Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin

Size: px
Start display at page:

Download "Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin"

Transcription

1 Reconstruction of a transmembrane protein tetraspanin (CD9) into lipid bilayer by interaction of ganglioside GM3 and tetraspanin Glycobiology World Congress August 12, 2015 Tokyo University of Science, Japan Shigeomi Horito

2 Model for the organization of rafts Kai Simons & Elina Ikonen, NATURE VL JUNE 1997 The rafts (red) segregate from the other regions (blue) of the bilayer. Rafts contain proteins attached to the exoplasmic leaflet of the bilayer by their GPI anchors, proteins binding to the cytoplasmic leaflet by acyl tails (the Src-family kinase Yes is shown), or proteins associating through their transmembrane domains, like the influenza virus proteins neuraminidase and haemagglutinin (HA).

3 Function of ganglioside rafts n outer membrane of raft, it is very clear that many ligands link to the corresponding receptors. How is the signal transduced on inner membrane of raft? For example, autophosphorylation enzyme or cutting enzyme of signal peptides. How is the enzyme recluited?

4 Preparation monolayers by Langmuir-Blodgett technique Lipids solution were spread on the subphase using microsyringe. After evaporation of the solvent, the monolayer was compressed at 50 cm 2 / min. The half side of cell membrane can be obtained.

5 Molecular structures of lipids for L-B film preparation DPPC dipalmitoylphosphatidylcholine DPC dioleoylphosphatidylcholine DPPE dipalmitoylphosphatidylethanolamine

6 About atomic force microscopy (AFM) Atomic Force between probe and sample is able to measure. Same value of atomic force means same distance. sample Resolusion: about 0.2 nm Hight of sample surface was obsurbed from position of probe. hight map

7 Chemical structure of ganglioside GM1 Ganglioside was composed of carbohydrate part and lipid part (Ceramide). Ganglioside GM1 has a sialyl a2 3 galactose residue.

8 Membrane properties of binary and ternary systems of ganglioside GM1/DPPC/DPC Effect of surface pressure on the AFM images for the GM1/DPPC/DPC (2:9:9) monolayer. Surface pressure: (a) 30 mn/m; (b) 35 mn/m; (c) 40 mn/m. Conclusion: The percolation pattern in the GM1/DPPC/DPC monolayer changed as the surface pressure was varied. Yumiko hta, Shoko Yokoyama, Hideki Sakai, Masahiko Abe Colloids and Surfaces B: Biointerfaces 34 (2004)

9 1. Research on ganglioside GM1a raft GM1a is not commercially available, We must synthesize it. GM1a in DPC/DPPC monolayers and hybrid bilayers are prepared. Distribution of GM1a is investigated by AFM.

10 Chemical structure of GM1a a-series ganglioside containing a sialyl a-2 6-N-acetylgaractosamine residue are exclusively localized on cholinergic neurons.

11 Chemical synthesis of GM1α (1) 6 steps from glucosamine Me Ac b d Bz Bz f R 2 R 1 Ac H Bn Bn SEt Bn NPhth Bn 1 2 Me Ac PhthN Bn H Bn Bn SEt Bn NPhth Bn Bn 1 2 Bn Bn R 2 a R 1 Bn Ac Bn Bn PhthN Bn Bn Bn SE Bn 3 R 1, R 2 = CHC Bn b 6 H 4 Me-p (91%) c 4 R 1 = H, R 2 = PMB (88%) Bz H R Bz AcHN Bn Bn 8 R = PMB (58%) Bn Bn Bn SE R 2 PMB c R 1 Bn Bn H Bn R 1 Bn SE Bn Bn Bn Bn SE Bn Bn Bn d 5 R 1 = NPhth, R 2 = Ac (83%) 6 R 1 = NHAc, R 2 = H (89%) Bz Bz Bz Bz e e Bz Bz SLau Bz Bz Bz 7 9 R = H (91%) Bn 3 R 1, R 2 = CHC 6 H 4 Me-p (91%) 4 R 1 = H, R 2 = PMB (88%) R 2 PMB H a Bn 5 R 1 = NPhth, R 2 = Ac (83%) 6 R 1 = NHAc, R 2 = H (89%) Bz H R Bz Bz AcHN f Bn 8 R = PMB (58%) 9 R = H (91%) Bn Bn Bn Bn Bn SE 7 SE Bn SE Bn Bn SE Bn 7 steps from lactose 4 steps from galactose 23 steps

12 Chemical synthesis of GM1α (2) Ac Ac 9 CMe Ac Ac TCAHN Ac Ac a 10 CMe SEt R 3 HN Ac Ac Bz Bz R 2 Bz R 1 Bz AcHN R 1 R 1 R 1 R 1 SE 11 R 1 = Bn, R 2 = H, R 3 = TCA (60%) R 1 b 12 R 1 = Bn, R 2 = H, R 3 = Ac (96%) c 13 R 1 = Bz, R 2 = Bz, R 3 = Ac (59%) Bz Ac H (CH 2 ) 14 CH Ac CMe 3 d N 3 14 AcHN Ac Ac Bz Bz Bz Bz Bz Bz AcHN Bz Bz Bz Bz (CH Bz 2 ) 14 CH 3 15 R = N 3 (36%) e Bz R 16 R = NHC(CH 2 ) 16 CH 3 (74%) 9 steps from glucosamine 7 steps from galactose H H CH f AcHN H H H H H H H AcHN 17 (76%) H H H H H H H (CH 2 ) 14 CH 3 NHC( CH 2 ) 16 CH 3 Total steps:45 (33 steps were known in publication.)

13 Surface pressure vs. area per molecule isotherms for GM1a/DPC/DPPC(1:9:9) Surface pressure [mn/ m] DPC liquid-condensed phase liquid-expanded phase Aera per molecule [sq. A / molecule]

14 AFM images for GM1a/DPC/DPPC (1:9:9) monolayers a) 15 mn/m b) 25 mn/m c) 30 mn/m d) 40 mn/m A, A : DPPC-rich domains : GM1α-raft Subphase: 2.0mM NaCl

15 AFM images for GM1a/DPC/DPPC (1:9:9) monolayers on physiologycal saline a) 15 mn/m b) 25 mn/m c) 30 mn/m d) 40 mn/m Subphase: 157 mm NaCl

16 AFM images for hybrid bilayers of GM1a/DPC/DPPC (1:9:9) a) 15 mn/m b) 20 mn/m c) 25 mn/m d) 30 mn/m First layer: DPPE Subphase: 157 mm NaCl Second layer: GM1α:DPC:DPPC=1:9:9 Subphase: 2.0 mm NaCl

17 Self-assembly by surface pressure GM1a/DPC/DPPC ternary monolayer and hybrid bilayer obviously shows GM1α-rafts. The raft was associated, separated and associated again, according to increase of surface pressure. The association of rafts causes enzymelocalization on signal transduction.

18 2. Reconstruction of transmembrane protein

19 A novel method of AquaporinZ incorporation via binary-lipid Langmuir monolayers Guofei Suna, Hu Zhoub, Yi Li a, Kandiah Jeyaseelanc, Arunmozhiarasi Armugamc, Tai-Shung Chung, Colloids and Surfaces B: Biointerfaces 89 (2012) The incorporation of Histidine-tagged AquaporinZ by Nickel chelating lipids is investigated with Langmuir Blodgett technology for the first time. Detergent removal by BioBeads in the Langmuir Blodgett system is studied. AquaporinZ and detergent interaction during protein insertion is elaborated and a protein incorporation mechanism is proposed.

20 GM3/CD9/CD81 complex Ganglioside GM3 Tetraspanin CD9 CD81 The complex regulates cell growth, proliferation. The complex regulates also cancer cell proliferation.

21 Surface pressure (mn / m) Surface pressure vs. area per molecule isotherms for GM3/DPPC/DPC(1:9:9) ternary monolayer Area / molecule (sq.a / molecule)

22 AFM images for GM3/DPC/DPPC (1:9:9) monolayers Surface pressure: 10 mn/m 9 images / 9 points Surface pressure: 20 mn/m 9 images / 9 points Surface pressure: 30 mn/m 8 images / 9 points Surface pressure: 40 mn/m 9 images / 9 points

23 Cross-sectional study of rafts Surface pressure: 10 mn/m Hight: 0.9±0.1 nm Surface pressure: 20 mn/m Hight: 0.8±0.1 nm, 2.1±0.2 nm Surface pressure: 30 mn/m Hight: 0.5±0.2 nm, 1.7±0.5 nm Surface pressure: 40 mn/m Hight: 0.5±0.2 nm, 1.6±0.3 nm

24 Proposed structure of ganglioside raft GM3 rich domain (about 2 nm) DPPC rich domain (about 1 nm) DPC rich domain Mica plate

25 AFM images for hybrid bilayers of GM3/DPC/DPPC (1:9:9) Surface pressure: 10 mn/m 6 images / 9 points Surface pressure: 20 mn/m 7 images / 9 points Surface pressure: 30 mn/m 6 images / 9 points Surface pressure: 40 mn/m 5 images / 9 points

26 Cross-sectional study of rafts Surface pressure: 10 mn/m Hight: 6.3±0.7 nm, 11.5±0.4 nm Surface pressure: 20 mn/m Hight: 6.7±0.6 nm, 12.5±0.2 nm Surface pressure: 30 mn/m Hight: 6.2±0.4 nm, 11.7±0.5 nm Surface pressure: 40 mn/m Hight: 6.5±0.5 nm, 11.2±0.3 nm

27 Proposed structure of ganglioside raft GM3 rich domain (about 12 nm) DPPC rich domain (about 7 nm) DPC rich domain Mica plate

28 Reconstruction of tetraspanin (CD9) into lipid bilayer The hybrid bilayer was kept in CD9 solution (2 mg/ml) for 5 min. Surface pressure: 30 mn/m 5 images / 9 points were changed. Surface pressure: 40 mn/m 2 images / 9 points were no change. 7 images / 9 points were changed.

29 Cross-sectional study of rafts reconstructed by tetraspanin Surface pressure: 30 mn/m Hight: 6.1±0.5 nm, 11.7±1.1 nm Surface pressure: 30 mn/m Hight: 6.1±0.5 nm, 16.4±0.9 nm Surface pressure: 40 mn/m, 2 / 9 Hight: 6.4±0.5 nm, 11.3±0.8 nm Surface pressure: 40 mn/m, 7 / 9 Hight: 6.4±0.5 nm, 15.6±1.7 nm

30 Proposed structure of ganglioside raft with tetraspanin GM3 rich domain (about 12 nm) +tetraspanin(about 17 nm) DPPC rich domain (about 7 nm) DPC rich domain Mica plate tetraspanin

Chemical Surface Transformation 1

Chemical Surface Transformation 1 Chemical Surface Transformation 1 Chemical reactions at Si H surfaces (inorganic and organic) can generate very thin films (sub nm thickness up to µm): inorganic layer formation by: thermal conversion:

More information

Plasma membrane structure and dynamics explored via a combined AFM/FCS approach

Plasma membrane structure and dynamics explored via a combined AFM/FCS approach Plasma membrane structure and dynamics explored via a combined AFM/FCS approach Salvatore Chiantia Molekulare Biophysik, Dept. Of Biology Humboldt-Universität zu Berlin Dresden nanoseminar, May 2013 Outline

More information

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology

Cell Membranes. Dr. Diala Abu-Hassan School of Medicine Cell and Molecular Biology Cell Membranes Dr. Diala Abu-Hassan School of Medicine Dr.abuhassand@gmail.com Cell and Molecular Biology Organelles 2Dr. Diala Abu-Hassan Membrane proteins Major components of cells Nucleic acids DNA

More information

ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd

ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd ANSC (NUTR) 618 LIPIDS & LIPID METABOLISM Membrane Lipids and Sphingolipidsd I. Classes of membrane lipids A. Glycerolipids (quantitatively the most important of the three membrane lipids) B. Shingolipids

More information

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect Physical Cell Biology Lecture 10: membranes elasticity and geometry Phillips: Chapter 5, Chapter 11 and Pollard Chapter 13 Hydrophobicity as an entropic effect 1 Self-Assembly of Lipid Structures Lipid

More information

BIOL*1090 Introduction To Molecular and Cellular Biology Fall 2014

BIOL*1090 Introduction To Molecular and Cellular Biology Fall 2014 Last time... BIOL*1090 Introduction To Molecular and Cellular Biology Fall 2014 Lecture 3 - Sept. 15, 2014 Viruses Biological Membranes Karp 7th ed: Chpt. 4; sections 4-1, 4-3 to 4-7 1 2 VIRUS Non-cellular

More information

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/

MEMBRANE STRUCTURE. Lecture 8. Biology Department Concordia University. Dr. S. Azam BIOL 266/ 1 MEMBRANE STRUCTURE Lecture 8 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Plasma Membrane 2 Plasma membrane: The outer boundary of the cell that separates it from the world

More information

Electronic Supporting Information

Electronic Supporting Information Modulation of raft domains in a lipid bilayer by boundary-active curcumin Manami Tsukamoto a, Kenichi Kuroda* b, Ayyalusamy Ramamoorthy* c, Kazuma Yasuhara* a Electronic Supporting Information Contents

More information

Protein directed assembly of lipids

Protein directed assembly of lipids Protein directed assembly of lipids D. Nordin, O. Yarkoni, L. Donlon, N. Savinykh, and D.J. Frankel SUPPLEMENTARY MATERIAL Materials and Methods Supported bilayer preparation 1,2-dioleoyl-sn-glycero-3-phosphocholine

More information

Effects of hydrocarbon chains saturation degree on molecular interaction between phospholipids and cholesterol in mixed monolayers

Effects of hydrocarbon chains saturation degree on molecular interaction between phospholipids and cholesterol in mixed monolayers Indian Journal of Biochemistry & Biophysics Vol. 54, October 2017, pp. 186-190 Effects of hydrocarbon chains saturation degree on molecular interaction between phospholipids and cholesterol in mixed monolayers

More information

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan

Rama Abbady. Odai Bani-Monia. Diala Abu-Hassan 5 Rama Abbady Odai Bani-Monia Diala Abu-Hassan Lipid Rafts Lipid rafts are aggregates (accumulations) of sphingolipids. They re semisolid clusters (10-200 nm) of cholesterol and sphingolipids (sphingomyelin

More information

AFM In Liquid: A High Sensitivity Study On Biological Membranes

AFM In Liquid: A High Sensitivity Study On Biological Membranes University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2006 AFM In Liquid: A High Sensitivity Study On Biological Membranes Michael J. Higgins

More information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Antonio Pizzirusso a, Antonio De Nicola* a, Giuseppe Milano a a Dipartimento di Chimica e Biologia, Università

More information

Distribution of GD3 in DPPC Monolayers: A Thermodynamic and Atomic Force Microscopy Combined Study

Distribution of GD3 in DPPC Monolayers: A Thermodynamic and Atomic Force Microscopy Combined Study Biophysical Journal Volume 86 January 2004 321 328 321 Distribution of GD3 in DPPC Monolayers: A Thermodynamic and Atomic Force Microscopy Combined Study Marco Diociaiuti,* Irene Ruspantini,* Cristiano

More information

MODEL SYSTEMS, LIPID RAFTS, AND CELL MEMBRANES 1

MODEL SYSTEMS, LIPID RAFTS, AND CELL MEMBRANES 1 Annu. Rev. Biophys. Biomol. Struct. 2004. 33:269 95 doi: 10.1146/annurev.biophys.32.110601.141803 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on

More information

induced inactivation of lung surfactants

induced inactivation of lung surfactants Albumin-induced induced inactivation of lung surfactants RET Intern: Danielle Petrey,, funded by NSF Mentor: Patrick Stenger PI: Joe Zasadzinski Funding: NIH What is lung surfactant? Lipid and protein

More information

The Cell Membrane (Ch. 7)

The Cell Membrane (Ch. 7) The Cell Membrane (Ch. 7) Phospholipids Phosphate head hydrophilic Fatty acid tails hydrophobic Arranged as a bilayer Phosphate attracted to water Fatty acid repelled by water Aaaah, one of those structure

More information

Models of the plasma membrane - from the fluid mosaic to the picket fence model. Mario Schelhaas Institute of Cellular Virology

Models of the plasma membrane - from the fluid mosaic to the picket fence model. Mario Schelhaas Institute of Cellular Virology Models of the plasma membrane - from the fluid mosaic to the picket fence model Mario Schelhaas Institute of Cellular Virology Today s lecture Central Question: How does the plasma membrane fulfil its

More information

Carolyn M. McQuaw, Audra G. Sostarecz, Leiliang Zheng, Andrew G. Ewing, and Nicholas Winograd*

Carolyn M. McQuaw, Audra G. Sostarecz, Leiliang Zheng, Andrew G. Ewing, and Nicholas Winograd* Lateral Heterogeneity of Dipalmitoylphosphatidylethanolamine-Cholesterol Langmuir-Blodgett Films Investigated with Imaging Time-of-Flight Secondary Ion Mass Spectrometry and Atomic Force Microscopy Carolyn

More information

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein

Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein 1 Supplementary information Common molecular mechanism of amyloid pore formation by Alzheimer s -amyloid peptide and -synuclein by Coralie Di Scala, Nouara Yahi, Sonia Boutemeur, Alessandra Flores, Léa

More information

Gold nanocrystals at DPPC bilayer. Bo Song, Huajun Yuan, Cynthia J. Jameson, Sohail Murad

Gold nanocrystals at DPPC bilayer. Bo Song, Huajun Yuan, Cynthia J. Jameson, Sohail Murad Gold nanocrystals at DPPC bilayer Bo Song, Huajun Yuan, Cynthia J. Jameson, Sohail Murad Coarse-grained mapping strategy of a DPPC lipid molecule. The structure of gold nanocrystals (bare gold nanoparticles)

More information

40s 50s. 70s. Membrane Rafts

40s 50s. 70s. Membrane Rafts 40s 50s 70s Membrane Rafts Membrane Microdomains Raft is a specific type of microdomain sphingolipid/cholesterol rich region Separation of discrete liquid-ordered and liquid-disordered phase domains occurring

More information

Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine

Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine Interaction of pulmonary surfactant protein A with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface Shou-Hwa Yu 1, *, and Fred Possmayer*,, Department of Obstetrics and Gynecology,*

More information

Advanced Cell Biology. Lecture 28

Advanced Cell Biology. Lecture 28 Advanced Cell Biology. Lecture 28 Alexey Shipunov Minot State University April 8, 2013 Shipunov (MSU) Advanced Cell Biology. Lecture 28 April 8, 2013 1 / 41 Outline Questions and answers Shipunov (MSU)

More information

Rectangular solid domains in ceramide^cholesterol monolayers ^ 2D crystals

Rectangular solid domains in ceramide^cholesterol monolayers ^ 2D crystals Biochimica et Biophysica Acta 1464 (2000) 1^6 www.elsevier.com/locate/bba Rapid report Rectangular solid domains in ceramide^cholesterol monolayers ^ 2D crystals K. Ekelund a, L. Eriksson a;b, E. Sparr

More information

Advanced Cell Biology. Lecture 28

Advanced Cell Biology. Lecture 28 Alexey Shipunov Minot State University March 30, 2012 Outline Questions and answers Outline Questions and answers Questions and answers Previous final question: the answer How to make a transgenic organism

More information

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment.

Chapter 9 - Biological Membranes. Membranes form a semi-permeable boundary between a cell and its environment. Chapter 9 - Biological Membranes www.gsbs.utmb.edu/ microbook/ch037.htmmycoplasma Membranes form a semi-permeable boundary between a cell and its environment. Membranes also permit subcellular organization

More information

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells

This week s topic will be: Evidence for the Fluid Mosaic Model. Developing theories, testing hypotheses and techniques for visualizing cells Tutorials, while not mandatory, will allow you to improve your final grade in this course. Thank you for your attendance to date. These notes are not a substitute for the discussions that we will have

More information

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes Big Idea In the biological sciences, a dehydration synthesis (condensation reaction) is typically defined as a chemical reaction that involves the loss of water from the reacting molecules. This reaction

More information

Colloids and Surfaces B: Biointerfaces 52 (2006) 57 75

Colloids and Surfaces B: Biointerfaces 52 (2006) 57 75 Colloids and Surfaces B: Biointerfaces 52 (2006) 57 75 Mode of interaction of ganglioside Langmuir monolayer originated from echinoderms: Three binary systems of ganglioside/dppc, ganglioside/dmpe, and

More information

Pulmonary Surfactant. Jian kang, M.D. Pediatric PGY-2

Pulmonary Surfactant. Jian kang, M.D. Pediatric PGY-2 Pulmonary Surfactant Jian kang, M.D. Pediatric PGY-2 Objectives Functions Composition Metabolism Applications Functions To increase pulmonary compliance To prevent the lung from collapsing at the end of

More information

Chapter 12: Membranes. Voet & Voet: Pages

Chapter 12: Membranes. Voet & Voet: Pages Chapter 12: Membranes Voet & Voet: Pages 390-415 Slide 1 Membranes Essential components of all living cells (define boundry of cells) exclude toxic ions and compounds; accumulation of nutrients energy

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Cerebroside Langmuir monolayers originated from the echinoderms I. Binary systems of cerebrosides and phospholipids

Cerebroside Langmuir monolayers originated from the echinoderms I. Binary systems of cerebrosides and phospholipids Colloids and Surfaces B: Biointerfaces 42 (2005) 157 174 Cerebroside Langmuir monolayers originated from the echinoderms I. Binary systems of cerebrosides and phospholipids Hiromichi Nakahara a, Shohei

More information

Lecture 15. Membrane Proteins I

Lecture 15. Membrane Proteins I Lecture 15 Membrane Proteins I Introduction What are membrane proteins and where do they exist? Proteins consist of three main classes which are classified as globular, fibrous and membrane proteins. A

More information

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion

Lipids: Membranes Testing Fluid Mosaic Model of Membrane Structure: Cellular Fusion Models for Membrane Structure NEW MODEL (1972) Fluid Mosaic Model proposed by Singer & Nicholson Lipids form a viscous, twodimensional solvent into which proteins are inserted and integrated more or less

More information

Neutron reflectivity in biology and medicine. Jayne Lawrence

Neutron reflectivity in biology and medicine. Jayne Lawrence Neutron reflectivity in biology and medicine Jayne Lawrence Why neutron reflectivity studies? build up a detailed picture of the structure of a surface in the z direction n e u tro n s in n e u tro n s

More information

ULTRARIPA kit for Lipid Raft. 1. Basic information

ULTRARIPA kit for Lipid Raft. 1. Basic information ULTRARIPA kit for Lipid Raft 1. Basic information Background: Cell lysis buffers SDS-containing buffer Advantages - Strong extraction activity Fully extraction of cells Disadvantages - Denaturing protein

More information

Methods of studying membrane structure

Methods of studying membrane structure King Saud University College of Science Department of Biochemistry Biomembranes and Cell Signaling (BCH 452) Chapter 2 Methods of studying membrane structure Prepared by Dr. Farid Ataya http://fac.ksu.edu.sa/fataya

More information

BIOB111_CHBIO - Tutorial activity for Session 12

BIOB111_CHBIO - Tutorial activity for Session 12 BIOB111_CHBIO - Tutorial activity for Session 12 General topic for week 6 Session 12 Lipids Useful Links: 1. Animations on Cholesterol (its synthesis, lifestyle factors, LDL) http://www.wiley.com/college/boyer/0470003790/animations/cholesterol/cholesterol.htm

More information

Week 5 Section. Junaid Malek, M.D.

Week 5 Section. Junaid Malek, M.D. Week 5 Section Junaid Malek, M.D. HIV: Anatomy Membrane (partiallystolen from host cell) 2 Glycoproteins (proteins modified by added sugar) 2 copies of RNA Capsid HIV Genome Encodes: Structural Proteins

More information

Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces

Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces Applied Surface Science 246 (2005) 362 366 www.elsevier.com/locate/apsusc Influence of active sites organisation on calcium carbonate formation at model biomolecular interfaces S. Hacke a, *,D.Möbius b,

More information

The phosphate group replaces the fatty acid on C number 3 of a triacylglycerol molecule O O CH 2 O C R CH 2 O P O X OH.

The phosphate group replaces the fatty acid on C number 3 of a triacylglycerol molecule O O CH 2 O C R CH 2 O P O X OH. Phosphoacylglycerols (Phospholipids) Phosphoacylglycerols are fatty acid esters of glycerol which also contain a phosphate group and other specific groups The phosphate group replaces the fatty acid on

More information

Effects of Second Messengers

Effects of Second Messengers Effects of Second Messengers Inositol trisphosphate Diacylglycerol Opens Calcium Channels Binding to IP 3 -gated Channel Cooperative binding Activates Protein Kinase C is required Phosphorylation of many

More information

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force

Phase Transition Behaviours of the Supported DPPC Bilayer. Investigated by Sum Frequency Generation (SFG) and Atomic Force Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information for Phase Transition Behaviours of the Supported DPPC Bilayer

More information

Condensing and Fluidizing Effects of Ganglioside G M1 on Phospholipid Films

Condensing and Fluidizing Effects of Ganglioside G M1 on Phospholipid Films Biophysical Journal Volume 94 April 2008 3047 3064 3047 Condensing and Fluidizing Effects of Ganglioside G M1 on Phospholipid Films Shelli L. Frey,* Eva Y. Chi,* Cristóbal Arratia, y Jaroslaw Majewski,

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Biochimica et Biophysica Acta

Biochimica et Biophysica Acta Biochimica et Biophysica Acta 1808 (2011) 1832 1842 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Comparative study of clinical

More information

Molecular Organization of the Cell Membrane

Molecular Organization of the Cell Membrane Molecular Organization of the Cell Membrane A walk from molecules to a functional biostructure Cell Membrane Definition An ultrastructure separating connecting the cell to the environment 1 Coarse chemical

More information

The physical properties of mixtures of cholesterol, phospholipids,

The physical properties of mixtures of cholesterol, phospholipids, Condensed complexes, rafts, and the chemical activity of cholesterol in membranes Arun Radhakrishnan, Thomas G. Anderson, and Harden M. McConnell* Department of Chemistry, Stanford University, Stanford

More information

Unit 2: Characteristics of Living Things Lesson 20: Cell Membrane

Unit 2: Characteristics of Living Things Lesson 20: Cell Membrane Name Unit 2: Characteristics of Living Things Lesson 20: Cell Membrane Date Objective: Students will be able to prove why a simple defect in a cell membrane protein can make a life or- death difference.

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Modeling of Nanostructures : Bionanosystems, Polymers, and Surfaces

Modeling of Nanostructures : Bionanosystems, Polymers, and Surfaces 2008 Alberta Nanotech Showcase November 20, 2008 Maria Stepanova Research Officer Principal Investigator NINT Modeling of Nanostructures : Bionanosystems, Polymers, and Surfaces We develop numeric tools

More information

Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid

Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid Biophysical Journal Volume 96 February 2009 1415 1429 1415 Pulmonary Surfactant Model Systems Catch the Specific Interaction of an Amphiphilic Peptide with Anionic Phospholipid Hiromichi Nakahara, Sannamu

More information

1.4 Page 1 Cell Membranes S. Preston 1

1.4 Page 1 Cell Membranes S. Preston 1 AS Unit 1: Basic Biochemistry and Cell Organisation Name: Date: Topic 1.3 Cell Membranes and Transport Page 1 1.3 Cell Membranes and Transport from your syllabus l. Cell Membrane Structure 1. Read and

More information

Lecture 36: Review of membrane function

Lecture 36: Review of membrane function Chem*3560 Lecture 36: Review of membrane function Membrane: Lipid bilayer with embedded or associated proteins. Bilayers: 40-70% neutral phospholipid 10-20% negative phospholipid 10-30% cholesterol 10-30%

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Self-organized Structures of Polynucleotides on the Stearic Acid Monolayers

Self-organized Structures of Polynucleotides on the Stearic Acid Monolayers WDS'05 Proceedings of Contributed Papers, Part III, 535 539, 2005. ISBN 80-86732-59-2 MATFYZPRESS Self-organized Structures of Polynucleotides on the Stearic Acid Monolayers S. Staritsyn and E. Dubrovin

More information

Lipids and Membranes

Lipids and Membranes Lipids Lipids are hydrophobic or amphiphilic insoluble in water soluble in organic solvents soluble in lipids Lipids are used as energy storage molecules structural components of membranes protective molecules

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Biophysical Journal Volume 94 May

Biophysical Journal Volume 94 May Biophysical Journal Volume 94 May 2008 3549 3564 3549 Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films. I. Micro- and Nanostructures of Functional Pulmonary Surfactant

More information

Lipids and Biological Membranes

Lipids and Biological Membranes Lipids and Biological Membranes Lipids: Found in all living organisms Especially important as components of biological membranes Defined functionally, not structurally, as compounds that are totally or

More information

Protein-Lipid Interactions: Structural and Functional Effects Anthony Lee (Southampton)

Protein-Lipid Interactions: Structural and Functional Effects Anthony Lee (Southampton) Saulieu ctober 2004 Protein-Lipid Interactions: Structural and Functional Effects Anthony Lee (Southampton) The membrane as a system Co-evolution of lipids and membrane proteins R P - R Phosphatidylcholine

More information

The structure and function of cell membranes examined with atomic force microscopy and single-molecule force spectroscopy

The structure and function of cell membranes examined with atomic force microscopy and single-molecule force spectroscopy Chemical Society Reviews The structure and function of cell membranes examined with atomic force microscopy and single-molecule force spectroscopy Journal: Chemical Society Reviews Manuscript ID: CS-REV-12-2014-000508.R1

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Biological membranes are composed of lipid bilayers

More information

COR 011 Lecture 9: ell membrane structure ept 19, 2005

COR 011 Lecture 9: ell membrane structure ept 19, 2005 COR 011 Lecture 9: ell membrane structure ept 19, 2005 Cell membranes 1. What are the functions of cell membranes? 2. What is the current model of membrane structure? 3. Evidence supporting the fluid mosaic

More information

membranes cellular membranes basic structure basic structure chapter ECM CYTOPLASM

membranes cellular membranes basic structure basic structure chapter ECM CYTOPLASM membranes chapter 11-1 1 cellular membranes 3 compartmentalization intracellular compartments 1. receiving info membrane receptors recognition and interaction with other cells. import and export of molecules

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

Cerebroside Langmuir monolayers originated from the echinoderms: II. Binary systems of cerebrosides and steroids

Cerebroside Langmuir monolayers originated from the echinoderms: II. Binary systems of cerebrosides and steroids Colloids and Surfaces B: Biointerfaces 42 (2005) 175 185 Cerebroside Langmuir monolayers originated from the echinoderms: II. Binary systems of cerebrosides and steroids Hiromichi Nakahara a, Shohei Nakamura

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Lipids. Lipids. Jiří Jonák and Lenka Fialová Institute of Medical Biochemistry, 1st Medical Faculty of the Charles University, Prague

Lipids. Lipids. Jiří Jonák and Lenka Fialová Institute of Medical Biochemistry, 1st Medical Faculty of the Charles University, Prague Lipids Jiří Jonák and Lenka Fialová Institute of Medical Biochemistry, 1st Medical Faculty of the Charles University, Prague Lipids 1. General introduction 2. Nomenclature of fatty acids 3. Degradation

More information

Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids

Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids Phosphatidylcholine Phosphatidylcholines are a class of glycerophospholipids which along with other phospholipids account for more than half of the lipids in most membranes. Phosphatidylcholines can further

More information

Interactions between Fluoroquinolones and lipids: Biophysical studies

Interactions between Fluoroquinolones and lipids: Biophysical studies Louvain Drug Research Institute Cellular and Molecular Pharmacology Unit Interactions between Fluoroquinolones and lipids: Biophysical studies Hayet BENSIKADDOUR May 25 th, 2011 Promoter Prof. Marie-Paule

More information

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol

Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol d 1 2 Lipids are macromolecules, but NOT polymers. They are amphipathic composed of a phosphate head and two fatty acid tails attached to a glycerol backbone. The phosphate head group is hydrophilic water

More information

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules BIOLOGY 111 CHAPTER 2: The Chemistry of Life Biological Molecules The Chemistry of Life : Learning Outcomes 2.4) Describe the significance of carbon in forming the basis of the four classes of biological

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

Dr. Ahmed K. Ali Attachment and entry of viruses into cells Lec. 6 Dr. Ahmed K. Ali Attachment and entry of viruses into cells The aim of a virus is to replicate itself, and in order to achieve this aim it needs to enter a host cell, make copies of itself and

More information

Penetration of Gold Nanoparticle through Human Skin: Unraveling Its Mechanisms at the Molecular Scale

Penetration of Gold Nanoparticle through Human Skin: Unraveling Its Mechanisms at the Molecular Scale Penetration of Gold Nanoparticle through Human Skin: Unraveling Its Mechanisms at the Molecular Scale Rakesh Gupta and Beena Rai* TATA Research Development & Design Centre, TCS Innovation labs, Pune India,

More information

Chapter 12. Part II. Biological Membrane

Chapter 12. Part II. Biological Membrane Chapter 12 Part II. Biological Membrane Single-tailed lipids tend to form micelles Critical micelle concentration (cmc): minimum concentration that forms micelles e.g.) cmc for SDS 1mM; cmc for phospholipids

More information

Drugs, Bugs & Neutrons where are we and where do we go from here?

Drugs, Bugs & Neutrons where are we and where do we go from here? Drugs, Bugs & Neutrons where are we and where do we go from here? Dave Barlow, Pharmacy Department, King s College London The Future and Next Generation Capabilities of Accelerator-driven Neutron and Muon

More information

Coarse grained simulations of Lipid Bilayer Membranes

Coarse grained simulations of Lipid Bilayer Membranes Coarse grained simulations of Lipid Bilayer Membranes P. B. Sunil Kumar Department of Physics IIT Madras, Chennai 600036 sunil@iitm.ac.in Atomistic MD: time scales ~ 10 ns length scales ~100 nm 2 To study

More information

Lipid raft-a gateway for passing through the cell membrane for pathogens

Lipid raft-a gateway for passing through the cell membrane for pathogens 16 3 2004 6 Chinese Bulletin of Life Sciences Vol. 16, No. 3 Jun., 2004 10040374(2004)03014404 200031 / GPI (GPI) Q241 Q257 R37 A Lipid rafta gateway for passing through the cell membrane for pathogens

More information

Cellular Physiology (PHSI3009) Contents:

Cellular Physiology (PHSI3009) Contents: Cellular Physiology (PHSI3009) Contents: Cell membranes and communication 2 nd messenger systems G-coupled protein signalling Calcium signalling Small G-protein signalling o RAS o MAPK o PI3K RHO GTPases

More information

What is the intermolecular force present in these molecules? A) London B) dipole-dipole C) hydrogen bonding D) ion-dipole E) None. D.

What is the intermolecular force present in these molecules? A) London B) dipole-dipole C) hydrogen bonding D) ion-dipole E) None. D. REVIEW SHEET CHP 7, FRST AND DEAL 1. (7.1) Types of Attractive Forces (Intermolecular forces (IMF)). IMF s are attractive forces between molecules due to electrostatic attraction. Therefore a molecule

More information

Biochimica et Biophysica Acta

Biochimica et Biophysica Acta Biochimica et Biophysica Acta 1828 (2013) 1271 1283 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Investigation of interfacial

More information

A. (10 pts.) Consider the lipid molecules illustrated, identify their parts and briefly describe how their organization is stabilized.

A. (10 pts.) Consider the lipid molecules illustrated, identify their parts and briefly describe how their organization is stabilized. 1. Consider the structural organization of the erythrocyte plasma membrane illustrated below, and answer all of the following questions. (The protein is often referred to as Band 3 from its relative mobility

More information

Interfacial Reactions (Part III)

Interfacial Reactions (Part III) NPTEL Chemical Engineering Interfacial Engineering Module 7: Lecture 3 Interfacial Reactions (Part III) Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

Name: Per. HONORS: Molecules of Life

Name: Per. HONORS: Molecules of Life Name: Per. HONORS: Molecules of Life Carbohydrates, proteins, and fats are classes of organic molecules that are essential to the life processes of all living things. All three classes of molecules are

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

Build-A-Membrane. Print-and-Go. Name Date

Build-A-Membrane. Print-and-Go. Name Date Name Date Print-and-Go http://learn.genetics.utah.edu Build-A-Membrane Cell membranes are made of phospholipid molecules that arrange themselves into two rows called a bilayer. s are embedded in the phospholipid

More information

CHAPTER 11 Membranes

CHAPTER 11 Membranes CHAPTER 11 Membranes Key topics The function of biological membranes The structure and composition of membranes Dynamics of membranes Structure and function of membrane proteins Transport across biological

More information

Enzyme-coupled Receptors. Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors

Enzyme-coupled Receptors. Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors Enzyme-coupled Receptors Cell-surface receptors 1. Ion-channel-coupled receptors 2. G-protein-coupled receptors 3. Enzyme-coupled receptors Cell-surface receptors allow a flow of ions across the plasma

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression

Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Molecular Cell Biology - Problem Drill 19: Cell Signaling Pathways and Gene Expression Question No. 1 of 10 1. Which statement about cell signaling is correct? Question #1 (A) Cell signaling involves receiving

More information

Cellular Biochemistry

Cellular Biochemistry Cellular Biochemistry Fall Semester 2013 Sept. 23 Benoit Kornmann Institute of Biochemistry Introduction to biological membranes General functions and properties Membrane lipids Physical properties Distribution/asymmetry

More information

Endocytosis of Nanoparticles

Endocytosis of Nanoparticles Endocytosis of Nanoparticles Reinhard Lipowsky Theory & Bio-Systems, MPI-CI, Potsdam Motivation: Cellular Uptake of NPs Dissecting Endocytosis into Adhesion + Engulfment + Fission Quantitative Relationships

More information