Cholesterol modulates amyloid beta peptide 1-42 channel formation in planar lipid membranes

Size: px
Start display at page:

Download "Cholesterol modulates amyloid beta peptide 1-42 channel formation in planar lipid membranes"

Transcription

1 Cholesterol modulates amyloid beta peptide 1-42 channel formation in planar lipid membranes Meleleo D., Notarachille G., Gallucci E. and Micelli S. Dept. Farmaco-Biologico, Università degli Studi di Bari, via E. Orabona 4, Bari Italy Summary Cholesterol, an integral component of eukaryotic cell membranes, is assuming a pivotal role as a target in some neurodegenerative diseases such as Alzheimer, although its role remains elusive. Recent studies indicate that Ch can favour the conformational transition of many peptides in model membranes and vesicles. AβP1-42 is one of the pathological features of Alzheimer s disease and, together with AβP1-40, is among the major components of senile plaques. Notably, the AβP1-42 peptide is more neurotoxic than AβP1-40, owing to its much stronger aggregation propensity. In this work, we studied the role of cholesterol in the incorporation and channel formation of AβP1-42 in planar lipid membranes of different composition. Introduction Brain cholesterol is an essential component of cell membranes and is involved in many biological functions. There are also considerable amounts of cholesterol in neuronal plasmalemma and in lipid rafts. Cholesterol partitions between the raft and non-raft phase, having higher affinity to raft sphingolipids than to unsaturated phospholipids. Rafts are small platforms, composed of sphingolipids with cholesterol in the outer exoplasmic leaflet, connected to phospholipids and cholesterol in the inner cytoplasmic leaflet of the lipid bilayer. One interesting aspect of many proteins and peptides seems to be their affinity for the cholesterol molecule. In fact, cholesterol is assuming a key role as a target in some neurodegenerative diseases such as Alzheimer, although its role remains unclear. Some authors have found that membrane components, such as cholesterol and gangliosides, alter the affinity of AβP for phospholipid membranes. Cholesterol and gangliosides, once associated with phospholipid membranes, lead to an increase in β-sheet content and/or the rate of aggregation of AβP (1). On the other hand, recent studies have suggested that cholesterol promotes the transition from β-sheet to α-helix of many proteins and peptides (2). Furthermore the amount of cholesterol in the exoplasmic leaflet of the neuronal membranes seems to increase 2009 by MEDIMOND s.r.l. L311C

2 168 New Trends in Alzheimer and Parkinson Disorders with age (3). Notably, although AβP1-42 and AβP1-40 are the major components of senile plaques, the AβP1-42 peptide is more neurotoxic than AβP1-40, owing to its much stronger aggregation propensity (4,5). On the other hand, a new concept has been emerging in recent years: small intermediates, soluble oligomers, can be toxic causing synaptic dysfunction or forming channel-like pores within the membrane. Recent studies indicate that the peptide s ability to form ion channels depends on its conformational structure and on the peptide/lipid structure in the physiological environment. The aims of this study were to evaluate the influence of cholesterol (Ch) on AβP1-42 incorporation and channel formation in palmitoyl-oleoyl-phosphatidylcholine (POPC) planar lipid membranes (PLMs) and to monitor AβP1-42 channel current in PLMs made up of Oxidized Cholesterol (OxCh), a component of aging neuronal membranes. Materials and Methods Channel activities were recorded in a lipid bilayer membrane made up of POPC or POPC:Ch (70:30, w/w) in 1% of n-decane or oxidized cholesterol (OxCh) in n- decane (1:1,v:v) (Fluka). Bilayers were formed across a 300 µm hole diameter in a teflon partition separating two teflon chambers which held symmetrical 50 mm KCl solutions, ph = 7, temperature 23 ± 1 C. The salts used in the experiments were of analytical grade. AβP1-42 (Sigma) was added to the cis-side of the membrane, at a final concentration of M. The membrane current was monitored with an oscilloscope and recorded on a chart recorder. For a detailed description see references 6,7. Results In many different experiments on POPC/POPC:Ch PLMs, the addition of 5*10-8 M of AβP1-42 to the cis-side of the medium facing the membrane did not determine any conductance variation for a long period of time (24/6 h respectively), upon application of voltages as high as 120 mv. After 24/6 hours (lag time) respectively, PLM breakage and withdrawing it again, AβP1-42 channel activity appears as non-random discrete current fluctuations, compatible with channel-type openings and closures. The minimal potential at which channel activity can be observed was 100mV in both kinds of membranes. After the first channel formation, the applied voltage can be lowered as far as 80 mv and ± 60mV in POPC and POPC:Ch PLMs respectively. In POPC PLMs, no channel activity was observed at positive applied voltages below 80 mv and at negative applied voltages. Fig. 1A and 1B show some chart recordings of AβP1-42 channel formation in POPC and POPC:Ch (70:30, w/w) PLMs with associated histograms of the conductance fluctuations. These results seem to indicate that cholesterol (30% weight ratio) increases AβP1-42 affinity to POPC PLMs. We carried out experiments with OxCh PLMs because cholesterol and its oxidation products are present on the exoplasmic leaflet of aging neuronal membranes. In OxCh PLMs, AβP1-42 channel activity occurs spontaneously two hours after it 904

3 Prague, Czech Republic, March, Fig.1 Examples of chart recordings of AβP1-42 channel activity in PLMs made up of POPC (A), POPC:Ch (B) and OxCh (C) at an applied voltage of 100 mv with associated histograms of the conductance fluctuations. Probability of the conductance, P(Λ), is the number of observed steps within an interval of width ( Λ= 0.01/ 0.05 ns in POPC and POPC:Ch/OxCh PLMs respectively) divided by the total number of steps. The P(Λ) values are indicated as a percentage. is added to the medium facing the membrane. The minimal potential at which channel activity could be observed was 100mV. After the first channel formation, the applied voltage can be lowered as far as ±20 mv. Fig. 1C shows some chart recordings of AβP1-42 channel formation in OxCh PLMs with associated histograms of the conductance fluctuations. All single-channel events were used to construct a histogram of conductance distribution. The conductance fluctuations are not uniform in size but distributed over a certain range. Examples of conductance fluctuation histograms at an applied voltage of 100 mv are shown in Fig.1. Table 1 reports the average Λ values ( Λ) obtained for each distribution at different applied voltages in the three PLMs. The average conductance ( Λ) is determined by recording not less than 100 single-events and averaging over the distribution of conductance values (8). The results indicate that Λ values decrease as applied voltages increase for POPC:Ch and OxCh membranes. Besides, in OxCh PLMs, AβP1-42 Λ values are significantly higher at all applied voltages than those in POPC and POPC:Ch PLMs. The occurrence frequency values (number of events in 60 sec) are significantly higher in OxCh PLMs than in POPC and POPC:Ch PLMs at applied voltages of 80 and 100 mv. The distribution of open times has been found to follow a single-exponential or a two-exponential function (6). The mean lifetimes ± SE obtained in OxCh and 905

4 170 New Trends in Alzheimer and Parkinson Disorders Table 1 The average conductance ( Λ) at different applied voltages in PLMs POPC:Ch PLMs are τ 1 (sec)= 1.05/0.60 ± 0.34/0.33 respectively and τ 2 (sec)= 3.80/3.91 ± 0.28/0.54 respectively. Preliminary studies to identify the charge on the ion carrying the current indicate a poorly cation-selective channel in OxCh PLMs. More investigations are necessary to determine the ion selectivity of the AβP1-42 channel in POPC and POPC:Ch PLMs. Conclusion The results of this study show that: 1. AβP1-42 forms ion channels in POPC PLMs. The C-terminal alanine and isoleucine residues make the AβP1-42 molecule more hydrophobic than AβP1-40, forming stable oligomers (9). Therefore AβP1-42 could be prone to bind to POPC PLMs and to incorporate into the membrane. However, AβP1-42 forms channels in PC12 cells, should AβP1-42 form channel in nervous tissue of the organism then this could explain its greater toxicity respect to AβP AβP1-42 channel activity increases significantly with Ch concentrations of up to 30% in POPC PLMs. This finding indicates that the cholesterol molecule may be considered a target of AβP1-42. Recent studies show that after Aβ binds to raft 906

5 Prague, Czech Republic, March, membranes containing cholesterol, the peptide can be translocated to PC membranes to which monomeric soluble Aβ does not bind (10). 3. AβP1-42 easily forms ion channels in OxCh PLMs. It is possible to hypothesize that AβP1-42 could form ion channels in vivo owing to the presence of oxidized cholesterol products in aging neuronal plasmalemma. These results can contribute to clarify the function of cholesterol and rafts in the development of human diseases and suggest a possible mechanism for AβP1-42 toxicity in neuronal membranes. References [1] CHOO-SMITH L.P. ET AL. Acceleration of amyloid fibril formation by specific binding of Abeta-(1-40) peptide to ganglioside-containing membrane vesicles. J Biol Chem 272: ,1997. [2] JI S.R. ET AL. Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (A beta 1-40), which may potentially inhibit the fibril formation. J Biol Chem 277: ,2002. [3] IGBAVBOA U. ET AL. Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice. J Neurochem. 66: ,1996. [4] MOBLEY J. ET AL. Modelling amyloid beta-peptide insertion into lipid bilayers. Biophys J. 86: , [5] SATO T. ET AL. Inhibitors of amyloid toxicity based on β-sheet packing of Aβ40 and Aβ42. Biochemistry 45: , [6] GALLUCCI e. ET AL. Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol. Eur Biophys J 32:22-32,2003. [7] MICELLI S. ET AL. Effect of sterols on beta-amyloid peptide (AbetaP 1-40) channel formation and their properties in planar lipid membranes. Biophys J 86: ,2004. [8] LUDWIG O. ET.AL. Pore formation by the mithocondrial porin of rat brain in lipid bilayer membranes. Biochim Biophys Acta 860: ,1996. [9] HAASS C. ET AL. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer s amyloid β-peptide. Nat Rev Mol Cell Biol 8: , 2007 [10] KAKIO A. ET AL. Formation of a membrane-active form of amyloid beta-protein in raft-like model membranes. Biochem Biophys Res Commun. 303: ,

Biomembranes structure and function. B. Balen

Biomembranes structure and function. B. Balen Biomembranes structure and function B. Balen All cells are surrounded by membranes Selective barrier But also important for: 1. Compartmentalization 2. Biochemical activities 3. Transport of dissolved

More information

Chem Lecture 8 Lipids and Cell Membranes

Chem Lecture 8 Lipids and Cell Membranes Chem 452 - Lecture 8 Lipids and Cell Membranes 111114 Like carbohydrates, lipids are one of the four major classes of biomolecules, which also include the proteins, carbohydrates and nucleic acids. Lipids

More information

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion Models for Membrane Structure NEW MODEL (1972) Fluid Mosaic Model proposed by Singer & Nicholson Lipids form a viscous, twodimensional solvent into which proteins are inserted and integrated more or less

More information

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment.

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment. Chapter 9 - Biological Membranes www.gsbs.utmb.edu/ microbook/ch037.htmmycoplasma Membranes form a semi-permeable boundary between a cell and its environment. Membranes also permit subcellular organization

More information

Biology 4410 First Examination Version B

Biology 4410 First Examination Version B Biology 4410 Spring 2006 Name First Examination Version B This examination consists of two parts, a multiple-choice section and an essay section. Be sure to put your name on both the mark-sense sheet and

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Biological membranes are composed of lipid bilayers

More information

Biology 4410 First Examination Version B

Biology 4410 First Examination Version B Biology 4410 Spring 2006 Name First Examination Version B This examination consists of two parts, a multiple-choice section and an essay section. Be sure to put your name on both the mark-sense sheet and

More information

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier

Biological Membranes. Lipid Membranes. Bilayer Permeability. Common Features of Biological Membranes. A highly selective permeability barrier Biological Membranes Structure Function Composition Physicochemical properties Self-assembly Molecular models Lipid Membranes Receptors, detecting the signals from outside: Light Odorant Taste Chemicals

More information

Chapter 12. Part II. Biological Membrane

Chapter 12. Part II. Biological Membrane Chapter 12 Part II. Biological Membrane Single-tailed lipids tend to form micelles Critical micelle concentration (cmc): minimum concentration that forms micelles e.g.) cmc for SDS 1mM; cmc for phospholipids

More information

Drugs, Bugs & Neutrons where are we and where do we go from here?

Drugs, Bugs & Neutrons where are we and where do we go from here? Drugs, Bugs & Neutrons where are we and where do we go from here? Dave Barlow, Pharmacy Department, King s College London The Future and Next Generation Capabilities of Accelerator-driven Neutron and Muon

More information

Effects of Cholesterol on Membranes: Physical Properties

Effects of Cholesterol on Membranes: Physical Properties Effects of Cholesterol on Membranes: Physical Properties Removes gel to liquid crystal phase transition New intermediate phase called liquid ordered - ordering of the membrane lipids due to condensation

More information

NANO 243/CENG 207 Course Use Only

NANO 243/CENG 207 Course Use Only L9. Drug Permeation Through Biological Barriers May 3, 2018 Lipids Lipid Self-Assemblies 1. Lipid and Lipid Membrane Phospholipid: an amphiphilic molecule with a hydrophilic head and 1~2 hydrophobic tails.

More information

Introduction to Metal Transport Bertini et al Ch. 5 and 8

Introduction to Metal Transport Bertini et al Ch. 5 and 8 Introduction to Metal Transport Bertini et al Ch. 5 and 8 Prof. Arthur D. Tinoco University of Puerto Rico, Rio Piedras Campus 1 Focus on Metal Transport to Cells Movement through Membranes www.nineplanets.org

More information

Chapter 1 Membrane Structure and Function

Chapter 1 Membrane Structure and Function Chapter 1 Membrane Structure and Function Architecture of Membranes Subcellular fractionation techniques can partially separate and purify several important biological membranes, including the plasma and

More information

Fall Name Student ID

Fall Name Student ID Name Student ID PART 1: Matching. Match the organelle to its function (11 points) 1.Proton motive force 2. Fluid Mosiac 3. Oxidative Phosphorylation 4. Pyruvate dehydrogenase 5. Electrochemical Force 6.

More information

Cellular Neurophysiology I Membranes and Ion Channels

Cellular Neurophysiology I Membranes and Ion Channels Cellular Neurophysiology I Membranes and Ion Channels Reading: BCP Chapter 3 www.bioelectriclab All living cells maintain an electrical potential (voltage) across their membranes (V m ). Resting Potential

More information

Lecture 36: Review of membrane function

Lecture 36: Review of membrane function Chem*3560 Lecture 36: Review of membrane function Membrane: Lipid bilayer with embedded or associated proteins. Bilayers: 40-70% neutral phospholipid 10-20% negative phospholipid 10-30% cholesterol 10-30%

More information

The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol

The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol Science 336, 1171 (2013) Coach Prof. : Dr. Chung-I Chang Sit-in Prof.: Dr. Wei Yuan Yang Presenter: Han-Ying Wu Date:

More information

membranes cellular membranes basic structure basic structure chapter ECM CYTOPLASM

membranes cellular membranes basic structure basic structure chapter ECM CYTOPLASM membranes chapter 11-1 1 cellular membranes 3 compartmentalization intracellular compartments 1. receiving info membrane receptors recognition and interaction with other cells. import and export of molecules

More information

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology Cell Membranes Dr. Diala Abu-Hassan School of Medicine Dr.abuhassand@gmail.com Cell and Molecular Biology Organelles 2Dr. Diala Abu-Hassan Membrane proteins Major components of cells Nucleic acids DNA

More information

membranes membrane functions basic structure membrane functions chapter 11-12

membranes membrane functions basic structure membrane functions chapter 11-12 membranes chapter - membrane functions Ca + hormone IP H + HO compartmentalization intracellular compartments scaffold for biochemical activities organize enzymes selectively permeable membrane allows

More information

Cell Membrane and Transport

Cell Membrane and Transport Cell Membrane and Transport 29/06/2015 11:08 AM Describe the Characteristics of the phospholipid Bilayer. The Phospholipid bilayer is made up of a double layer of membrane lipids that have a hydrophobic

More information

a. PORE FORMATION IN PLANAR LIPID BILAYER MEMBRANES

a. PORE FORMATION IN PLANAR LIPID BILAYER MEMBRANES a. PORE FORMATION IN PLANAR LIPID BILAYER MEMBRANES Gianluigi Monticelli Istituto di Fisiologia generale e Chimica biologica, Università degli Studi, Via Saldini 50, 20133 Milano - ITALY INTRODUCTION Porins

More information

Electrical Properties of Lipid Membrane Role of Bathing Solution

Electrical Properties of Lipid Membrane Role of Bathing Solution Internet Electronic Journal of Molecular Design 2003, 2, 000 000 Electrical Properties of Lipid Membrane Role of Bathing Solution D. Ghosh, 1, * S. Manna, 1 S. De, 2 R. Basu, 3 and P. Nandy 1 1 Department

More information

Role of charged residues of E. coli porins studied using planar lipid bilayers

Role of charged residues of E. coli porins studied using planar lipid bilayers Role of charged residues of E. coli porins studied using planar lipid bilayers A. Bessonov, K.R. Mahendran, M. Ceccarelli, H. Weingart, M. Winterhalter Mid-Term Review Meeting 09-11 April, 2008 Marseille,

More information

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/ 1 MEMBRANE STRUCTURE Lecture 8 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Plasma Membrane 2 Plasma membrane: The outer boundary of the cell that separates it from the world

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

Structure of proteins

Structure of proteins Structure of proteins Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Structure of proteins The 20 a.a commonly found

More information

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION

BIOLOGY 103 Spring 2001 MIDTERM LAB SECTION BIOLOGY 103 Spring 2001 MIDTERM NAME KEY LAB SECTION ID# (last four digits of SS#) STUDENT PLEASE READ. Do not put yourself at a disadvantage by revealing the content of this exam to your classmates. Your

More information

Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide

Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide Chinese Science Bulletin 2007 SCIENCE IN CHINA PRESS Springer Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide JIAO Yong & YANG Pin Key Laboratory of Chemical Biology

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Insulin Effects on DPPE-succinyl Bilayer Resistance page 1 of 9

Insulin Effects on DPPE-succinyl Bilayer Resistance page 1 of 9 Insulin Effects on DPPE-succinyl Bilayer Resistance page 1 of 9 Insulin Effects on the Resistance of Dipalmitoylphosphatidylethanolamine-succinyl Bilayer Membranes. Vitaliy Kapishon 1 and Roger R. Lew,

More information

Cells: The Living Units

Cells: The Living Units Cells: The Living Units Introduction Life in general occurs in an aqueous environment All chemical processes essential to life occur within the aqueous environment of the cell and surrounding fluids contained

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. (a) Uncropped version of Fig. 2a. RM indicates that the translation was done in the absence of rough mcirosomes. (b) LepB construct containing the GGPG-L6RL6-

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Lipids (cholesterol, cholesterol esters, phospholipids & triacylglycerols) combined with proteins (apolipoprotein) in

More information

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein 1 Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein by Coralie Di Scala, Nouara Yahi, Sonia Boutemeur, Alessandra Flores, Léa

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Why cholesterol should be found predominantly in the cytoplasmic leaf of the plasma membrane

Why cholesterol should be found predominantly in the cytoplasmic leaf of the plasma membrane Why cholesterol should be found predominantly in the cytoplasmic leaf of the plasma membrane H. Giang and M. Schick Department of Physics, University of Washington,Seattle, WA 98195 July 21, 2014 Abstract

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Membranes & Membrane Proteins

Membranes & Membrane Proteins School on Biomolecular Simulations Membranes & Membrane Proteins Vani Vemparala The Institute of Mathematical Sciences Chennai November 13 2007 JNCASR, Bangalore Cellular Environment Plasma membrane extracellular

More information

BIOL 158: BIOLOGICAL CHEMISTRY II

BIOL 158: BIOLOGICAL CHEMISTRY II BIOL 158: BIOLOGICAL CHEMISTRY II Lecture 1: Membranes Lecturer: Christopher Larbie, PhD Introduction Introduction Cells and Organelles have membranes Membranes contain lipids, proteins and polysaccharides

More information

Measures of Membrane Fluidity: Melting Temperature

Measures of Membrane Fluidity: Melting Temperature Measures of Membrane Fluidity: Melting Temperature T m (melting temperature) is a phase transition, a change from a more rigid solid-like state to a fluid-like state The fluidity - ease with which lipids

More information

Lecture 15. Membrane Proteins I

Lecture 15. Membrane Proteins I Lecture 15 Membrane Proteins I Introduction What are membrane proteins and where do they exist? Proteins consist of three main classes which are classified as globular, fibrous and membrane proteins. A

More information

1. Which of the following statements about passive and primary active transport proteins is FALSE?

1. Which of the following statements about passive and primary active transport proteins is FALSE? Biological Membranes 1. Which of the following statements about passive and primary active transport proteins is FALSE? A. They are both integral membrane proteins. B. They both show a high degree of selectivity.

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

The Cell Membrane (Ch. 7)

The Cell Membrane (Ch. 7) The Cell Membrane (Ch. 7) Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure

More information

COR 011 Lecture 9: ell membrane structure ept 19, 2005

COR 011 Lecture 9: ell membrane structure ept 19, 2005 COR 011 Lecture 9: ell membrane structure ept 19, 2005 Cell membranes 1. What are the functions of cell membranes? 2. What is the current model of membrane structure? 3. Evidence supporting the fluid mosaic

More information

Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE

Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE The main aim of this module is to introduce the students to the types

More information

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes

Interactions of Polyethylenimines with Zwitterionic and. Anionic Lipid Membranes Interactions of Polyethylenimines with Zwitterionic and Anionic Lipid Membranes Urszula Kwolek, Dorota Jamróz, Małgorzata Janiczek, Maria Nowakowska, Paweł Wydro, Mariusz Kepczynski Faculty of Chemistry,

More information

Single patch chip for planar lipid bilayer assays: Ion channels characterization and screening

Single patch chip for planar lipid bilayer assays: Ion channels characterization and screening RTN Mid-Term Activity Molecular basis of antibiotic translocation Single patch chip for planar lipid bilayer assays: Ion channels characterization and screening Mohamed Kreir April 2008 Overview Planar

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

GCD3033:Cell Biology. Plasma Membrane Dynamics

GCD3033:Cell Biology. Plasma Membrane Dynamics Plasma Membrane Dynamics Membrane Structure I) Lipid Bilayer A) Membrane Lipids B) Membrane Flexibility & Composition C) Phospholipids II) Membrane Proteins A) association with membranes B) membrane solubilization

More information

Inter-Species Cross-Seeding: Stability and Assembly of Rat - Human Amylin Aggregates. Workalemahu M. Berhanu

Inter-Species Cross-Seeding: Stability and Assembly of Rat - Human Amylin Aggregates. Workalemahu M. Berhanu Inter-Species Cross-Seeding: Stability and Assembly of Rat - Human Amylin Aggregates Workalemahu M. Berhanu University of Oklahoma Department of Chemistry and Biochemistry STRUCTURE OF AMYLOIDS & ROLE

More information

PLASMA MEMBRANE. Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh

PLASMA MEMBRANE. Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh PLASMA MEMBRANE Submitted by:- DR.Madhurima Sharma PGGCG-II,Chandigarh LIPID COMPONENTS OF THE PLASMA MEMBRANE The outer leaflet consists predominantly of phosphatidylcholine, sphingomyelin, and glycolipids,

More information

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan 5 Rama Abbady Odai Bani-Monia Diala Abu-Hassan Lipid Rafts Lipid rafts are aggregates (accumulations) of sphingolipids. They re semisolid clusters (10-200 nm) of cholesterol and sphingolipids (sphingomyelin

More information

Movement across the Membrane

Movement across the Membrane Chapter 8. Movement across the Membrane 2003-2004 1 Cell membrane Cells have an inside & an outside Cell membrane is the boundary Can it be an impenetrable boundary? NO! Why not? The cell needs materials

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

Zn(II) as a minimal chaperone mimic to retard Aβ peptide fibril formation

Zn(II) as a minimal chaperone mimic to retard Aβ peptide fibril formation Zn(II) as a minimal chaperone mimic to retard Aβ peptide fibril formation Astrid Gräslund Department of Biochemistry and Biophysics Stockholm University Lorentz workshop, Leiden, April 17, 215 Potential

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Bear: Neuroscience: Exploring the Brain 3e

Bear: Neuroscience: Exploring the Brain 3e Bear: Neuroscience: Exploring the Brain 3e Chapter 03: The Neuronal Membrane at Rest Introduction Action potential in the nervous system Action potential vs. resting potential Slide 1 Slide 2 Cytosolic

More information

Physiologically-relevant levels of sphingomyelin, but not GM1, induces a beta-sheet-rich structure in the amyloid-beta(1-42) monomer

Physiologically-relevant levels of sphingomyelin, but not GM1, induces a beta-sheet-rich structure in the amyloid-beta(1-42) monomer https://helda.helsinki.fi Physiologically-relevant levels of sphingomyelin, but not GM1, induces a beta-sheet-rich structure in the amyloid-beta(1-42) monomer Owen, Michael C. 2018-09 Owen, M C, Kulig,

More information

Methods of studying membrane structure

Methods of studying membrane structure King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 2 Methods of studying membrane structure Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/eaaq0762/dc1 Supplementary Materials for Structures of monomeric and oligomeric forms of the Toxoplasma gondii perforin-like protein 1 Tao Ni, Sophie I. Williams,

More information

Interaction Between Amyloid-b (1 42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study

Interaction Between Amyloid-b (1 42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study Biophysical Journal Volume 96 February 2009 785 797 785 Interaction Between Amyloid-b (1 42) Peptide and Phospholipid Bilayers: A Molecular Dynamics Study Charles H. Davis and Max L. Berkowitz * Department

More information

Life Sciences 1a. Practice Problems 4

Life Sciences 1a. Practice Problems 4 Life Sciences 1a Practice Problems 4 1. KcsA, a channel that allows K + ions to pass through the membrane, is a protein with four identical subunits that form a channel through the center of the tetramer.

More information

Lecture 33 Membrane Proteins

Lecture 33 Membrane Proteins Lecture 33 Membrane Proteins Reading for today: Chapter 4, section D Required reading for next Wednesday: Chapter 14, sections A and 14.19 to the end Kuriyan, J., and Eisenberg, D. (2007) The origin of

More information

Inhibition of Fibril Formation of Beta-Amyloid Peptides

Inhibition of Fibril Formation of Beta-Amyloid Peptides John von Neumann Institute for Computing Inhibition of Fibril Formation of Beta-Amyloid Peptides N. S. Lam, M. Kouza, H. Zung, M. S. Li published in From Computational Biophysics to Systems Biology (CBSB08),

More information

Lipids and Membranes

Lipids and Membranes Lipids Lipids are hydrophobic or amphiphilic insoluble in water soluble in organic solvents soluble in lipids Lipids are used as energy storage molecules structural components of membranes protective molecules

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

Protein Structure and Function

Protein Structure and Function Protein Structure and Function Protein Structure Classification of Proteins Based on Components Simple proteins - Proteins containing only polypeptides Conjugated proteins - Proteins containing nonpolypeptide

More information

Cell Membrane Structure and Function. What is the importance of having a cell membrane?

Cell Membrane Structure and Function. What is the importance of having a cell membrane? Cell Membrane Structure and Function What is the importance of having a cell membrane? I. Membrane Structure a. Membranes contain proteins, lipids, and carbohydrates (which are all types of macromolecules)

More information

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5 Membrane Structure and Function Chapter 5 Cell Membrane: a Phospholipid Bilayer Phospholipid Hydrophilic Head Hydrophobic Tail Lipid Bilayer Fluid Mosaic Model Mixture of saturated and unsaturated fatty

More information

SID#: Also give full SID# (w/ 9) on your computer grid sheet (fill in grids under Student Number) BIO 315 Exam I

SID#: Also give full SID# (w/ 9) on your computer grid sheet (fill in grids under Student Number) BIO 315 Exam I SID#: Also give full SID# (w/ 9) on your computer grid sheet (fill in grids under Student Number) BIO 315 Exam I Choose an answer of A,B, C, or D for each of the following Multiple Choice Questions 1-35.

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

Cell membranes. Stef Elorriaga 4/11/2016 BIO102

Cell membranes. Stef Elorriaga 4/11/2016 BIO102 Cell membranes Stef Elorriaga 4/11/2016 BIO102 Announcements Lab report 2 is due now Quiz 2 is on Wednesday on cells, part of the cells, plasma membrane, and enzymes Outline of the day Activity on the

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Chapters 9 and 10 Lipids and Membranes

Chapters 9 and 10 Lipids and Membranes Chapters 9 and 10 Lipids and Membranes Lipids- a class of biological molecules defined by low solubility in water and high solubility in nonpolar solvents. Lipids contain or are derived from fatty acids.

More information

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function. Cell Membranes and Cell Transport Membrane Structure and Function Cell Membranes and Cell Transport 1895 1917 1925 Membrane models Membranes are made of lipids Phospholipids can form membranes Its actually 2 layers - there are proteins

More information

STRUCTURE OF BIOLOGICAL MEMBRANES

STRUCTURE OF BIOLOGICAL MEMBRANES September 12, 2011 8:00-9:50 am STRUCTURE OF BIOLOGICAL MEMBRANES and BIOCHEMISTRY OF MEMBRANE TRANSPORT Lecturer: Dr. Eileen M. Lafer Contact Info: 415B, 567-3764, Lafer@biochem.uthscsa.edu Reading: Stryer

More information

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane:

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane: I. Membrane Structure Figure 1: Phospholipid Figure 1.1: Plasma Membrane Plasma Membrane: 1 II. Early Plasma Membrane Models Figure 2: Davson-Danielli Sandwich Model In the 1960 s new evidence suggested

More information

Diffusion across cell membrane

Diffusion across cell membrane The Cell Membrane and Cellular Transport Diffusion across cell membrane Cell membrane is the boundary between inside & outside separates cell from its environment Can it be an impenetrable boundary? NO!

More information

ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd

ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd I. Classes of membrane lipids A. Glycerolipids (quantitatively the most important of the three membrane lipids) B. Shingolipids

More information

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras Molecular Cell Biology Prof. D. Karunagaran Department of Biotechnology Indian Institute of Technology Madras Module 4 Membrane Organization and Transport Across Membranes Lecture 1 Cell Membrane and Transport

More information

Questions in Cell Biology

Questions in Cell Biology Name: Questions in Cell Biology Directions: The following questions are taken from previous IB Final Papers on the subject of cell biology. Answer all questions. This will serve as a study guide for the

More information

Bioscience in the 21st century

Bioscience in the 21st century Bioscience in the 21st century Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous system 6.

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

2

2 1 2 What defines all living systems is the ability to generate a chemical environment inside the cell that is different from the extracellular one. The plasma membrane separates the inside of the cell

More information

MAE 545: Lecture 14 (11/10) Mechanics of cell membranes

MAE 545: Lecture 14 (11/10) Mechanics of cell membranes MAE 545: ecture 14 (11/10) Mechanics of cell membranes Cell membranes Eukaryotic cells E. Coli FIBROBAST 10 mm E. COI nuclear pore complex 1 mm inner membrane plasma membrane secretory complex ribosome

More information

Cellular Physiology (PHSI3009) Contents:

Cellular Physiology (PHSI3009) Contents: Cellular Physiology (PHSI3009) Contents: Cell membranes and communication 2 nd messenger systems G-coupled protein signalling Calcium signalling Small G-protein signalling o RAS o MAPK o PI3K RHO GTPases

More information

Membrane Proteins. David S. Goodsell Joanna R. Long 6740 February 6, 2006

Membrane Proteins. David S. Goodsell Joanna R. Long 6740 February 6, 2006 Membrane Proteins David S. Goodsell 999 Joanna R. Long 6740 February 6, 2006 Homework: ) The structure of the potassium channel: Molecular basis of K+ conduction and selectivity, Doyle et al., Science

More information

Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes

Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes Lecture 15 The Lipid Bilayer: A Dynamic Self- Assembled Structure of Multiple Lipid Classes LIPIDS-Biological molecules with low solubility in water and high solubility in non-polar solvents -Lipids form

More information

Cellular Biochemistry

Cellular Biochemistry Cellular Biochemistry Fall Semester 2013 Sept. 23 Benoit Kornmann Institute of Biochemistry Introduction to biological membranes General functions and properties Membrane lipids Physical properties Distribution/asymmetry

More information

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley

BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term First Year. Lecture 2 Hagan Bayley BIOLOGICAL CHEMISTRY Prof. J.H.P. Bayley, Dr. R.M. Adlington and Dr. L. Smith Trinity Term 2007 - First Year Lecture 2 Hagan Bayley Introduction to the macromolecules of life and cell structures. Introduction

More information

3.2.3 Transport across cell membranes

3.2.3 Transport across cell membranes alevelbiology.co.uk 3.2.3 Transport across cell membranes SPECIFICATION The basic structure of all cell membranes, including cell-surface membranes and the membranes around the cell organelles of eukaryotes,

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

Biomolecules: lipids

Biomolecules: lipids Biomolecules: lipids Organic biomolecules: lipids Organic amphiphilic compounds insoluble in water Easily extracted from animal and vegetal cells using apolar solvents Fundamental to build cell's shape

More information

Incorporation of porin channels into miniaturized bilayers

Incorporation of porin channels into miniaturized bilayers Incorporation of porin channels into miniaturized bilayers Tivadar Mach, Mohammed Kreir, Niels Fertig, Mathias Winterhalter Marseille 11 April 2008 Folded classical bilayer Main issues: time resolution

More information