Reprogramming through micrornas Stefanie Dimmeler

Size: px
Start display at page:

Download "Reprogramming through micrornas Stefanie Dimmeler"

Transcription

1 Klinikum der Johann Wolfgang Goethe Universität Frankfurt am Main Reprogramming through micrornas Stefanie Dimmeler Conflict of interest: T2cure GmbH, Miragen

2 Non-coding DNA & RNA and micrornas Human Genome Project: Graig Venter, x10 9 bp Proteins % non-coding DNA Human 97 % Mammals % Fungi and Plants 7-75 % Human Genome: ca Genes (only 2 x more than worms or flies) Eurkaryotes % Junk DNA Source: Wikipedia

3 micrornas: Processing and functions Intronic mirnas microrna Exon Exon Exon Intergenic mirnas microrna Gene Gene sirna: One target mrna PrimarymiRNA Single mirna Cluster microrna: Nucleus Pre-miRNA Drosha up to hundreds of mrnas Dicer mirna Duplex RISC Complex Translational Repression mrna Degradation

4 MicroRNAs in the heart mir-92a (Van Rooij et al., Circ Res 2008)

5 micrornas and cell therapy Reprogramming: Induce pluripotency micrornas and stem cells Direct reprogramming: Induce differentiation Functional reprogramming: Improve cell functionality

6 micrornas: ESC and ips cells micrornas: induce pluripotency maintain pluripotency allow differentiation Somatic Cell mir-302 mir-367 Pluripotent Stem Cell Progenitor Cell Reprogramming Differentiation facilitate induce inhibit mir-21, mir-29a Let-7 family mir-25 cluster mir-106 cluster mir-34 mir-130, mir-301, mir-721 Maintenance of Pluripotency Cell cycle DNA methylation mir-290 family mir-302 cluster Oct4 Nanog Sox2 Klf4 Lin28 Down-regulation of pluripotency genes mir-134, mir-145, mir-470 mir-134. mir-296, mir-470 mir-134, mir-145, mir-200c mir-145, mir-200c Let-7 Heinrich & Dimmeler, Circ Res 2012

7 micrornas control self renewal, pluripotency and differentiation Differentiated cell mir-302 mir-367 Pluripotent Stem Cell ips Maintenance of Pluripotency Cell cycle DNA methylation mir-290 family mir-302 cluster (Anakye-Danso et al Cell Stem Cell 2011)

8 micrornas and cell therapy Reprogramming: Induce pluripotency micrornas and stem cells Direct reprogramming: Induce differentiation Functional reprogramming: Improve cell functionality

9 mirnas regulated during EC differentiation mirnas regulated during SMC differentiation Heinrich & Dimmeler, Circ Res 2012 mirnas regulated during CM differentiation mirs and cardiovascular lineage irnas: Induce differentiation Enhance maturation commitment Progenitor Cell mir-10a mir-145 mir-1 mir-499 Notch ligands HDAC4 Sox6 mir-133 Endothelial cells Smooth muscle Cardiac muscle Regulated mirnas mir-126 mir-17~92 mir-130 mir-210 Let-7 family mir-181 Function Vascular integrity & Lumenization mir-17 mir-20 mir-92 mir-17~92 inhibit sprouting mir-17/20: promote proliferation Pro-angiogenic Promotes deprogramming of lymphatic ECs towards vascular ECs Regulated mirnas mir-1 mir-10a mir-143 mir-145 mir-21 Function Required for SMC differentiation Required for SMC differentiation Induce contractile SMC phenotype Overexpression of mir-145 increases smooth muscle differentiation Endothelial-Mesenchymal transition Regulated mirnas mir-1 mir-133 mir-208 mir-499 Function Regulates proliferation and differentiation of progenitor cells Targets notch ligands and HDAC4 Blocks CM differentiation Regulates cardiomyocyte hypertrophy, fibrosis Increases cardiac differentiation in vitro

10 mir-1 and mir-499 control cardiac differentiation of stem cells (see also: Sluijter et al ATVB 2010 (mir-1, mir-499); Ivey et al, Cell Stem Cell 2008 (mir-1)) Wilson et al Circ Genetics 2010

11 In vivo cardiac reprogramming In vitro: Cell 2010 JMCC Ieda et al, Cell (3): In vivo: GATA4, MEF2C, TBX5 GATA4, HAND2, MEF2C, TBX5

12 Combination of: mir-1, mir-133, mir-208, mir JAK inhibitor Circ Res 2012

13 micrornas and cell therapy Reprogramming: Induce pluripotency micrornas and stem cells Direct reprogramming: Induce differentiation Functional reprogramming: Improve cell functionality

14 Impairment of EPC and BMC in patients with CAD Risk factors for CAD (Age) Diabetes Heart failure Vasa Circ Res 2001; Tepper Circ 2002; Loomans 2004;Seeger 2005; Kissel JACC 2006, Sorrention Circ 2007 EPC & BMC (cardiac stem cells) Number (EPC) Functions: Migration towards VEGF & SDF-1 Colony forming capacity Vascular network formation Incorporation & Homing Differentiation to cardiac myocytes

15 Genes: Cell enhancement strategies Akt & upstream kinases (ILK) Akt downstream kinases (GSK3ß) VEGF enos E-selectin Small molecules: Statins Targeting micrornas? p38-inhibitors enos enhancer EPAC Sphingosine-1-Phosphate HMGB1 soluble E-selectin PPARg agonists Hormones/Cytokines Growth hormone; IGF Chavakis et al. 2007; Carmona et al. 2009; Walter et al. 2007; Cho et al. 2005; Choi et al. 2004; Iwaguro et al. 2002; Kong et al. 2004; Dimmeler et al. 2001; Walter et al. 2002; Sasaki et al. 2006; Nishiwaki et al 2006; Thum et al. 2007

16 Identification of disease-associated mirnas mir Expression in BMC from healthy donors versus patients with cardiac diseases (N=6 per group) Xu et al, JACC 2012

17 Tzatsos, Cell Stem Cell 2008 Validation of dysregulated mirnas Healthy controls (HC) n=11 Ischemic Heart Failure (ICM) n= 11 Acute myocardial infarction (AMI) n= 8 Dilative Cardiomyopathy (DCM) n=7

18 Cardiac disease regulate expression of mirnas in BMC mir-34a in BMC * p<0.05 vs Healthy Aging mir ±5 % (p<0.05) 15 mir-34a Human hearts Healthy controls (HC) n=11 Ischemic Heart Failure (ICM) n= 11 Acute myocardial infarction (AMI) n= 8 Dilative Cardiomyopathy (DCM) n=7 Relative Expression 10 5 *** AGE

19 mir-34 regulates cell survival and proliferation mir-34: Pro-apoptotic Prevent reprogramming Yamakuchi et al. (2009) Cell Cycle 8,

20 Inhibition of mir-34a inhibits cell death and improves BMC functions mir-34a AntimiRs (LNA-34a): Reduce mir-34a expression Reduce cell death Improve migration

21 Co-miR mir-34a Proliferation Cell death Cyclins (CCND1) SIRT1 Cdk4 mir-34a Bcl2

22 Inhibition of mir-34a improves in vivo functions of BMC Acute myocardial infarction Pre-treatment of BMC with mir-34a AntimiRs (LNA-34a) Fractional shortening Ejection fraction nude mouse BMC + AntimiR-34a for 24 h wash 2X10 6 i.m. v 2 Weeks Recovery

23 Support: Deutsche Forschungsgemeinschaft (SFB553, TR-SFB23) Leducq Foundation: Transatlantik Network of Excellence Excellence Cluster ECCPS European Union: IP Heart Repair; ERC Advanced Grant

24 Klinikum der Johann Wolfgang Goethe Universität Frankfurt am Main Quan-Fu Xu Jessica Castillo Kazuma Iekushi Reinier Boon Andreas Zeiher F. Seeger B. Assmus

25

mirna Dr. S Hosseini-Asl

mirna Dr. S Hosseini-Asl mirna Dr. S Hosseini-Asl 1 2 MicroRNAs (mirnas) are small noncoding RNAs which enhance the cleavage or translational repression of specific mrna with recognition site(s) in the 3 - untranslated region

More information

Update on stem cells in cardiovascular disease

Update on stem cells in cardiovascular disease Andreas M. Zeiher, MD Dept. of Internal Medicine III University of Frankfurt Germany Update on stem cells in cardiovascular disease Cardiology Forum 2010, Rome, 05 / 2010 Disclosure information: Guidant

More information

Targeting micrornas to promote cardiac repair and cardiomyocyte proliferation as a potential regenerative therapeutic approach

Targeting micrornas to promote cardiac repair and cardiomyocyte proliferation as a potential regenerative therapeutic approach Original Article Heart Metab. (2014) 65:9-14 Targeting micrornas to promote cardiac repair and cardiomyocyte proliferation as a potential regenerative therapeutic approach Philipp Jakob, MD; Ulf Landmesser,

More information

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy

Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy Massimiliano Gnecchi, Zhiping Zhang, Aiguo Ni, Victor J. Dzau Circulation Research 2008 Nov 21;103(11):1204-19 Introduction(1) After AMI all

More information

Devices are So Old School: The New World of Myocardial Regeneration

Devices are So Old School: The New World of Myocardial Regeneration Devices are So Old School: The New World of Myocardial Regeneration Todd K. Rosengart, M.D. Professor and Chairman DeBakey-Bard Chair of Surgery Michael E. DeBakey Department of Surgery Professor, Texas

More information

Stem Cells. Keith Channon. Department of Cardiovascular Medicine University of Oxford John Radcliffe Hospital, Oxford

Stem Cells. Keith Channon. Department of Cardiovascular Medicine University of Oxford John Radcliffe Hospital, Oxford Stem Cells Keith Channon Department of Cardiovascular Medicine University of Oxford John Radcliffe Hospital, Oxford Adult Stem Cells Unique cells that are capable of self-renewal Have the ability to differentiate

More information

The role of mirnas in cardiac hypertrophy

The role of mirnas in cardiac hypertrophy The role of mirnas in cardiac hypertrophy Fabian Pruissen Biology of Disease 2011 Supervised by Sjoukje Lok, MD and Roel de Weger, PhD Abstract Cardiac hypertrophy and increased cardiomyocytes size are

More information

Utility of Circulating micrornas in Cardiovascular Disease

Utility of Circulating micrornas in Cardiovascular Disease Utility of Circulating micrornas in Cardiovascular Disease Pil-Ki Min, MD, PhD Cardiology Division, Gangnam Severance Hospital, Yonsei University College of Medicine Introduction Biology of micrornas Circulating

More information

MicroRNA in Cancer Karen Dybkær 2013

MicroRNA in Cancer Karen Dybkær 2013 MicroRNA in Cancer Karen Dybkær RNA Ribonucleic acid Types -Coding: messenger RNA (mrna) coding for proteins -Non-coding regulating protein formation Ribosomal RNA (rrna) Transfer RNA (trna) Small nuclear

More information

Cell Therapy Update what have we learned from clinical trials?

Cell Therapy Update what have we learned from clinical trials? Andreas M. Zeiher, MD Dept. of Internal Medicine III University of Frankfurt Germany Cell Therapy Update what have we learned from clinical trials? Cardiology Update 2011, Davos, 2 / 2011 Disclosure information:

More information

MicroRNA therapeutics for cardiovascular disease. Eva van Rooij, PhD Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands

MicroRNA therapeutics for cardiovascular disease. Eva van Rooij, PhD Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands Original Article Heart Metab. (2014) 65:4-8 for cardiovascular disease Eva van Rooij, PhD Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands Correspondence: Eva van Rooij,

More information

MicroRNA dysregulation in cancer. Systems Plant Microbiology Hyun-Hee Lee

MicroRNA dysregulation in cancer. Systems Plant Microbiology Hyun-Hee Lee MicroRNA dysregulation in cancer Systems Plant Microbiology Hyun-Hee Lee Contents 1 What is MicroRNA? 2 mirna dysregulation in cancer 3 Summary What is MicroRNA? What is MicroRNA? MicroRNAs (mirnas) -

More information

The Biology and Genetics of Cells and Organisms The Biology of Cancer

The Biology and Genetics of Cells and Organisms The Biology of Cancer The Biology and Genetics of Cells and Organisms The Biology of Cancer Mendel and Genetics How many distinct genes are present in the genomes of mammals? - 21,000 for human. - Genetic information is carried

More information

micrornas: important regulators of stem cells

micrornas: important regulators of stem cells Li et al. Stem Cell Research & Therapy (2017) 8:110 DOI 10.1186/s13287-017-0551-0 REVIEW micrornas: important regulators of stem cells Na Li 1, Bo Long 1, Wei Han 2, Shumin Yuan 3 and Kun Wang 1* Open

More information

mirnas as Biomarkers for Diagnosis and Assessment of Prognosis of Coronary Artery Disease

mirnas as Biomarkers for Diagnosis and Assessment of Prognosis of Coronary Artery Disease Open Journal of Internal Medicine, 2018, 8, 54-63 http://www.scirp.org/journal/ojim ISSN Online: 2162-5980 ISSN Print: 2162-5972 mirnas as Biomarkers for Diagnosis and Assessment of Prognosis of Coronary

More information

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016

Bi 8 Lecture 17. interference. Ellen Rothenberg 1 March 2016 Bi 8 Lecture 17 REGulation by RNA interference Ellen Rothenberg 1 March 2016 Protein is not the only regulatory molecule affecting gene expression: RNA itself can be negative regulator RNA does not need

More information

E. Cervio, P. Danieli, C. Ciuffreda, F. Pisano, M. Roccio, M. Gnecchi. The authors have no financial disclosures to declare

E. Cervio, P. Danieli, C. Ciuffreda, F. Pisano, M. Roccio, M. Gnecchi. The authors have no financial disclosures to declare 16 th ISCT Annual Meeting SOLUBLE FACTORS RELEASED BY HUMAN MESENCHYMAL STEM CELLS OF FETAL ORIGIN LEAD TO CARDIOMYOCYTE PROTECTION THROUGH THE INHIBITION OF PRO-APOPTOTIC SIGNALING E. Cervio, P. Danieli,

More information

Adenosine stimulates the recruitment of endothelial progenitor cells to the ischemic heart

Adenosine stimulates the recruitment of endothelial progenitor cells to the ischemic heart Adenosine stimulates the recruitment of endothelial progenitor cells to the ischemic heart Involvement of the microrna-150-cxcr4-sdf-1α pathway Emeline Goretti, MSc No conflict of interest Endothelial

More information

Circular RNAs (circrnas) act a stable mirna sponges

Circular RNAs (circrnas) act a stable mirna sponges Circular RNAs (circrnas) act a stable mirna sponges cernas compete for mirnas Ancestal mrna (+3 UTR) Pseudogene RNA (+3 UTR homolgy region) The model holds true for all RNAs that share a mirna binding

More information

MicroRNAs, RNA Modifications, RNA Editing. Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM

MicroRNAs, RNA Modifications, RNA Editing. Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM MicroRNAs, RNA Modifications, RNA Editing Bora E. Baysal MD, PhD Oncology for Scientists Lecture Tue, Oct 17, 2017, 3:30 PM - 5:00 PM Expanding world of RNAs mrna, messenger RNA (~20,000) trna, transfer

More information

Endothelial Injury and Repair as a Working Paradigm

Endothelial Injury and Repair as a Working Paradigm Endothelial Injury and Repair as a Working Paradigm A. Linke ESC Meeting 2010 UNIVERSITÄTLEIPZIG H ERZZEN TRUM Physiology of Endothelial Function: Regulation of Vascular Tone L-Arg. L-Arg. Agonists Shear

More information

Resident cardiac stem cells: how to find and use them

Resident cardiac stem cells: how to find and use them Resident cardiac stem cells: how to find and use them G. Hasenfuß Cardiology and Pneumology Heart Research Center Göttingen Georg-August-University Göttingen Definition: Stem cell Selfrenewal Stem cell

More information

DECLARATION OF CONFLICT OF INTEREST. No conflicts of interest

DECLARATION OF CONFLICT OF INTEREST. No conflicts of interest DECLARATION OF CONFLICT OF INTEREST No conflicts of interest University Heart Centre Tübingen Angiogenic actions of platelets Meinrad Gawaz, MD, FESC Tübingen, Germany ESC 2011 Paris GPIb GPIb GPVI TxA2

More information

Cancer Problems in Indonesia

Cancer Problems in Indonesia mirna and Cancer : mirna as a Key Regulator in Cancer Sofia Mubarika 2 nd Symposium Biomolecular Update in Cancer PERABOI Padang 18 Mei 2013 Cancer Problems in Indonesia 1. Chemoresistency / recurrency

More information

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to the detection and repair of DNA damage DSBs induce a local decrease

More information

he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003)

he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function (D. Bartel Cell 2004) he micrornas of Caenorhabditis elegans (Lim et al. Genes & Development 2003) Vertebrate MicroRNA Genes (Lim et al. Science

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

PhD THESIS Epigenetic mechanisms involved in stem cell differentiation

PhD THESIS Epigenetic mechanisms involved in stem cell differentiation Romanian Academy Institute of Cellular Biology and Pathology "Nicolae Simionescu" PhD THESIS Epigenetic mechanisms involved in stem cell differentiation Coordinator: Acad. Maya Simionescu PhD Student:

More information

MicroRNAs: Regulatory Function and Potential for Gene Therapy

MicroRNAs: Regulatory Function and Potential for Gene Therapy Lidia Park Genomics and Medicine November 23, 2008 MicroRNAs: Regulatory Function and Potential for Gene Therapy When Victor Ambros, Rosalind Lee, and Rhonda Feinbaum published the first finding of a microrna,

More information

MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles

MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles Eva van Rooij 1 and Eric N. Olson 2 Abstract In recent years, prominent roles for micrornas (mirnas) have been uncovered in

More information

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc

Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression. Chromatin Array of nuc Transcriptional control in Eukaryotes: (chapter 13 pp276) Chromatin structure affects gene expression Chromatin Array of nuc 1 Transcriptional control in Eukaryotes: Chromatin undergoes structural changes

More information

Review. MicroRNAs and Stem Cells: Control of Pluripotency, Reprogramming and Lineage Commitment

Review. MicroRNAs and Stem Cells: Control of Pluripotency, Reprogramming and Lineage Commitment Review This Review is part of a thematic series on Stem Cells, which includes the following articles: Stem Cells Review Series: An Introduction [Circ Res. 2011;109:907 909] Biomaterials to Enhance Stem

More information

Stem Cells. Induced Stem Cells

Stem Cells. Induced Stem Cells Induced Stem Cells Stem Cells Mouse and human somatic cells can either be reprogrammed to a pluripotent state or converted to another lineage with a combination of transcription factors suggesting that

More information

MicroRNA and Male Infertility: A Potential for Diagnosis

MicroRNA and Male Infertility: A Potential for Diagnosis Review Article MicroRNA and Male Infertility: A Potential for Diagnosis * Abstract MicroRNAs (mirnas) are small non-coding single stranded RNA molecules that are physiologically produced in eukaryotic

More information

Regulation of Cardiac Cell Fate by micrornas: Implications for Heart Regeneration

Regulation of Cardiac Cell Fate by micrornas: Implications for Heart Regeneration Cells 2014, 3, 996-1026; doi:10.3390/cells3040996 Review OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Regulation of Cardiac Cell Fate by micrornas: Implications for Heart Regeneration Margarida

More information

microrna-based diagnostics and therapy in cardiovascular disease Summing up the facts

microrna-based diagnostics and therapy in cardiovascular disease Summing up the facts Review Article microrna-based diagnostics and therapy in cardiovascular disease Summing up the facts Christian Schulte 1, Tanja Zeller 1,2 1 Department of General and Interventional Cardiology, University

More information

IN THE NAME OF GOD CANCER CELL REPROGRAMING

IN THE NAME OF GOD CANCER CELL REPROGRAMING IN THE NAME OF GOD CANCER CELL REPROGRAMING Qazvin university of medical science Presented by: fatane abedy GUIDANCE: Dr. gheibi 1 CONTENT: CANCER REPROGRAMMING OSKM microrna PROBLEM AND ADVANTAGE REFRANCE

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL MicroRNA expression profiling and functional analysis in prostate cancer Marco Folini s.c. Ricerca Traslazionale DOSL What are micrornas? For almost three decades, the alteration of protein-coding genes

More information

Induced Pluripotent Stem Cells: an Introduction Oren Caspi MD, PhD

Induced Pluripotent Stem Cells: an Introduction Oren Caspi MD, PhD Induced Pluripotent : an Introduction Oren Caspi MD, PhD The Sohnis laboratory for cardiac electrophysiology and regenerative medicine The Bruce Rappaport Faculty of Medicine, Technion - Israel Institute

More information

MicroRNAs: pleiotropic players in congenital heart disease and regeneration

MicroRNAs: pleiotropic players in congenital heart disease and regeneration Review Article MicroRNAs: pleiotropic players in congenital heart disease and regeneration Sarah C. Hoelscher 1, Stefanie A. Doppler 1, Martina Dreßen 1, Harald Lahm 1, Rüdiger Lange 1,2, Markus Krane

More information

Cellular Physiology and Biochemistry

Cellular Physiology and Biochemistry Original Paper 2015 The Author(s). 2015 Published The Author(s) by S. Karger AG, Basel Published online: November 27, 2015 www.karger.com/cpb Published by S. Karger AG, Basel 2194 1421-9778/15/0376-2194$39.50/0

More information

Cell Cycle Regulation of Stem Cells by MicroRNAs

Cell Cycle Regulation of Stem Cells by MicroRNAs Stem Cell Reviews and Reports (2018) 14:309 322 https://doi.org/10.1007/s12015-018-9808-y Cell Cycle Regulation of Stem Cells by MicroRNAs Michelle M. J. Mens 1 Mohsen Ghanbari 1,2 Published Online: 14

More information

Myocardial infarction

Myocardial infarction NEW CARDIAC MARKERS AND CARDIAC REGENERATION Päivi Lakkisto, MD, PhD Specialist in Clinical Chemistry Clinical lecturer University of Helsinki and HUSLAB Minerva Institute for Medical Research Myocardial

More information

Inhibition of mir-29 protects against cardiac hypertrophy and fibrosis: new insight for the role of mir-29 in the heart

Inhibition of mir-29 protects against cardiac hypertrophy and fibrosis: new insight for the role of mir-29 in the heart Editorial Page 1 of 6 Inhibition of mir-29 protects against cardiac hypertrophy and fibrosis: new insight for the role of mir-29 in the heart Julie R. McMullen 1,2,3,4,5, Bianca C. Bernardo 1,5,6 1 Baker

More information

Improving stem cell therapy in cardiovascular diseases: the potential role of microrna. Running title: MicroRNA in improving stem cell therapy for CVD

Improving stem cell therapy in cardiovascular diseases: the potential role of microrna. Running title: MicroRNA in improving stem cell therapy for CVD Articles in PresS. Am J Physiol Heart Circ Physiol (May 20, 2016). doi:10.1152/ajpheart.00239.2016 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Improving stem

More information

Cancer as a disease of development; Developmental therapies: Anti- Angiogenesis; Stem cells and tissue regeneration.

Cancer as a disease of development; Developmental therapies: Anti- Angiogenesis; Stem cells and tissue regeneration. Cancer as a disease of development; Developmental therapies: Anti- Angiogenesis; Stem cells and tissue regeneration Mitesh Shrestha What is Cancer? Unrestricted cell growth: tumor cell population 1x10^9

More information

Coronary artery disease is a progressive disease with a high

Coronary artery disease is a progressive disease with a high ATVB in Focus MicroRNAs: From Basic Mechanisms to Clinical Application in Cardiovascular Medicine MicroRNAs in Stem Cell Function and Regenerative Therapy of the Heart Florian H. Seeger, Andreas M. Zeiher,

More information

High AU content: a signature of upregulated mirna in cardiac diseases

High AU content: a signature of upregulated mirna in cardiac diseases https://helda.helsinki.fi High AU content: a signature of upregulated mirna in cardiac diseases Gupta, Richa 2010-09-20 Gupta, R, Soni, N, Patnaik, P, Sood, I, Singh, R, Rawal, K & Rani, V 2010, ' High

More information

DECLARATION OF CONFLICT OF INTEREST. No disclosures

DECLARATION OF CONFLICT OF INTEREST. No disclosures DECLARATION OF CONFLICT OF INTEREST No disclosures micrornas: Role in progression of atherosclerosis Christian Weber Institute for Cardiovascular Prevention (IPEK) Ludwig-Maximilians-University Munich

More information

BIO360 Fall 2013 Quiz 1

BIO360 Fall 2013 Quiz 1 BIO360 Fall 2013 Quiz 1 1. Examine the diagram below. There are two homologous copies of chromosome one and the allele of YFG carried on the light gray chromosome has undergone a loss-of-function mutation.

More information

European Society of Cardiology Congress DONOR AGE NEGATIVELY INFLUENCES THE CYTOPROTECTIVE PARACRINE EFFECTS EXERTED BY HUMAN MESENCHYMAL STEM CELLS

European Society of Cardiology Congress DONOR AGE NEGATIVELY INFLUENCES THE CYTOPROTECTIVE PARACRINE EFFECTS EXERTED BY HUMAN MESENCHYMAL STEM CELLS European Society of Cardiology Congress 28 Aug - 01 Sep 2009, Stockholm - Sweden DONOR AGE NEGATIVELY INFLUENCES THE CYTOPROTECTIVE PARACRINE EFFECTS EXERTED BY HUMAN MESENCHYMAL STEM CELLS Massimiliano

More information

Protocol. Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia

Protocol. Progenitor Cell Therapy for the Treatment of Damaged Myocardium due to Ischemia (20218) Medical Benefit Effective Date: 01/01/11 Next Review Date: 07/18 Preauthorization No Review Dates: 09/10, 07/11, 07/12, 07/13, 07/14, 07/15, 07/16, 07/17 This protocol considers this test or procedure

More information

Endothelial PGC 1 - α 1 mediates vascular dysfunction in diabetes

Endothelial PGC 1 - α 1 mediates vascular dysfunction in diabetes Endothelial PGC-1α mediates vascular dysfunction in diabetes Reporter: Yaqi Zhou Date: 04/14/2014 Outline I. Introduction II. Research route & Results III. Summary Diabetes the Epidemic of the 21st Century

More information

Stem Cell Therapy for STEMI: When PCI is Not Enough

Stem Cell Therapy for STEMI: When PCI is Not Enough Stem Cell Therapy for STEMI: When PCI is Not Enough Stephen G. Ellis, M.D. Professor of Medicine Director, Invaasive Section and Co-Director, Cardiac Gene Bank The Cleveland Clinic Supported by NIH U01

More information

MicroRNA Regulation of Smooth Muscle Phenotype

MicroRNA Regulation of Smooth Muscle Phenotype DOI: 10.4255/mcpharmacol.12.01 Molecular and Cellular Pharmacology www.mcpharmacol.com MicroRNA Regulation of Smooth Muscle Phenotype Sachindra R. Joshi, Brian S. Comer, Jared M. McLendon and William T.

More information

Stress-dependent cardiac remodeling occurs in the absence of microrna-21 in mice

Stress-dependent cardiac remodeling occurs in the absence of microrna-21 in mice Brief report Related Commentary, page 3817 Stress-dependent cardiac remodeling occurs in the absence of microrna-21 in mice David M. Patrick, 1 Rusty L. Montgomery, 2 Xiaoxia Qi, 1 Susanna Obad, 3 Sakari

More information

Cell therapy: enhancing the therapeutic potential of cardiac progenitors for delivery post myocardial infarction. Rita Alonaizan

Cell therapy: enhancing the therapeutic potential of cardiac progenitors for delivery post myocardial infarction. Rita Alonaizan Cell therapy: enhancing the therapeutic potential of cardiac progenitors for delivery post myocardial infarction Rita Alonaizan Department of Physiology, Anatomy & Genetics St Catherine s College Supervisor:

More information

Novel RNAs along the Pathway of Gene Expression. (or, The Expanding Universe of Small RNAs)

Novel RNAs along the Pathway of Gene Expression. (or, The Expanding Universe of Small RNAs) Novel RNAs along the Pathway of Gene Expression (or, The Expanding Universe of Small RNAs) Central Dogma DNA RNA Protein replication transcription translation Central Dogma DNA RNA Spliced RNA Protein

More information

Ch. 18 Regulation of Gene Expression

Ch. 18 Regulation of Gene Expression Ch. 18 Regulation of Gene Expression 1 Human genome has around 23,688 genes (Scientific American 2/2006) Essential Questions: How is transcription regulated? How are genes expressed? 2 Bacteria regulate

More information

Leading the Way in Cardiovascular Regenerative Medicine

Leading the Way in Cardiovascular Regenerative Medicine Slide 1 Leading the Way in Cardiovascular Regenerative Medicine Leading the Way in Cardiovascular Regenerative Medicine This slide set presents the current work in cell therapy in treating cardiovascular

More information

BIO360 Fall 2013 Quiz 1

BIO360 Fall 2013 Quiz 1 BIO360 Fall 2013 Quiz 1 Name: Key 1. Examine the diagram below. There are two homologous copies of chromosome one and the allele of YFG carried on the light gray chromosome has undergone a loss-of-function

More information

Myocardial infarction (MI) leads to significant cardiomyocyte. Review. MicroRNAs and Cardiac Regeneration

Myocardial infarction (MI) leads to significant cardiomyocyte. Review. MicroRNAs and Cardiac Regeneration Review This Review is part of a thematic series on Epigenetics, which includes the following articles: Investigating the Transcriptional Control of Cardiovascular Development [Circ Res. 2015;116:700 714]

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Figure S1. Urodynamic recording of BOO-induced LUTD patients. (A) DO group. BOO patients with increased detrusor pressure and reduced urine flow during pressure flow in combination

More information

Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future

Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future Mesenchymal Stem Cells to Repair Vascular Damage after Chemotherapy: Past, Present and Future Cell Therapy 2014 Las Vegas, NV, USA Sulaiman Al-Hashmi, PhD Sultan Qaboos University Oman What are MSCs? Stem

More information

Prokaryotes and eukaryotes alter gene expression in response to their changing environment

Prokaryotes and eukaryotes alter gene expression in response to their changing environment Chapter 18 Prokaryotes and eukaryotes alter gene expression in response to their changing environment In multicellular eukaryotes, gene expression regulates development and is responsible for differences

More information

Human induced pluripotent stem cell derived cardiomyocytes are a more relevant model for assessing drug-induced effects on mitochondrial function

Human induced pluripotent stem cell derived cardiomyocytes are a more relevant model for assessing drug-induced effects on mitochondrial function Human induced pluripotent stem cell derived cardiomyocytes are a more relevant model for assessing drug-induced effects on mitochondrial function than H9C2 cells 16 January 2013 SLAS2013 Presentation Outline

More information

MicroRNAs: novel regulators in skin research

MicroRNAs: novel regulators in skin research MicroRNAs: novel regulators in skin research Eniko Sonkoly, Andor Pivarcsi KI, Department of Medicine, Unit of Dermatology and Venerology What are micrornas? Small, ~21-mer RNAs 1993: The first mirna discovered,

More information

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea Crosstalk between Adiponectin and IGF-IR in breast cancer Prof. Young Jin Suh Department of Surgery The Catholic University of Korea Obesity Chronic, multifactorial disorder Hypertrophy and hyperplasia

More information

שינויים מולקולאריים ומבניים באי ספיקת לב אפשרויות לטיפול עתידני

שינויים מולקולאריים ומבניים באי ספיקת לב אפשרויות לטיפול עתידני שינויים מולקולאריים ומבניים באי ספיקת לב אפשרויות לטיפול עתידני פרופ יהונתן ליאור 1 Braunwald s Heart Disease 8th Edition Chapter 21 Mechanisms of Cardiac Contraction and Relaxation Chapter 22 Pathophysiology

More information

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON

Epigenetics. Lyle Armstrong. UJ Taylor & Francis Group. f'ci Garland Science NEW YORK AND LONDON ... Epigenetics Lyle Armstrong f'ci Garland Science UJ Taylor & Francis Group NEW YORK AND LONDON Contents CHAPTER 1 INTRODUCTION TO 3.2 CHROMATIN ARCHITECTURE 21 THE STUDY OF EPIGENETICS 1.1 THE CORE

More information

Post-transcriptional regulation of an intronic microrna

Post-transcriptional regulation of an intronic microrna Post-transcriptional regulation of an intronic microrna Carl Novina Dana-Farber Cancer Institute Harvard Medical School Broad Institute of Harvard and MIT Qiagen Webinar 05-17-11 Outline 1. The biology

More information

1. Cardiomyocytes and nonmyocyte. 2. Extracellular Matrix 3. Vessels שאלה 1. Pathobiology of Heart Failure Molecular and Cellular Mechanism

1. Cardiomyocytes and nonmyocyte. 2. Extracellular Matrix 3. Vessels שאלה 1. Pathobiology of Heart Failure Molecular and Cellular Mechanism Pathobiology of Heart Failure Molecular and Cellular Mechanism Jonathan Leor Neufeld Cardiac Research Institute Tel-Aviv University Sheba Medical Center, Tel-Hashomer שאלה 1 התא הנפוץ ביותר (75%~) בלב

More information

Education University (Masters degree): Medical Biology, University of Amsterdam, Amsterdam, the Netherlands

Education University (Masters degree): Medical Biology, University of Amsterdam, Amsterdam, the Netherlands Curriculum Vitae Personal details Name: Reinier A Boon Birth Date: 30-08-1981 Nationality: Dutch Title: Dr. (PhD) Marital Status: Married Education University (Masters degree): 1999-2004 Medical Biology,

More information

Cardiovascular micrornas: as modulators and diagnostic biomarkers of diabetic heart disease

Cardiovascular micrornas: as modulators and diagnostic biomarkers of diabetic heart disease Rawal et al. Cardiovascular Diabetology 2014, 13:44 CARDIO VASCULAR DIABETOLOGY REVIEW Open Access Cardiovascular micrornas: as modulators and diagnostic biomarkers of diabetic heart disease Shruti Rawal

More information

The Role of mirnas in Regulating Gene Expression Networks

The Role of mirnas in Regulating Gene Expression Networks Review The Role of mirnas in Regulating Gene Expression Networks Allan M. Gurtan 1 and Phillip A. Sharp 1,2 1 - David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA

More information

Most everyone in this room has been affected in one way or another by it, but what is it?

Most everyone in this room has been affected in one way or another by it, but what is it? Most everyone in this room has been affected in one way or another by it, but what is it? All information is up to date and referenced to Sam Rhine s Genetic Update Conference, University of Nebraska &

More information

EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS

EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS EMBRYONIC STEM CELLS/INDUCED PLURIPOTENT STEM CELLS MicroRNA-200C and -150 Play an Important Role in Endothelial Cell Differentiation and Vasculogenesis by Targeting Transcription Repressor ZEB1 ZHENLING

More information

Cell Combination Therapy. Disclosures

Cell Combination Therapy. Disclosures Cell Combination Therapy Joshua M. Hare, M.D. Louis Lemberg Professor Senior Associate Dean Chief Science Officer Interdisciplinary Stem Cell Institute The Miller School of Medicine, University of Miami

More information

Computational Analysis of UHT Sequences Histone modifications, CAGE, RNA-Seq

Computational Analysis of UHT Sequences Histone modifications, CAGE, RNA-Seq Computational Analysis of UHT Sequences Histone modifications, CAGE, RNA-Seq Philipp Bucher Wednesday January 21, 2009 SIB graduate school course EPFL, Lausanne ChIP-seq against histone variants: Biological

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

Chapter 10 - Post-transcriptional Gene Control

Chapter 10 - Post-transcriptional Gene Control Chapter 10 - Post-transcriptional Gene Control Chapter 10 - Post-transcriptional Gene Control 10.1 Processing of Eukaryotic Pre-mRNA 10.2 Regulation of Pre-mRNA Processing 10.3 Transport of mrna Across

More information

Review. More Than Tiny Sacks. Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair

Review. More Than Tiny Sacks. Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair Review More Than Tiny Sacks Stem Cell Exosomes as Cell-Free Modality for Cardiac Repair Raj Kishore, Mohsin Khan Abstract: Stem cell therapy provides immense hope for regenerating the pathological heart,

More information

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins.

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. The RNA transcribed from a complex transcription unit

More information

NIH Public Access Author Manuscript Cell Rep. Author manuscript; available in PMC 2013 August 11.

NIH Public Access Author Manuscript Cell Rep. Author manuscript; available in PMC 2013 August 11. NIH Public Access Author Manuscript Published in final edited form as: Cell Rep. 2013 July 11; 4(1): 99 109. doi:10.1016/j.celrep.2013.05.027. MiR-294/-302 promotes proliferation, suppresses G1-S restriction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature19360 Supplementary Tables Supplementary Table 1. Number of monoclonal reads in each sample Sample Number of cells Total reads Aligned reads Monoclonal reads

More information

Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α

Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α Mahnaz Janghorban, PhD Dr. Rosalie Sears lab 2/8/2015 Zanjan University Content 1. Background (keywords: c-myc, PP2A,

More information

Review. This Review is in a thematic series on MicroRNA in the Cardiovascular System, which includes the following articles:

Review. This Review is in a thematic series on MicroRNA in the Cardiovascular System, which includes the following articles: Review This Review is in a thematic series on MicroRNA in the Cardiovascular System, which includes the following articles: Introduction to the Series on MicroRNAs in the Cardiovascular System [Circ Res.

More information

The clinical relevance of circulating, cell-free and exosomal micrornas as biomarkers for gynecological tumors

The clinical relevance of circulating, cell-free and exosomal micrornas as biomarkers for gynecological tumors Department of Tumor Biology The clinical relevance of circulating, cell-free and exosomal micrornas as biomarkers for gynecological tumors cfdna Copenhagen April 6-7, 2017 Heidi Schwarzenbach, PhD Tumor

More information

Growth-factor-induced mobilisation of stem cells after acute infarction: which growth factors and when?

Growth-factor-induced mobilisation of stem cells after acute infarction: which growth factors and when? Growth-factor-induced mobilisation of stem cells after acute infarction: which growth factors and when? Giulio Pompilio MD PhD DEPT. OF CARDIOVASCULAR SURGERY LABORATORY OF VASCULAR BIOLOGY AND REGENERATIVE

More information

International Graduate Research Programme in Cardiovascular Science

International Graduate Research Programme in Cardiovascular Science 1 International Graduate Research Programme in Cardiovascular Science This work has been supported by the European Community s Sixth Framework Programme under grant agreement n LSHM-CT-2005-01883 EUGeneHeart.

More information

DOWNLOAD PDF CARDIAC REMODELING AND CELL DEATH IN HEART FAILURE

DOWNLOAD PDF CARDIAC REMODELING AND CELL DEATH IN HEART FAILURE Chapter 1 : The fibrosis-cell death axis in heart failure Remodeling may be defined as changes in the morphology, structure, and function of the heart related to alterations in loading conditions and/or

More information

Genome Control in Cell Identity and Disease! Development and cell identity Loss of cell identity and disease New diagnostics and therapeutics

Genome Control in Cell Identity and Disease! Development and cell identity Loss of cell identity and disease New diagnostics and therapeutics Genome Control in Cell Identity and Disease! Development and cell identity Loss of cell identity and disease New diagnostics and therapeutics Development and cell identity! 30,000,000,000 cells!! Control

More information

Intrinsic cellular defenses against virus infection

Intrinsic cellular defenses against virus infection Intrinsic cellular defenses against virus infection Detection of virus infection Host cell response to virus infection Interferons: structure and synthesis Induction of antiviral activity Viral defenses

More information

Induced Pluripotent Stem Cell Modeling of Dravet Syndrome

Induced Pluripotent Stem Cell Modeling of Dravet Syndrome Induced Pluripotent Stem Cell Modeling of Dravet Syndrome December 2, 2011 Jack M. Parent, MD, Department of Neurology, University of Michigan Medical Center Disclosures and Acknowledgements Disclosures

More information

9/23/2017. Prof. Steven S. Saliterman. Department of Biomedical Engineering, University of Minnesota

9/23/2017. Prof. Steven S. Saliterman. Department of Biomedical Engineering, University of Minnesota Department of Biomedical Engineering, University of Minnesota http://saliterman.umn.edu/ Murphy, S. V., and A. Atala. "3d Bioprinting of Tissues and Organs." Nature Biotechnology 32, no. 8 (Aug 2014):

More information

Histones modifications and variants

Histones modifications and variants Histones modifications and variants Dr. Institute of Molecular Biology, Johannes Gutenberg University, Mainz www.imb.de Lecture Objectives 1. Chromatin structure and function Chromatin and cell state Nucleosome

More information

CCN1: A NOVEL TARGET FOR PANCREATIC CANCER. Andrew Leask.

CCN1: A NOVEL TARGET FOR PANCREATIC CANCER. Andrew Leask. CCN1: A NOVEL TARGET FOR PANCREATIC CANCER Andrew Leask CIHR Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine

More information

Review Article MicroRNAs Expression Profiles in Cardiovascular Diseases

Review Article MicroRNAs Expression Profiles in Cardiovascular Diseases BioMed Research International, Article ID 985408, 23 pages http://dx.doi.org/10.1155/2014/985408 Review Article MicroRNAs Expression Profiles in Cardiovascular Diseases Elsa Bronze-da-Rocha 1,2 1 Departamento

More information

Reviews. This Review is part of a thematic series on Cellular Therapy, which includes the following articles:

Reviews. This Review is part of a thematic series on Cellular Therapy, which includes the following articles: Reviews This Review is part of a thematic series on Cellular Therapy, which includes the following articles: The Stem Cell Movement Genetic Enhancement of Stem Cell Engraftment, Survival, and Efficacy

More information