Gene-microRNA network module analysis for ovarian cancer

Size: px
Start display at page:

Download "Gene-microRNA network module analysis for ovarian cancer"

Transcription

1 Gene-microRNA network module analysis for ovarian cancer Shuqin Zhang School of Mathematical Sciences Fudan University Oct. 4, 2016

2 Outline Introduction Materials and Methods Results Conclusions

3 Introduction Networks are widely applied to model different types of complex systems. Many networks have the module structure property. Intuitively, a module is a cohesive group of nodes that connected more densely" to each other than to the nodes in other modules. Modules may correspond to some functional units or play similar roles.

4 Figure : Human liver cohort(hlc) gene co-expression network X.Yang,B.Zhang, et al. Genome Research, 20, ,2010

5 Introduction MicroRNAs (mirnas) are small ( 22 nucleotides) non-coding RNAs that have emerged as key gene regulators. Each mirna is potentially able to regulate around 100 or more mrna targets and over 30% of all human genes are supposed to be regulated by mirnas. Identification and validation of mirna targets may lead to new therapeutic methods. Most of the current methods mainly considered the down-regulatory effects from mirnas.

6 Introduction One mirna may regulate many mrnas, and be regulated by several mirnas, thus the intertwined relationship between mirnas and mrnas becomes very complex. The systems tools such as networks should be more appropriate for studying the relationships between mirnas and mrnas. A few papers have been published to study the complex interactions between genes and mirnas from the system point of view by using networks, especially the network modules. Published methods: SNMNMF, PIMiM36, Mirsynergy, etc..

7 Our aim: to find the gene-mirna modules and study the functions and properties. We called it the co-module of genes and mirnas: (1) both genes and mirnas are in the module, (2) all of gene-gene, mirna-mirna, and gene-mirna connections appear in the module.

8 Data sets Materials and Methods We downloaded the gene expression for ovarian cancer from The Cancer Genome Atlas (TCGA). The gene expression data is generated with UNC AgilentG4502A_07_03. There are a total of genes with annotations for the 562 samples. We downloaded the mirna expression data for ovarian cancer from TCGA, which is generated with UNC mirna_8x15kv2. There are a total of 590 mirnas for the 595 samples. We selected the first 3200 genes with the largest expression variance greater than 1. We chose both data sets for the common 556 samples. We downloaded the gene-mirna interaction data from mirtarbase ( There are a total of gene-mirna interactions.

9 Network Construction Gene (mirna, gene-mirna) coexpression network: Compute the Pearson correlation coefficient. Construct the adjacency matrix by hard thresholding. If the absolute value of the Pearson correlation coefficient between genes (mirnas, gene-mirnas) is greater than some given value, we assign an edge between them. Choose the threshold: Gene coexpression network and mirna coexpression network: try different thresholds and compute the linear regression coefficient between the log10 transformed degree frequency of degree d (log10 f(d)) and d (log10 d) to make the network has approximately scale free property. Gene-miRNA coexpression network: it depends on the AUCs for the known gene-mirnas being clustered in the same module. Given a fixed threhold, we use our proposed method in the following to get the score of one gene and one mirna in the same module. We choose the threshold that achieves the highest AUC.

10 Method: Co-module Indentification A gm the gene-mirna correlation adjacency matrix. C is an adjacency matrix with both A gm and the known gene-mirna relations.

11 Method: Co-module Indentification We let S g be the assignment of the N g genes into K modules for the network G g, S g (i, k) = { 1, if vertex i Vk, 0, otherwise, where i = 1, 2,, N g ; k = 1, 2,, K, V k denotes the k-th module. Similarly, we define the assignment of the N m mirnas into K modules for the network G m as S m.

12 Method: Within network module identification Taking network G g as an example. We define K S g (., k) T (2A g D g )S g (., k) Ψ g (S g ) = S g (., k) T. (1) S g (., k) k=1 The optimization problem is formulated as: max Ψ g (S g ), s.t. S g (i, k) {0, 1}, K S g (., k) = 1. (2) k=1 By letting S g (., k) = Sg(.,k) S g(.,k) 2, the problem is relaxed to: max Ψ g ( S g ) = Tr( S g T (2Ag D g ) S g ) s.t. SgT Sg = I K.

13 Method: Co-module Indentification For the co-module, we expect that the genes and mirnas with dense connections are clustered into one module. We maximize to make it. S T g (.,k)cs m(.,k) S g(.,k) 2 S m(.,k) 2 Putting all terms together, our objective becomes: Ψ(S g, S m ) = Ψ g (S g )+Ψ m (S m )+λ K k=1 where λ controls the within and between network connections. The optimization problem is formulated as: max Ψ(S g, S m), s.t. S g(i, k) {0, 1}, S m(j, k) {0, 1}, S T g (., k)cs m (., k) S g T (., k) 2 S m (., k) 2, K S g(, k) = 1 k=1 K S m(, k) = 1 k=1

14 Method: Co-module Indentification We define L g = 2A g D g, L m = 2A m D m, ( ) ( ) 0 C L w = diag(l g, L m ), L b = C T, 0 S Sg =, and S m L = L w + λl b. The above optimization problem can be relaxed to: max Ψ( S) = Tr( S T L S), s.t. S T S = 2IK. We take S as a data set composed of N g + N m nodes and do k means clustering to get the assignment label for each node.

15 Algorithm Input: Adjacency matrix A g, A m, C, and K, which is the number of modules. 1. Compute the matrices L g, L m ; 2. Construct the matrix L; 3. Compute the K eigenvectors v 1, v 2,, v K corresponding to the K largest eigenvalues of matrix L; 4. Construct a new matrix T R (Ng+Nm) K, with columns v 1, v 2,, v K ; 5. Cluster the points constructed from each row of matrix T with k-means clustering into K clusters; Output: Index of nodes in each module.

16 Results: Gene-microRNA Network Module Analysis for Ovarian Cancer Cutoff for building gene/mirna coexpression network: 0.6. Cutoff for building gene-mirna coexpression network: 0.3. λ = 1. Figure : AUCs for diffferent cutoffs. With our method, we finally got 46 modules.

17 MiRNA module enrichment analysis The mirna cluster data are downloaded from the mirbase website ( se.org/), with the inter-mirna distance cutoff 10kb. This criterion resulted in 153 clusters containing from 2 to 46 mirnas. There are a total of 14 modules enriched by clusters, and 8 clusters enriched by modules with the overlap size between clusters and modules being at least 3. Example, 5 of 12 mirnas in module 35 belong to a cluster with size 6 in Chr13. The total distance of this cluster is about 700bp.

18 Table : MiRNA module enrichment results. No. p-value MiRNAs Loci E-18 mir-411, mir-299, mir-758, mir-329-1, mir-543, mir-495, Chr mir-654, mir-376b, mir-376a-1, mir-381, mir-487b, mir-539, mir-487a, mir-382, mir-154, mir-377, mir-409, mir-369, mir-376c,mir-889,mir E-14 mir-379, mir-411, mir-299, mir-758, mir-329-1, mir-543, Chr mir-376c, mir-654, mir-376b, mir-376a-1, mir-381, mir-487a, mir-382, mir-154, mir-377, mir-409, mir-369, mir-495, mir-487b, mir-539, mir E-15 mir-411, mir-758, mir-329-1, mir-543, mir-495, Chr mir-376b, mir-376a-1, mir-487b mir-539, mir-889, mir-382 mir-154, mir-409, mir-369, mir-654,mir-487a, mir E-02 mir-379, mir-299, mir-376c, mir-376a-1, mir-381, mir-377 Chr E-03 mir-379, mir-299, mir-376c, mir-376a-1, mir-381, mir-377 Chr E-05 mir-493, mir-337, mir-433, mir-127, mir-432, mir-136 Chr E-03 mir-379, mir-299, mir-376c, mir-376a-1, mir-381, mir-377 Chr E-02 mir-379, mir-299, mir-376c, mir-376a-1, mir-381, mir-377 Chr E-06 mir-17, mir-18a, mir-19a, mir-20a, mir-19b-1 Chr

19 Gene module enrichment analysis We did enrichment analysis for Gene Ontology biological process (GO-BP) terms and KEGG pathways with DAVID. By taking the cutoff of the Benjamini p-values as 0.05, 15 modules are enriched by GO-BP terms and 7 modules are enriched by KEGG pathways significantly.

20 Enriched KEGG pathways for the modules Table : Enriched KEGG No. Enriched Pathways p-value 41 Small cell lung cancer 1.30E-03 pathways for the modules. Chronic myeloid leukemia 3.10E-02 Pathways in cancer 2.40E-02 Colorectal cancer 1.90E-02 No. Enriched Pathways p-value Cell cycle 3.40E p53 signaling pathway 3.50E-03 Thyroid cancer 1.30E-01 Small cell lung cancer 2.70E-03 Bladder cancer 1.60E-01 Cell cycle 4.00E-03 Endometrial cancer 1.80E-01 Pathways in cancer 2.10E-02 Non-small cell lung cancer 1.60E-01 Non-small cell lung cancer 8.20E-02 Acute myeloid leukemia 1.60E-01 Glioma 8.00E-02 Glioma 1.60E-01 Melanoma 7.70E-02 p53 signaling pathway 1.50E-01 Pancreatic cancer 6.90E-02 Melanoma 1.50E-01 Chronic myeloid leukemia 6.40E-02 Pancreatic cancer 1.40E-01 Prostate cancer 6.80E-02 Prostate cancer 1.60E-01

21 Gene-miRNA modules are strongly associated with cancers We checked the cancer related mirnas from the website: ecu.edu. There are 295 different mirnas related to cancer, of which 122 are in our identified modules. 57 of the 295 mirnas are related to ovarian cancer, of which 29 are in our identified modules, which achieves a p-value Table : Number of cancer associated mirnas for the modules enriched by clusters. Module No No. of mirnas No. of c-mirnas p-value E E E E E E-06 Module No No. of mirnas No. of c-mirnas p-value 2.17E E E E E E-03

22 In module 1, all the mirnas are associated with ovarian cancer. The genes in this module take part in the process of transcription, gene expression etc.. In module 41, 5 mirnas are associated with ovarian cancer. By checking the GO-BP terms, we found that the most enriched term is sexual reproduction, which has a p-value 7.50E-06. This module also enriches the GO-term: gamete generation, male gamete generation, and spermatogenesis significantly.

23 (a) Figure : Module 37: 156 genes are regulated by the 12 mirnas. There are a total of 47 known regulations. (b)

24 Comparison with Mirsynergy Mirsynergy operates in two steps: It detects the mirna modules based on gene-mirna relationship. It expands each mirna module by greedily including (excluding) mrnas into (from) the mirna module to maximize the synergy score, which is a function of mirna-mrna and gene-gene interactions. Comparision with Mirsynergy: Table : Module enrichment performance of Mirsynergy and our method. Method N module Ng Nm N en module N en cluster N GO N KEGG Mirsynergy Our method

25 Conclusions We proposed an optimization model to study the gene and mirna co-modules in networks. We applied this model to an ovarian cancer data set. 14 modules are enriched by the mirna clusters with overlap size being at least 3, 15 modules are enriched by GO-BP terms, and 7 modules are enriched by KEGG pathways significantly. In the identified modules, 122 mirnas are cancer associated and 29 mirnas are related to ovarian cancer, which has a p-value Compared to the existing method Mirsynergy, our method can find more modules with the number of genes and mirnas having a good balance. The models and algorithms can be extended to analyze more complex networks.

26 Thank you!

Identification of Tissue Independent Cancer Driver Genes

Identification of Tissue Independent Cancer Driver Genes Identification of Tissue Independent Cancer Driver Genes Alexandros Manolakos, Idoia Ochoa, Kartik Venkat Supervisor: Olivier Gevaert Abstract Identification of genomic patterns in tumors is an important

More information

Inferring Biological Meaning from Cap Analysis Gene Expression Data

Inferring Biological Meaning from Cap Analysis Gene Expression Data Inferring Biological Meaning from Cap Analysis Gene Expression Data HRYSOULA PAPADAKIS 1. Introduction This project is inspired by the recent development of the Cap analysis gene expression (CAGE) method,

More information

A Statistical Framework for Classification of Tumor Type from microrna Data

A Statistical Framework for Classification of Tumor Type from microrna Data DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2016 A Statistical Framework for Classification of Tumor Type from microrna Data JOSEFINE RÖHSS KTH ROYAL INSTITUTE OF TECHNOLOGY

More information

STAT1 regulates microrna transcription in interferon γ stimulated HeLa cells

STAT1 regulates microrna transcription in interferon γ stimulated HeLa cells CAMDA 2009 October 5, 2009 STAT1 regulates microrna transcription in interferon γ stimulated HeLa cells Guohua Wang 1, Yadong Wang 1, Denan Zhang 1, Mingxiang Teng 1,2, Lang Li 2, and Yunlong Liu 2 Harbin

More information

SUPPLEMENTARY APPENDIX

SUPPLEMENTARY APPENDIX SUPPLEMENTARY APPENDIX 1) Supplemental Figure 1. Histopathologic Characteristics of the Tumors in the Discovery Cohort 2) Supplemental Figure 2. Incorporation of Normal Epidermal Melanocytic Signature

More information

Systematic exploration of autonomous modules in noisy microrna-target networks for testing the generality of the cerna hypothesis

Systematic exploration of autonomous modules in noisy microrna-target networks for testing the generality of the cerna hypothesis RESEARCH Systematic exploration of autonomous modules in noisy microrna-target networks for testing the generality of the cerna hypothesis Danny Kit-Sang Yip 1, Iris K. Pang 2 and Kevin Y. Yip 1,3,4* *

More information

Outlier Analysis. Lijun Zhang

Outlier Analysis. Lijun Zhang Outlier Analysis Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Extreme Value Analysis Probabilistic Models Clustering for Outlier Detection Distance-Based Outlier Detection Density-Based

More information

The 16th KJC Bioinformatics Symposium Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis

The 16th KJC Bioinformatics Symposium Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis The 16th KJC Bioinformatics Symposium Integrative analysis identifies potential DNA methylation biomarkers for pan-cancer diagnosis and prognosis Tieliu Shi tlshi@bio.ecnu.edu.cn The Center for bioinformatics

More information

Session 4 Rebecca Poulos

Session 4 Rebecca Poulos The Cancer Genome Atlas (TCGA) & International Cancer Genome Consortium (ICGC) Session 4 Rebecca Poulos Prince of Wales Clinical School Introductory bioinformatics for human genomics workshop, UNSW 20

More information

Integrated network analysis reveals distinct regulatory roles of transcription factors and micrornas

Integrated network analysis reveals distinct regulatory roles of transcription factors and micrornas Integrated network analysis reveals distinct regulatory roles of transcription factors and micrornas Yu Guo 1,2,4, Katherine Alexander 1, Andrew G Clark 1, Andrew Grimson 1 and Haiyuan Yu 2,3* 1 Department

More information

Class discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines

Class discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines Class discovery in Gene Expression Data: Characterizing Splits by Support Vector Machines Florian Markowetz and Anja von Heydebreck Max-Planck-Institute for Molecular Genetics Computational Molecular Biology

More information

Supplementary information for: Human micrornas co-silence in well-separated groups and have different essentialities

Supplementary information for: Human micrornas co-silence in well-separated groups and have different essentialities Supplementary information for: Human micrornas co-silence in well-separated groups and have different essentialities Gábor Boross,2, Katalin Orosz,2 and Illés J. Farkas 2, Department of Biological Physics,

More information

Comparison of discrimination methods for the classification of tumors using gene expression data

Comparison of discrimination methods for the classification of tumors using gene expression data Comparison of discrimination methods for the classification of tumors using gene expression data Sandrine Dudoit, Jane Fridlyand 2 and Terry Speed 2,. Mathematical Sciences Research Institute, Berkeley

More information

From reference genes to global mean normalization

From reference genes to global mean normalization From reference genes to global mean normalization Jo Vandesompele professor, Ghent University co-founder and CEO, Biogazelle qpcr Symposium USA November 9, 2009 Millbrae, CA outline what is normalization

More information

Part [2.1]: Evaluation of Markers for Treatment Selection Linking Clinical and Statistical Goals

Part [2.1]: Evaluation of Markers for Treatment Selection Linking Clinical and Statistical Goals Part [2.1]: Evaluation of Markers for Treatment Selection Linking Clinical and Statistical Goals Patrick J. Heagerty Department of Biostatistics University of Washington 174 Biomarkers Session Outline

More information

Session 4 Rebecca Poulos

Session 4 Rebecca Poulos The Cancer Genome Atlas (TCGA) & International Cancer Genome Consortium (ICGC) Session 4 Rebecca Poulos Prince of Wales Clinical School Introductory bioinformatics for human genomics workshop, UNSW 28

More information

Patnaik SK, et al. MicroRNAs to accurately histotype NSCLC biopsies

Patnaik SK, et al. MicroRNAs to accurately histotype NSCLC biopsies Patnaik SK, et al. MicroRNAs to accurately histotype NSCLC biopsies. 2014. Supplemental Digital Content 1. Appendix 1. External data-sets used for associating microrna expression with lung squamous cell

More information

Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 2010

Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 2010 Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics, 2010 C.J.Vaske et al. May 22, 2013 Presented by: Rami Eitan Complex Genomic

More information

Nature Getetics: doi: /ng.3471

Nature Getetics: doi: /ng.3471 Supplementary Figure 1 Summary of exome sequencing data. ( a ) Exome tumor normal sample sizes for bladder cancer (BLCA), breast cancer (BRCA), carcinoid (CARC), chronic lymphocytic leukemia (CLLX), colorectal

More information

On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles

On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles On the Reproducibility of TCGA Ovarian Cancer MicroRNA Profiles Ying-Wooi Wan 1,2,4, Claire M. Mach 2,3, Genevera I. Allen 1,7,8, Matthew L. Anderson 2,4,5 *, Zhandong Liu 1,5,6,7 * 1 Departments of Pediatrics

More information

microrna PCR System (Exiqon), following the manufacturer s instructions. In brief, 10ng of

microrna PCR System (Exiqon), following the manufacturer s instructions. In brief, 10ng of SUPPLEMENTAL MATERIALS AND METHODS Quantitative RT-PCR Quantitative RT-PCR analysis was performed using the Universal mircury LNA TM microrna PCR System (Exiqon), following the manufacturer s instructions.

More information

SUPPLEMENTARY FIGURES: Supplementary Figure 1

SUPPLEMENTARY FIGURES: Supplementary Figure 1 SUPPLEMENTARY FIGURES: Supplementary Figure 1 Supplementary Figure 1. Glioblastoma 5hmC quantified by paired BS and oxbs treated DNA hybridized to Infinium DNA methylation arrays. Workflow depicts analytic

More information

A Versatile Algorithm for Finding Patterns in Large Cancer Cell Line Data Sets

A Versatile Algorithm for Finding Patterns in Large Cancer Cell Line Data Sets A Versatile Algorithm for Finding Patterns in Large Cancer Cell Line Data Sets James Jusuf, Phillips Academy Andover May 21, 2017 MIT PRIMES The Broad Institute of MIT and Harvard Introduction A quest

More information

Micro-RNA web tools. Introduction. UBio Training Courses. mirnas, target prediction, biology. Gonzalo

Micro-RNA web tools. Introduction. UBio Training Courses. mirnas, target prediction, biology. Gonzalo Micro-RNA web tools UBio Training Courses Gonzalo Gómez//ggomez@cnio.es Introduction mirnas, target prediction, biology Experimental data Network Filtering Pathway interpretation mirs-pathways network

More information

Nature Genetics: doi: /ng Supplementary Figure 1

Nature Genetics: doi: /ng Supplementary Figure 1 Supplementary Figure 1 Expression deviation of the genes mapped to gene-wise recurrent mutations in the TCGA breast cancer cohort (top) and the TCGA lung cancer cohort (bottom). For each gene (each pair

More information

Heritability enrichment of differentially expressed genes. Hilary Finucane PGC Statistical Analysis Call January 26, 2016

Heritability enrichment of differentially expressed genes. Hilary Finucane PGC Statistical Analysis Call January 26, 2016 Heritability enrichment of differentially expressed genes Hilary Finucane PGC Statistical Analysis Call January 26, 2016 1 Functional genomics + GWAS gives insight into disease relevant tissues Trynka

More information

Supplementary Tables. Supplementary Figures

Supplementary Tables. Supplementary Figures Supplementary Files for Zehir, Benayed et al. Mutational Landscape of Metastatic Cancer Revealed from Prospective Clinical Sequencing of 10,000 Patients Supplementary Tables Supplementary Table 1: Sample

More information

Searching for unusual clusters of palindromes and close inversions in the SARS virus genome. June 4, 2003

Searching for unusual clusters of palindromes and close inversions in the SARS virus genome. June 4, 2003 1/33 Searching for unusual clusters of palindromes and close inversions in the SARS virus genome June 4, 2003 Kwok-Pui Choi Department of Mathematics, NUS Department of Statistics and Applied Probability

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 Motivation and Goals The increasing availability and decreasing cost of high-throughput (HT) technologies coupled with the availability of computational tools and data form a

More information

High AU content: a signature of upregulated mirna in cardiac diseases

High AU content: a signature of upregulated mirna in cardiac diseases https://helda.helsinki.fi High AU content: a signature of upregulated mirna in cardiac diseases Gupta, Richa 2010-09-20 Gupta, R, Soni, N, Patnaik, P, Sood, I, Singh, R, Rawal, K & Rani, V 2010, ' High

More information

From mirna regulation to mirna - TF co-regulation: computational

From mirna regulation to mirna - TF co-regulation: computational From mirna regulation to mirna - TF co-regulation: computational approaches and challenges 1,* Thuc Duy Le, 1 Lin Liu, 2 Junpeng Zhang, 3 Bing Liu, and 1,* Jiuyong Li 1 School of Information Technology

More information

Feature Vector Denoising with Prior Network Structures. (with Y. Fan, L. Raphael) NESS 2015, University of Connecticut

Feature Vector Denoising with Prior Network Structures. (with Y. Fan, L. Raphael) NESS 2015, University of Connecticut Feature Vector Denoising with Prior Network Structures (with Y. Fan, L. Raphael) NESS 2015, University of Connecticut Summary: I. General idea: denoising functions on Euclidean space ---> denoising in

More information

SUPPLEMENTAL DATA AGING, July 2014, Vol. 6 No. 7

SUPPLEMENTAL DATA AGING, July 2014, Vol. 6 No. 7 SUPPLEMENTAL DATA Figure S1. Muscle mass changes in different anatomical regions with age. (A) The TA and gastrocnemius muscle showed a significant loss of weight in aged mice (24 month old) compared to

More information

a) List of KMTs targeted in the shrna screen. The official symbol, KMT designation,

a) List of KMTs targeted in the shrna screen. The official symbol, KMT designation, Supplementary Information Supplementary Figures Supplementary Figure 1. a) List of KMTs targeted in the shrna screen. The official symbol, KMT designation, gene ID and specifities are provided. Those highlighted

More information

HALLA KABAT * Outreach Program, mircore, 2929 Plymouth Rd. Ann Arbor, MI 48105, USA LEO TUNKLE *

HALLA KABAT * Outreach Program, mircore, 2929 Plymouth Rd. Ann Arbor, MI 48105, USA   LEO TUNKLE * CERNA SEARCH METHOD IDENTIFIED A MET-ACTIVATED SUBGROUP AMONG EGFR DNA AMPLIFIED LUNG ADENOCARCINOMA PATIENTS HALLA KABAT * Outreach Program, mircore, 2929 Plymouth Rd. Ann Arbor, MI 48105, USA Email:

More information

What can we contribute to cancer research and treatment from Computer Science or Mathematics? How do we adapt our expertise for them

What can we contribute to cancer research and treatment from Computer Science or Mathematics? How do we adapt our expertise for them From Bioinformatics to Health Information Technology Outline What can we contribute to cancer research and treatment from Computer Science or Mathematics? How do we adapt our expertise for them Introduction

More information

Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation

Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation U. Baid 1, S. Talbar 2 and S. Talbar 1 1 Department of E&TC Engineering, Shri Guru Gobind Singhji

More information

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL MicroRNA expression profiling and functional analysis in prostate cancer Marco Folini s.c. Ricerca Traslazionale DOSL What are micrornas? For almost three decades, the alteration of protein-coding genes

More information

Nature Methods: doi: /nmeth.3115

Nature Methods: doi: /nmeth.3115 Supplementary Figure 1 Analysis of DNA methylation in a cancer cohort based on Infinium 450K data. RnBeads was used to rediscover a clinically distinct subgroup of glioblastoma patients characterized by

More information

Supplemental Information. Integrated Genomic Analysis of the Ubiquitin. Pathway across Cancer Types

Supplemental Information. Integrated Genomic Analysis of the Ubiquitin. Pathway across Cancer Types Cell Reports, Volume 23 Supplemental Information Integrated Genomic Analysis of the Ubiquitin Pathway across Zhongqi Ge, Jake S. Leighton, Yumeng Wang, Xinxin Peng, Zhongyuan Chen, Hu Chen, Yutong Sun,

More information

Cancer Informatics Lecture

Cancer Informatics Lecture Cancer Informatics Lecture Mayo-UIUC Computational Genomics Course June 22, 2018 Krishna Rani Kalari Ph.D. Associate Professor 2017 MFMER 3702274-1 Outline The Cancer Genome Atlas (TCGA) Genomic Data Commons

More information

MethylMix An R package for identifying DNA methylation driven genes

MethylMix An R package for identifying DNA methylation driven genes MethylMix An R package for identifying DNA methylation driven genes Olivier Gevaert May 3, 2016 Stanford Center for Biomedical Informatics Department of Medicine 1265 Welch Road Stanford CA, 94305-5479

More information

Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63.

Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63. Supplementary Figure Legends Supplementary Figure S1. Gene expression analysis of epidermal marker genes and TP63. A. Screenshot of the UCSC genome browser from normalized RNAPII and RNA-seq ChIP-seq data

More information

Prioritizing cancer-related key mirna target interactions by integrative genomics

Prioritizing cancer-related key mirna target interactions by integrative genomics Published online 16 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 16 7653 7665 doi:10.1093/nar/gks538 Prioritizing cancer-related key mirna target interactions by integrative genomics Yun Xiao 1,

More information

Inferring condition-specific mirna activity from matched mirna and mrna expression data

Inferring condition-specific mirna activity from matched mirna and mrna expression data Inferring condition-specific mirna activity from matched mirna and mrna expression data Junpeng Zhang 1, Thuc Duy Le 2, Lin Liu 2, Bing Liu 3, Jianfeng He 4, Gregory J Goodall 5 and Jiuyong Li 2,* 1 Faculty

More information

Applications. DSC 410/510 Multivariate Statistical Methods. Discriminating Two Groups. What is Discriminant Analysis

Applications. DSC 410/510 Multivariate Statistical Methods. Discriminating Two Groups. What is Discriminant Analysis DSC 4/5 Multivariate Statistical Methods Applications DSC 4/5 Multivariate Statistical Methods Discriminant Analysis Identify the group to which an object or case (e.g. person, firm, product) belongs:

More information

Bootstrapped Integrative Hypothesis Test, COPD-Lung Cancer Differentiation, and Joint mirnas Biomarkers

Bootstrapped Integrative Hypothesis Test, COPD-Lung Cancer Differentiation, and Joint mirnas Biomarkers Bootstrapped Integrative Hypothesis Test, COPD-Lung Cancer Differentiation, and Joint mirnas Biomarkers Kai-Ming Jiang 1,2, Bao-Liang Lu 1,2, and Lei Xu 1,2,3(&) 1 Department of Computer Science and Engineering,

More information

Supplementary Figure 1: LUMP Leukocytes unmethylabon to infer tumor purity

Supplementary Figure 1: LUMP Leukocytes unmethylabon to infer tumor purity Supplementary Figure 1: LUMP Leukocytes unmethylabon to infer tumor purity A Consistently unmethylated sites (30%) in 21 cancer types 174,696

More information

Supporting Information

Supporting Information Supporting Information Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy Chi-Hsiu Liu 1, Zhongxiao Wang 1, Ye Sun 1, John Paul SanGiovanni 2, Jing Chen 1, * 1 Department

More information

Identifying Relevant micrornas in Bladder Cancer using Multi-Task Learning

Identifying Relevant micrornas in Bladder Cancer using Multi-Task Learning Identifying Relevant micrornas in Bladder Cancer using Multi-Task Learning Adriana Birlutiu (1),(2), Paul Bulzu (1), Irina Iereminciuc (1), and Alexandru Floares (1) (1) SAIA & OncoPredict, Cluj-Napoca,

More information

Mature microrna identification via the use of a Naive Bayes classifier

Mature microrna identification via the use of a Naive Bayes classifier Mature microrna identification via the use of a Naive Bayes classifier Master Thesis Gkirtzou Katerina Computer Science Department University of Crete 13/03/2009 Gkirtzou K. (CSD UOC) Mature microrna identification

More information

Package TargetScoreData

Package TargetScoreData Title TargetScoreData Version 1.14.0 Author Yue Li Package TargetScoreData Maintainer Yue Li April 12, 2018 Precompiled and processed mirna-overexpression fold-changes from 84 Gene

More information

38 Int'l Conf. Bioinformatics and Computational Biology BIOCOMP'16

38 Int'l Conf. Bioinformatics and Computational Biology BIOCOMP'16 38 Int'l Conf. Bioinformatics and Computational Biology BIOCOMP'16 PGAR: ASD Candidate Gene Prioritization System Using Expression Patterns Steven Cogill and Liangjiang Wang Department of Genetics and

More information

Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes

Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes Kaifu Chen 1,2,3,4,5,10, Zhong Chen 6,10, Dayong Wu 6, Lili Zhang 7, Xueqiu Lin 1,2,8,

More information

Lentiviral Delivery of Combinatorial mirna Expression Constructs Provides Efficient Target Gene Repression.

Lentiviral Delivery of Combinatorial mirna Expression Constructs Provides Efficient Target Gene Repression. Supplementary Figure 1 Lentiviral Delivery of Combinatorial mirna Expression Constructs Provides Efficient Target Gene Repression. a, Design for lentiviral combinatorial mirna expression and sensor constructs.

More information

Analysis of paired mirna-mrna microarray expression data using a stepwise multiple linear regression model

Analysis of paired mirna-mrna microarray expression data using a stepwise multiple linear regression model Analysis of paired mirna-mrna microarray expression data using a stepwise multiple linear regression model Yiqian Zhou 1, Rehman Qureshi 2, and Ahmet Sacan 3 1 Pure Storage, 650 Castro Street, Suite #260,

More information

RNA-Seq Preparation Comparision Summary: Lexogen, Standard, NEB

RNA-Seq Preparation Comparision Summary: Lexogen, Standard, NEB RNA-Seq Preparation Comparision Summary: Lexogen, Standard, NEB CSF-NGS January 22, 214 Contents 1 Introduction 1 2 Experimental Details 1 3 Results And Discussion 1 3.1 ERCC spike ins............................................

More information

T. R. Golub, D. K. Slonim & Others 1999

T. R. Golub, D. K. Slonim & Others 1999 T. R. Golub, D. K. Slonim & Others 1999 Big Picture in 1999 The Need for Cancer Classification Cancer classification very important for advances in cancer treatment. Cancers of Identical grade can have

More information

A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data

A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data Method A Network Partition Algorithm for Mining Gene Functional Modules of Colon Cancer from DNA Microarray Data Xiao-Gang Ruan, Jin-Lian Wang*, and Jian-Geng Li Institute of Artificial Intelligence and

More information

IPA Advanced Training Course

IPA Advanced Training Course IPA Advanced Training Course October 2013 Academia sinica Gene (Kuan Wen Chen) IPA Certified Analyst Agenda I. Data Upload and How to Run a Core Analysis II. Functional Interpretation in IPA Hands-on Exercises

More information

COMPUTATIONAL OPTIMISATION OF TARGETED DNA SEQUENCING FOR CANCER DETECTION

COMPUTATIONAL OPTIMISATION OF TARGETED DNA SEQUENCING FOR CANCER DETECTION COMPUTATIONAL OPTIMISATION OF TARGETED DNA SEQUENCING FOR CANCER DETECTION Pierre Martinez, Nicholas McGranahan, Nicolai Juul Birkbak, Marco Gerlinger, Charles Swanton* SUPPLEMENTARY INFORMATION SUPPLEMENTARY

More information

EXPression ANalyzer and DisplayER

EXPression ANalyzer and DisplayER EXPression ANalyzer and DisplayER Tom Hait Aviv Steiner Igor Ulitsky Chaim Linhart Amos Tanay Seagull Shavit Rani Elkon Adi Maron-Katz Dorit Sagir Eyal David Roded Sharan Israel Steinfeld Yossi Shiloh

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Pan-cancer analysis of global and local DNA methylation variation a) Variations in global DNA methylation are shown as measured by averaging the genome-wide

More information

Variant Classification. Author: Mike Thiesen, Golden Helix, Inc.

Variant Classification. Author: Mike Thiesen, Golden Helix, Inc. Variant Classification Author: Mike Thiesen, Golden Helix, Inc. Overview Sequencing pipelines are able to identify rare variants not found in catalogs such as dbsnp. As a result, variants in these datasets

More information

The Cancer Genome Atlas & International Cancer Genome Consortium

The Cancer Genome Atlas & International Cancer Genome Consortium The Cancer Genome Atlas & International Cancer Genome Consortium Session 3 Dr Jason Wong Prince of Wales Clinical School Introductory bioinformatics for human genomics workshop, UNSW 31 st July 2014 1

More information

Obstacles and challenges in the analysis of microrna sequencing data

Obstacles and challenges in the analysis of microrna sequencing data Obstacles and challenges in the analysis of microrna sequencing data (mirna-seq) David Humphreys Genomics core Dr Victor Chang AC 1936-1991, Pioneering Cardiothoracic Surgeon and Humanitarian The ABCs

More information

Principal Component Analysis Based Feature Extraction Approach to Identify Circulating microrna Biomarkers

Principal Component Analysis Based Feature Extraction Approach to Identify Circulating microrna Biomarkers Principal Component Analysis Based Feature Extraction Approach to Identify Circulating microrna Biomarkers Y-h. Taguchi 1 *, Yoshiki Murakami 2 1 Department of Physics, Chuo University, Tokyo, Japan, 2

More information

SUPPLEMENTARY FIGURE LEGENDS

SUPPLEMENTARY FIGURE LEGENDS SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1 Negative correlation between mir-375 and its predicted target genes, as demonstrated by gene set enrichment analysis (GSEA). 1 The correlation between

More information

MIR retrotransposon sequences provide insulators to the human genome

MIR retrotransposon sequences provide insulators to the human genome Supplementary Information: MIR retrotransposon sequences provide insulators to the human genome Jianrong Wang, Cristina Vicente-García, Davide Seruggia, Eduardo Moltó, Ana Fernandez- Miñán, Ana Neto, Elbert

More information

IDENTIFICATION OF IN SILICO MIRNAS IN FOUR PLANT SPECIES FROM FABACEAE FAMILY

IDENTIFICATION OF IN SILICO MIRNAS IN FOUR PLANT SPECIES FROM FABACEAE FAMILY Original scientific paper 10.7251/AGRENG1803122A UDC633:34+582.736.3]:577.2 IDENTIFICATION OF IN SILICO MIRNAS IN FOUR PLANT SPECIES FROM FABACEAE FAMILY Bihter AVSAR 1*, Danial ESMAEILI ALIABADI 2 1 Sabanci

More information

Supplemental Figure 1. Small RNA size distribution from different soybean tissues.

Supplemental Figure 1. Small RNA size distribution from different soybean tissues. Supplemental Figure 1. Small RNA size distribution from different soybean tissues. The size of small RNAs was plotted versus frequency (percentage) among total sequences (A, C, E and G) or distinct sequences

More information

The Cancer Genome Atlas

The Cancer Genome Atlas The Cancer Genome Atlas July 14, 2011 Kenna M. Shaw, Ph.D. Deputy Director The Cancer Genome Atlas Program TCGA: Core Objectives Launched in 2006 as a pilot and expanded in 2009, the goals of TCGA are

More information

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections

Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections Review: Logistic regression, Gaussian naïve Bayes, linear regression, and their connections New: Bias-variance decomposition, biasvariance tradeoff, overfitting, regularization, and feature selection Yi

More information

A novel and universal method for microrna RT-qPCR data normalization

A novel and universal method for microrna RT-qPCR data normalization A novel and universal method for microrna RT-qPCR data normalization Jo Vandesompele professor, Ghent University co-founder and CEO, Biogazelle 4 th International qpcr Symposium Weihenstephan, March 1,

More information

Assessing Functional Neural Connectivity as an Indicator of Cognitive Performance *

Assessing Functional Neural Connectivity as an Indicator of Cognitive Performance * Assessing Functional Neural Connectivity as an Indicator of Cognitive Performance * Brian S. Helfer 1, James R. Williamson 1, Benjamin A. Miller 1, Joseph Perricone 1, Thomas F. Quatieri 1 MIT Lincoln

More information

microrna-guided diagnostics for neuroendocrine tumors

microrna-guided diagnostics for neuroendocrine tumors microrna-guided diagnostics for neuroendocrine tumors Neil Renwick Dept Pathology and Molecular Medicine Queen s University SEAMO Research and Innovation Showcase Isabel Bader Centre for the Performing

More information

MOST: detecting cancer differential gene expression

MOST: detecting cancer differential gene expression Biostatistics (2008), 9, 3, pp. 411 418 doi:10.1093/biostatistics/kxm042 Advance Access publication on November 29, 2007 MOST: detecting cancer differential gene expression HENG LIAN Division of Mathematical

More information

Exploring TCGA Pan-Cancer Data at the UCSC Cancer Genomics Browser

Exploring TCGA Pan-Cancer Data at the UCSC Cancer Genomics Browser Exploring TCGA Pan-Cancer Data at the UCSC Cancer Genomics Browser Melissa S. Cline 1*, Brian Craft 1, Teresa Swatloski 1, Mary Goldman 1, Singer Ma 1, David Haussler 1, Jingchun Zhu 1 1 Center for Biomolecular

More information

What Math Can Tell You About Cancer

What Math Can Tell You About Cancer What Math Can Tell You About Cancer J. B. University of Hawai i at Mānoa Hofstra University, October 2017 Overview The human body is complicated. Cancer disrupts many normal processes. Mathematical analysis

More information

Prediction of potential disease-associated micrornas based on random walk

Prediction of potential disease-associated micrornas based on random walk Bioinformatics, 3(), 25, 85 85 doi:.93/bioinformatics/btv39 Advance Access Publication Date: 23 January 25 Original Paper Data and text mining Prediction of potential disease-associated micrornas based

More information

User Guide. Association analysis. Input

User Guide. Association analysis. Input User Guide TFEA.ChIP is a tool to estimate transcription factor enrichment in a set of differentially expressed genes using data from ChIP-Seq experiments performed in different tissues and conditions.

More information

The Cancer Genome Atlas Pan-cancer analysis Katherine A. Hoadley

The Cancer Genome Atlas Pan-cancer analysis Katherine A. Hoadley The Cancer Genome Atlas Pan-cancer analysis Katherine A. Hoadley Department of Genetics Lineberger Comprehensive Cancer Center The University of North Carolina at Chapel Hill What is TCGA? The Cancer Genome

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. Heatmap of GO terms for differentially expressed genes. The terms were hierarchically clustered using the GO term enrichment beta. Darker red, higher positive

More information

Identification of distinct mirna target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets

Identification of distinct mirna target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets Farazi et al. Genome Biology 2014, 15:R9 RESEARCH Open Access Identification of distinct mirna target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets Thalia

More information

Integration of high-throughput biological data

Integration of high-throughput biological data Integration of high-throughput biological data Jean Yang and Vivek Jayaswal School of Mathematics and Statistics University of Sydney Meeting the Challenges of High Dimension: Statistical Methodology,

More information

Integrated analysis of mirna/mrna expression and gene methylation using sparse canonical correlation analysis.

Integrated analysis of mirna/mrna expression and gene methylation using sparse canonical correlation analysis. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2016 Integrated analysis of mirna/mrna expression and gene methylation using

More information

SUPPLEMENTAL FILE. mir-22 and mir-29a are members of the androgen receptor cistrome modulating. LAMC1 and Mcl-1 in prostate cancer

SUPPLEMENTAL FILE. mir-22 and mir-29a are members of the androgen receptor cistrome modulating. LAMC1 and Mcl-1 in prostate cancer 1 SUPPLEMENTAL FILE 2 3 mir-22 and mir-29a are members of the androgen receptor cistrome modulating LAMC1 and Mcl-1 in prostate cancer 4 5 6 Lorenza Pasqualini 1, Huajie Bu 1,2, Martin Puhr 1, Narisu Narisu

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Effect of HSP90 inhibition on expression of endogenous retroviruses. (a) Inducible shrna-mediated Hsp90 silencing in mouse ESCs. Immunoblots of total cell extract expressing the

More information

About diffcoexp. Wenbin Wei, Sandeep Amberkar, Winston Hide

About diffcoexp. Wenbin Wei, Sandeep Amberkar, Winston Hide About diffcoexp Wenbin Wei, Sandeep Amberkar, Winston Hide Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom April 11, 2018 Contents 1 Description 1

More information

Expert-guided Visual Exploration (EVE) for patient stratification. Hamid Bolouri, Lue-Ping Zhao, Eric C. Holland

Expert-guided Visual Exploration (EVE) for patient stratification. Hamid Bolouri, Lue-Ping Zhao, Eric C. Holland Expert-guided Visual Exploration (EVE) for patient stratification Hamid Bolouri, Lue-Ping Zhao, Eric C. Holland Oncoscape.sttrcancer.org Paul Lisa Ken Jenny Desert Eric The challenge Given - patient clinical

More information

Discovery of Novel Human Gene Regulatory Modules from Gene Co-expression and

Discovery of Novel Human Gene Regulatory Modules from Gene Co-expression and Discovery of Novel Human Gene Regulatory Modules from Gene Co-expression and Promoter Motif Analysis Shisong Ma 1,2*, Michael Snyder 3, and Savithramma P Dinesh-Kumar 2* 1 School of Life Sciences, University

More information

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola Profiles of gene expression & diagnosis/prognosis of cancer MCs in Advanced Genetics Ainoa Planas Riverola Gene expression profiles Gene expression profiling Used in molecular biology, it measures the

More information

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks

MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1. Lecture 27: Systems Biology and Bayesian Networks MBios 478: Systems Biology and Bayesian Networks, 27 [Dr. Wyrick] Slide #1 Lecture 27: Systems Biology and Bayesian Networks Systems Biology and Regulatory Networks o Definitions o Network motifs o Examples

More information

The Lens Model and Linear Models of Judgment

The Lens Model and Linear Models of Judgment John Miyamoto Email: jmiyamot@uw.edu October 3, 2017 File = D:\P466\hnd02-1.p466.a17.docm 1 http://faculty.washington.edu/jmiyamot/p466/p466-set.htm Psych 466: Judgment and Decision Making Autumn 2017

More information

BWA alignment to reference transcriptome and genome. Convert transcriptome mappings back to genome space

BWA alignment to reference transcriptome and genome. Convert transcriptome mappings back to genome space Whole genome sequencing Whole exome sequencing BWA alignment to reference transcriptome and genome Convert transcriptome mappings back to genome space genomes Filter on MQ, distance, Cigar string Annotate

More information

Transcriptome profiling of the developing male germ line identifies the mir-29 family as a global regulator during meiosis

Transcriptome profiling of the developing male germ line identifies the mir-29 family as a global regulator during meiosis RNA BIOLOGY 2017, VOL. 14, NO. 2, 219 235 http://dx.doi.org/10.1080/15476286.2016.1270002 RESEARCH PAPER Transcriptome profiling of the developing male germ line identifies the mir-29 family as a global

More information

Supplemental Information. A Highly Sensitive and Robust Method. for Genome-wide 5hmC Profiling. of Rare Cell Populations

Supplemental Information. A Highly Sensitive and Robust Method. for Genome-wide 5hmC Profiling. of Rare Cell Populations Molecular ell, Volume 63 Supplemental Information Highly Sensitive and Robust Method for enome-wide hm Profiling of Rare ell Populations Dali Han, Xingyu Lu, lan H. Shih, Ji Nie, Qiancheng You, Meng Michelle

More information

Single SNP/Gene Analysis. Typical Results of GWAS Analysis (Single SNP Approach) Typical Results of GWAS Analysis (Single SNP Approach)

Single SNP/Gene Analysis. Typical Results of GWAS Analysis (Single SNP Approach) Typical Results of GWAS Analysis (Single SNP Approach) High-Throughput Sequencing Course Gene-Set Analysis Biostatistics and Bioinformatics Summer 28 Section Introduction What is Gene Set Analysis? Many names for gene set analysis: Pathway analysis Gene set

More information

SubLasso:a feature selection and classification R package with a. fixed feature subset

SubLasso:a feature selection and classification R package with a. fixed feature subset SubLasso:a feature selection and classification R package with a fixed feature subset Youxi Luo,3,*, Qinghan Meng,2,*, Ruiquan Ge,2, Guoqin Mai, Jikui Liu, Fengfeng Zhou,#. Shenzhen Institutes of Advanced

More information

Introduction. Introduction

Introduction. Introduction Introduction We are leveraging genome sequencing data from The Cancer Genome Atlas (TCGA) to more accurately define mutated and stable genes and dysregulated metabolic pathways in solid tumors. These efforts

More information