sections are much smaller than

More information

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP Ionizing Radiation, Cancer, and Causation James P. Seward, MD MPP FACOEM Clinical Professor of Medicine, UCSF American Occupational Health Conf May 4, 2015 Ionizing Radiation, Cancer, and Causation James

More information

Lab & Rad Safety Newsletter

Lab & Rad Safety Newsletter Ohio UNIVERSITY Fall 2018 Lab & Rad Safety Newsletter Alan Watts Radiation Safety Officer In This Issue: Instruction Concerning Risks From Occupational Radiation Exposure... pg.1-5 = Required = Optional

More information

Radioactive Exposure. Abstract of Article:

Radioactive Exposure. Abstract of Article: Radioactive Exposure Abstract of Article: All ionizing radiations, at sufficiently large exposures, can cause cancer. Many, in carefully controlled exposures, are also used for cancer therapy. Ionizing

More information

Ionizing Radiation. Nuclear Medicine

Ionizing Radiation. Nuclear Medicine Ionizing Radiation Nuclear Medicine Somatic Deterministic Effect Erythema Somatic Stochastic Effect Leukemia Genetic Effects DNA BIOLOGICAL EFFECTS OF IONIZING RADIATION ON TISSUES, ORGANS AND SYSTEMS

More information

Physical Bases : Which Isotopes?

Physical Bases : Which Isotopes? Physical Bases : Which Isotopes? S. Gnesin Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland 1/53 Theranostic Bruxelles, 2 Octobrer 2017 Theranostic : use of diagnostic

More information

Professor & Head Division of Radiobiology and Toxicology Manipal Life Sciences Centre, Manipal University, Manipal, INDIA

Professor & Head Division of Radiobiology and Toxicology Manipal Life Sciences Centre, Manipal University, Manipal, INDIA Professor & Head Division of Radiobiology and Toxicology Manipal Life Sciences Centre, Manipal University, Manipal, INDIA Discovery of A-bomb s effect in Japan (1945) Hiroshima, 6.08.1945 Nagasaki, 9.08.1945

More information

The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong. H.M.Mok Physicist Radiation Health Unit Department of Health

The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong. H.M.Mok Physicist Radiation Health Unit Department of Health The Principles of Radiation Monitoring and the Radiation Protection System in Hong Kong H.M.Mok Physicist Radiation Health Unit Department of Health Contents Basic properties of ionising radiation and

More information

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11 REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11 Naoyuki Shigematsu, Junichi Fukada, Toshio Ohashi, Osamu Kawaguchi and Tetsuya Kawata Department of Radiology, School of Medicine, Keio

More information

Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects

Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects Introduction To Nuclear Power Module 3: Understanding Radiation and Its Effects Course # 9CCKN1002 Nathan Hoffman, PhD Greg Johnson, PhD, PE Phil Rutherford R.Z. Litwin (Editor) 1 Introduction To Nuclear

More information

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING f Fermi National Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING Operated by Universities Research Association, Inc. under contract with the United States Department of Energy October, 1999

More information

Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident

Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident At Sophia University 11 May 2011 Presented by: Tokyo Institute of Technology Research Laboratory for Nuclear

More information

Adult: > 18 Years ALARA: As low as reasonably achievable ALI:

Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Health Physics Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Annual Limit on Intake. The amount of an isotope that if taken into the body over the course of a year would result in in a

More information

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) 1. (a) A radioisotope is an isotope that is unstable and will emit particles from the nucleus

More information

PHY138Y Nuclear and Radiation Section

PHY138Y Nuclear and Radiation Section PHY138Y Supplementary Notes IV: Biological Effects of Radiation. A.W. Key Page 1 of 15 PHY138Y Nuclear and Radiation Section Supplementary Notes IV The Biological Effects of Radiation Contents. 4.1 Introduction

More information

Option D: Medicinal Chemistry

Option D: Medicinal Chemistry Option D: Medicinal Chemistry Basics - unstable radioactive nuclei emit radiation in the form of smaller particles alpha, beta, positron, proton, neutron, & gamma are all used in nuclear medicine unstable

More information

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam

Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam Peak temperature ratio of TLD glow curves to investigate the spatial variation of LET in a clinical proton beam University of Chicago CDH Proton Center LET study C. Reft 1, H. Ramirez 2 and M. Pankuch

More information

THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM

THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM THE UNIVERSITY OF UTAH RADIATION PROTECTION PROGRAM The use of radiation sources at the University of Utah entails both legal and moral obligations to provide training on the nature of radiation sources,

More information

CRACKCast E146 Radiation Injuries

CRACKCast E146 Radiation Injuries CRACKCast E146 Radiation Injuries Key concepts: Patients contaminated with radiation pose very little risk to health care providers when appropriate precautions and decontamination procedures are employed.

More information

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015

The health risks of exposure to internal radiation. Korea National Assembly Seoul 22 nd August 2015 The health risks of exposure to internal radiation Korea National Assembly Seoul 22 nd August 2015 Christopher Busby Green Audit UK/ Environmental Research SIA, Riga, Latvia Scientific Secretary: European

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Overview Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical Energy Industry Other Man-Made

More information

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology

PRINCIPLES and PRACTICE of RADIATION ONCOLOGY. Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology PRINCIPLES and PRACTICE of RADIATION ONCOLOGY Matthew B. Podgorsak, PhD, FAAPM Department of Radiation Oncology OUTLINE Physical basis Biological basis History of radiation therapy Treatment planning Technology

More information

PRINCIPLES AND METHODS OF RADIATION PROTECTION

PRINCIPLES AND METHODS OF RADIATION PROTECTION PRINCIPLES AND METHODS OF RADIATION PROTECTION Lesson Outcomes At the end of the lesson, student should be able to: Define what is radiation protection (RP) Describe basic principles of RP Explain methods

More information

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute Radiation Effects Radiobiology Steve Curtis Desert Research Institute Background Radiation Cosmic Terrestrial In our Bodies Total Radiation About 300 mr per year Equals about 15 X-Rays Over half is from

More information

RADIOLOGY AN DIAGNOSTIC IMAGING

RADIOLOGY AN DIAGNOSTIC IMAGING Day 2 p. 1 RADIOLOGY AN DIAGNOSTIC IMAGING Dr hab. Zbigniew Serafin, MD, PhD serafin@cm.umk.pl and Radiation Protection mainly based on: C. Scott Pease, MD, Allen R. Goode, MS, J. Kevin McGraw, MD, Don

More information

Chapter Introduction

Chapter Introduction Chapter 1 Introduction Malignancy is a life-threatening condition in which tumor cells are of a highly invasive character and penetrate normal organs and exhibit an obstinate resistance against cancer

More information

Prof. V. Grégoire Dr. P. Smeesters Mr M. Despiegeleer

Prof. V. Grégoire Dr. P. Smeesters Mr M. Despiegeleer 1. Grandeurs et Unités - Mécanismes biologiques de l action des rayonnements ionisants 2. Effets aigus d une irradiation accidentelle 3. Cancers radio-induits 4. Effets héréditaires radio-induits 5. Effets

More information

Health Effects of Ionizing Radiation

Health Effects of Ionizing Radiation Nuclear Radiation Atomic decay by Alpha and Beta radiation causes atomic transmutation. Gamma radiation does not transmutate the atom, it changes its energy. Health Effects of Ionizing Radiation Ionizing

More information

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012 PAGE 1 OF 5 RADIATION SAFETY PURPOSE: A wide usage of x-ray machines and isotopes for examination of steel plate fabricated and erected structures require a knowledge of the radiation hazard and the precautionary

More information

RADIATION BIOPHYSICS. A Study Guide For NUC-412-GS. Course Author: Thomas N. Massey, Ph.D. Ohio University Athens, Ohio

RADIATION BIOPHYSICS. A Study Guide For NUC-412-GS. Course Author: Thomas N. Massey, Ph.D. Ohio University Athens, Ohio A Study Guide For RADIATION BIOPHYSICS NUC-412-GS Course Author: Thomas N. Massey, Ph.D. Ohio University Athens, Ohio Thomas Edison State College Distance & Independent Adult Learning (DIAL) COPYRIGHT

More information