Supporting information

Size: px
Start display at page:

Download "Supporting information"

Transcription

1 Supporting information A novel lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies Evelyn Rampler 1,2,3, Angela Criscuolo 4,8, Martin Zeller 4, Yasin El Abiead 1, Harald Schoeny 1, Gerrit Hermann 1,5, Elena Sokol 6, Ken Cook 6, David Peake 7, Bernard Delanghe 4, Gunda Koellensperger 1,2,3 1 Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 38, 1090 Vienna, Austria 2 Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria 3 Chemistry Meets Microbiology, Althanstraße 14, 1090 Vienna, Austria 4 Thermo Fisher Scientific (Bremen GmbH), Hanna-Kunath-Str. 11, Bremen, Germany 5 ISOtopic Solutions, Währingerstr. 38, 1090 Vienna, Austria 6 Thermo Fisher Scientific, 1 Boundary Park, Hemel Hempstead HP2 7GE, United Kingdom 7 Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, California, USA 8 Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany Supporting information This section contains the extended methods section and additional information on (S1) the combination of MS2 HCD (A) and CID (B) fragmentation, (S2) RPLC-MSn identification of TG 54:4, (S3) examples for quantification of LPC 18:0 and PC 34:0 in SRM 1950 using the 13 C labeled versions of LILY lipids, (S4) relative quantification of human serum SRM 1950 by Full- MS RPLC-MS in positive mode, (S5) linearity of label-free versus compound-specific relative quantification in human plasma, (S6) data-points per peak of TG 52:1 observed by different high-resolution MS detection strategies, (S7) RPLC-MS2 lipid class profiles of human plasma and yeast samples annotated with Lipid Search 4.1, (Table S1) lipid annotation in human plasma and yeast derived from Lipid Search 4.1 after filtering and manual assignment, (Table S2) number of phosphatidylcholine, sphingomyelin, ceramide and triglyceride annotations in human serum plasma RPLC-MS2 and RPLC-MSn and (Table S3) comparison of label-free versus compound-specific absolute quantification for 15 lipids from 10 different classes. 1

2 Lipid profiling and quantification with RPLC-MS The UPLC-system was coupled to an ultra-high-resolution accurate mass Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) for lipid profiling and quantification. The following optimized H-ESI source parameters were applied: Ion Transfer Tube temperature of 170 C, sheath gas flow rate of 45 (arbitrary units, a.u.), auxillary flow rate of 20 a.u., sweep gas of 1 a.u., RF Lens of 22% and Vaporizer temperature of 380 C applying a spray voltage of 3.0 kv in positive mode and 2.5 kv in negative mode. Two methods have been used for this study using these settings, one for quantification using HRAM full MS and HRAM data-dependent HCD MS2 scans and one for identification of yeast and human plasma samples using additional MS3 scans in the linear ion trap. Both methods record HRAM Orbitrap full MS scans in positive mode at resolution setting with an AGC target of 2.0e5. For the data-dependent HRAM HCD MS2 scans MS2 resolution setting and a stepped collision energy of 27 % (± 3%) was applied. Small molecule MIPS mode and Apex triggering functionality was used. The tribrid architecture of the Orbitrap Fusion Lumos enables parallel operation of both the Orbitrap and the linear ion trap to optimize duty cycles. This was used in the identification runs with an LC elution timed optimization of the MS3 trigger parameters. In the first 18 minutes of the method, HRAM HCD MS2 scans were performed only upon detection of precursor masses from a ceramide inclusion list (containing 600 suspect ceramides for human plasma and yeast samples deduced from literature) in the full MS Orbitrap scan over a scan range from m/z (30 known PEG contaminants were on an exclusion list). In order not to miss any analyte ions that are not on the inclusion list, data-dependent HCD scans with detection in the linear ion trap were carried out. Upon detection of diagnostic backbone ions in the HCD MS2 scans for the phosphatidylcholine head group at m/z , the same precursor ions were isolated again and subjected to CID fragmentation in the ion trap. CID is a more gentle fragmentation method compared to HCD and in that way predominantly the lysophospholipid backbone ions were produced. From minute 18 to 28 when predominantly triglycerides elute, the full MS mass range was limited to m/z In parallel to data-dependent HRAM HCD MS2 scans, data-dependent 2

3 low-resolution CID scans in the linear ion trap were carried out and the top 3 fragment ions in the mass range of 33-95% relative to the precursor ions were subjected to low-resolution HCD MS3 scans. In that way triggering of MS2 precursor related ions (unfragmented precursor or neutral loss of triglycerides thereof) was excluded and detailed structural information about the fatty acid backbone of the triglycerides was obtained. All profiling samples were measured in positive mode (n=6) and lipids identified in blank runs (n=6) were removed. Data evaluation was performed using Lipid Search SP1 (Thermo Fisher Scientific) for the ddms2 and enhanced lipid profiling by ddmsn. For the ddmsn identification runs the complex CID/HCD analysis option in the configuration was activated. Lipid Search results were filtered for 5 ppm in MS1, 7 ppm in MS2 and 0.5 Da in MSn. Separate Lipid Search alignments for the ddmsn runs of blanks (n=4) with human plasma samples (n=6) and blanks (n=4) with yeast samples (n=6) were performed using a retention time tolerance of +/ min. The lipids were only considered if the areas were 3 x higher than in the blank samples or not present in the blanks. The main adduct ion was set to H+ for PC, PS, PE, PA, LPGs, Cer, HexCer, CerP, SM and for DG, TG, PG, PI, the main adduct ions were set to M+NH 4 /Na, for Cer, HexCer and CerP additionally adduct ion with loss of H 2 O were considered. The main grade was set to A and B for all lipid classes except PC, Cer, HexCer, CerP and SM, there A, B and C grade were allowed (description of A, B, C grade can be found in Supplementary Table S1 and S2). After additional manual curation of the data, the lipid identification lists for human serum plasma and yeast were matched and compared by their lipid class and lipid species levels 1 (e.g. not including fatty acid scan information on TGs) using a retention time tolerance of +/ min. Tracefinder 4.1 (Thermo Fisher Scientific) was used for Full-MS quantification based on peak areas obtained from extraction ion chromatograms (± 5 ppm) with two different external calibrations: one without internal standardization and one with internal standardization using 500 µl LILY 13 C lipids. The calibration was performed over three orders of magnitude (standard concentrations of 50 nm, 100 nm, 500 nm, 750 nm, 1000 nm, 2500 nm, 5000 nm). 3

4 Supporting Figure S1: The combination of MS2 HCD (A) and CID (B) fragmentation leads to enhanced fatty acyl level information for phosphatidylcholine and sphingomyelin lipids as exemplary shown for PC (16:0_18:1) and SM (d18:1_16:0). 4

5 Supporting Figure S2: RPLC-MSn identification of TG 54:4 based Lipid Search 4.1 annotation and fragmentation pattern derived via CID in MS2 and in HCD in MS3. Supporting Figure S3. A: Endogenous human plasma (SRM 1950) LPC 18:0 versus 13 C labeled LPC 18:0 LILY lipids spiked to human plasma Supporting Figure S3. B: External calibration using the endogenous LPC 18:0 standard and the 13 C labeled LPC 18:0 LILY yeast lipid for compound-specific internal standardization 5

6 Supporting Figure S3. C: Endogenous human plasma (SRM 1950) PC 34:0 versus 13 C labeled PC 34:0 LILY lipids spiked to human plasma Supporting Figure S3. D: External calibration using the endogenous PC 34:0 standard and the 13 C labeled PC 34:0 LILY yeast lipid for compound-specific internal standardization 6

7 Figure S4: Relative quantification of human serum SRM 1950 by Full-MS RPLC-MS in positive mode. Comparison of label-free (A) versus compound-specific (B) relative quantification for 40 lipids out of 6 classes (DG, LPE, PC, PE, PI, TG). The set fold change of prepared dilution series was compared to the experimentally observed fold changes. The 40 lipids were chosen as they were medium to high-abundant (in terms of ion intensity) in human plasma allowing a dilution series over four orders of magnitude for a part of the lipids*. * As can be observed five out of 40 lipids showed significant trueness bias already at a dilution factor of 2, which can be explained by low abundance and high background. Supporting Figure S5: Linearity of label-free versus compound-specific relative quantification in human plasma (SRM1950 samples) using RPLC-MS. 7

8 Supporting Figure S6: Data-points per peak of TG 52:1 observed by different high-resolution MS detection strategies. A) Full-MS (MS ) with 35 data points per TG 52:1 peak B) MS1 (120000) trace derived from ddms2 detection with simultaneous fragmentation in the linear ion trap led to 22 data-points, C) ddmsn (MS1: , MS2/MS3:30000) profiling method for triglycerides led to 6 data points. The varying retention times can be explained by different measurement days and individually prepared eluents. 8

9 Supporting Figure S7: Number of lipids per class identified in human plasma (SRM 1950) and yeast (Pichia pastoris) samples using RPLC-MS 2. A) Human plasma samples lipid profile without and with 13 C LILY lipids added as internal standard (IS) B) Yeast sample lipid profile without and with 13 C LILY lipids added as internal standard (IS) 9

10 Supporting Table S1: Lipid annotation in human plasma (SRM 1950) and yeast (Pichia pastoris). Lipid IDs were derived from Lipid Search 4.1 after filtering (detailed filters can be found in the lipid profiling section of the supporting information) and manual assignment. 390 lipids were identified in human plasma, 212 lipids were annotated in yeast. MS2 Number Grade A Grade B Grade C Lipids 184 PC SM Cer TG MSn Number Grade A Grade B Grade C Lipids 390 PC SM Cer TG Main Grade A B C RPLC-HRMS was analysed by Lipid Search 4.1 Explanation lipid class and fatty acids are completely identified lipid class and some fatty acids are identified lipid class or fatty acids are identified Supporting Table S2: Number of phosphatidylcholine, sphingomyelin, ceramide and triglyceride annotations in human serum plasma (SRM 1950). Comparison of state of the art data-dependent RPLC-MS2 and enhanced lipid profiling by RPLC-MSn derived via Lipid Search 4.1 after filtering and manual inspection 10

11 A Yeast B Human Plasma Lipids nmol/ml Label-free Compound-specific Label-free Compound-specific CER d36:1 < LOQ ± < <LOQ 0.15 ± 0.01 DG 34: ± ± < ± ± < 0.1 LPC 16: ± ± < ± 2 51 ± < 1 LPC 18:0 < LOQ ± < ± 2 18 ± < 1 PA 34:1 19 ± ± 0.1 <LOD <LOD PC 34:0 < LOQ < LOQ 1.2 ± ± 0.1 PC 34:1 1.1 ± ± < ± ± < 1 PC P-35:1/34:2 4.6 ± ± < ± ± < 1 PE 34:1 1.8 ± ± ± ± 0.03 PE 36:2 1.7 ± ± ± ± < 0.1 PS 34:1 3.8 ± ± < 0.1 <LOD <LOD PS 36: ± < ± < 0.01 <LOD <LOD TG 52: ± ± < ± < ± 0.2 Supporting Table S3: Comparison of label-free versus compound-specific absolute quantification for a panel of lipids from different classes (Cer, DG, LPC, PA, PC, PE, PI, PS, TG) determined by MS1 quantification by C30 reversed-phase chromatography coupled to high resolution MS. A. Lipid concentrations of Pichia pastoris samples determined by label-free and compound-specific quantification. B. Lipid concentrations of human plasma SRM 1950 samples determined by label-free and compound-specific quantification SI References (1) Liebisch, G.; Vizcaíno, J. A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W. J.; Schmitz, G.; Spener, F.; Wakelam, M. J. O. J. Lipid Res. 2013, 54 (6),

Increased Identification Coverage and Throughput for Complex Lipidomes

Increased Identification Coverage and Throughput for Complex Lipidomes Increased Identification Coverage and Throughput for Complex Lipidomes Reiko Kiyonami, David Peake, Yingying Huang, Thermo Fisher Scientific, San Jose, CA USA Application Note 607 Key Words Q Exactive

More information

Supporting Information

Supporting Information Supporting Information Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry Qiuhui Xuan 1,2#, Chunxiu Hu 1#, Di Yu 1,2,

More information

The use of mass spectrometry in lipidomics. Outlines

The use of mass spectrometry in lipidomics. Outlines The use of mass spectrometry in lipidomics Jeevan Prasain jprasain@uab.edu 6-2612 utlines Brief introduction to lipidomics Analytical methodology: MS/MS structure elucidation of phospholipids Phospholipid

More information

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics July.3.13 Ken Miller Vice President of Marketing, Life Sciences Mass Spectrometry 1 The world leader in serving science Omics & the

More information

Thermo Scientific LipidSearch Software for Lipidomics Workflows. Automated Identification and Relative. Quantitation of Lipids by LC/MS

Thermo Scientific LipidSearch Software for Lipidomics Workflows. Automated Identification and Relative. Quantitation of Lipids by LC/MS Thermo Scientific LipidSearch Software for Lipidomics Workflows Automated Identification and Relative of Lipids by LC/MS The promise of lipidomics Lipidomics is a new field of study crucial for understanding

More information

LC/MS Method for Comprehensive Analysis of Plasma Lipids

LC/MS Method for Comprehensive Analysis of Plasma Lipids Application Note omics LC/MS Method for Comprehensive Analysis of Plasma s Authors Tomas Cajka and Oliver Fiehn West Coast Metabolomics Center, University of California Davis, 451 Health Sciences Drive,

More information

Glycerolipid Analysis. LC/MS/MS Analytical Services

Glycerolipid Analysis. LC/MS/MS Analytical Services Glycerolipid Analysis LC/MS/MS Analytical Services Molecular Characterization and Quantitation of Glycerophospholipids in Commercial Lecithins by High Performance Liquid Chromatography with Mass Spectrometric

More information

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Application Note: 346 MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Gargi Choudhary and Diane Cho, Thermo Fisher Scientific, San Jose, CA Wayne Skinner and

More information

Mass Spectrometry based metabolomics

Mass Spectrometry based metabolomics Mass Spectrometry based metabolomics Metabolomics- A realm of small molecules (

More information

Supplemental Information. LipiDex: An Integrated Software Package. for High-Confidence Lipid Identification

Supplemental Information. LipiDex: An Integrated Software Package. for High-Confidence Lipid Identification Cell Systems, Volume 6 Supplemental Information LipiDex: An Integrated Software Package for High-Confidence Lipid Identification Paul D. Hutchins, Jason D. Russell, and Joshua J. Coon Figure S1. Omics

More information

Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts

Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts Application Note Clinical Research Authors Mark Sartain and Theodore Sana Agilent Technologies, Inc. Santa Clara, California, USA Introduction

More information

Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections

Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections Dustin R. Klein, Clara L. Feider, Kyana Y. Garza, John Q. Lin,

More information

NON TARGETED SEARCHING FOR FOOD

NON TARGETED SEARCHING FOR FOOD NON TARGETED SEARCHING FOR FOOD CONTAMINANTS USING ORBITRAP HIGH RESOLUTION MASS SPECTROMETRY Michal Godula 1, Adrian Charlton 2 and Klaus Mittendorf 1 1 Thermo Fisher Scientific, Dreieich, Germany 2 Food

More information

Supporting information

Supporting information Supporting information Figure legends Supplementary Table 1. Specific product ions obtained from fragmentation of lithium adducts in the positive ion mode comparing the different positional isomers of

More information

Essential Lipidomics Experiments using the LTQ Orbitrap Hybrid Mass Spectrometer

Essential Lipidomics Experiments using the LTQ Orbitrap Hybrid Mass Spectrometer Application Note: 367 Essential Lipidomics Experiments using the LTQ rbitrap Hybrid Mass Spectrometer Thomas Moehring 1, Michaela Scigelova 2, Christer S. Ejsing 3, Dominik Schwudke 3, Andrej Shevchenko

More information

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Marta Kozak Clinical Research Applications Group Thermo Fisher Scientific San Jose CA Clinical Research use only, Not for

More information

Mass-Spectrometric Analysis of Lipids (Lipidomics)

Mass-Spectrometric Analysis of Lipids (Lipidomics) Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism Why to do lipidomics? Biology: Functions of different lipids? Medicine: Diagnostics and Therapy Industry:

More information

Phospholipid characterization by a TQ-MS data based identification scheme

Phospholipid characterization by a TQ-MS data based identification scheme P-CN1716E Phospholipid characterization by a TQ-MS data based identification scheme ASMS 2017 MP-406 Tsuyoshi Nakanishi 1, Masaki Yamada 1, Ningombam Sanjib Meitei 2, 3 1 Shimadzu Corporation, Kyoto, Japan,

More information

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS LC/MS/MS SOLUTIONS FOR LIPIDOMICS Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS Lipids play a key role in many biological processes, such as the formation of cell membranes and signaling

More information

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry Kai Scheffler, PhD BioPharma Support Expert,LSMS Europe The world

More information

Improved method for the quantification of lysophospholipids including enol ether

Improved method for the quantification of lysophospholipids including enol ether Supplemental Material Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry James G. Bollinger *, Hiromi Ii*, Martin

More information

A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids

A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids A Definitive Lipidomics Workflow for Human Plasma Utilizing Off-line Enrichment and Class Specific Separation of Phospholipids Jeremy Netto, 1 Stephen Wong, 1 Federico Torta, 2 Pradeep Narayanaswamy, 2

More information

Supplementary Information

Supplementary Information Supplementary Information Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry Annabelle Fülöp 1,2, Denis A. Sammour 1,2, Katrin Erich 1,2, Johanna von Gerichten 4,

More information

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Jenny Chen, Hongxia Wang, Zhiqi Hao, Patrick Bennett, and Greg Kilby Thermo Fisher

More information

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Application ote #LCMS-2 esquire series Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Introduction The simple monitoring

More information

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS Mark Ritchie and Evelyn Goh Waters Pacific Pte Ltd., Singapore A P P L I C AT ION B E N E F I T S Delivers a rapid 10-min MRM method

More information

for new contaminants at ultra trace level by using high resolution mass spectrometry

for new contaminants at ultra trace level by using high resolution mass spectrometry Non-targeted screening for new contaminants at ultra trace level by using high resolution mass spectrometry Dr Igor Fochi LSMS Product Specialist Thermo Fisher Scientific What is Environmental Analysis

More information

CEU MASS MEDIATOR USER'S MANUAL Version 2.0, 31 st July 2017

CEU MASS MEDIATOR USER'S MANUAL Version 2.0, 31 st July 2017 CEU MASS MEDIATOR USER'S MANUAL Version 2.0, 31 st July 2017 1. Introduction... 2 1.1. System Requirements... 2 2. Peak search... 3 2.1. Simple Search... 3 2.2. Advanced Search... 5 2.3. Batch Search...

More information

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions Simplifying Qual/Quan Analysis in Discovery DMPK using UPLC and Xevo TQ MS Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION The determination of the drug metabolism

More information

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites Valérie Thibert 1, Norbert Dirsch 2, Johannes Engl 2, Martin Knirsch 2 1 Thermo Fisher Scientific,

More information

New Instruments and Services

New Instruments and Services New Instruments and Services Liwen Zhang Mass Spectrometry and Proteomics Facility The Ohio State University Summer Workshop 2016 Thermo Orbitrap Fusion http://planetorbitrap.com/orbitrap fusion Thermo

More information

Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer

Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid Quadrupole-Orbitrap-Linear Ion Trap Mass Spectrometer B American Society for Mass Spectrometry, 2014 J. Am. Soc. Mass Spectrom. (2015) 26:133Y148 DOI: 10.1007/s13361-014-1013-x RESEARCH ARTICLE Comprehensive Lipidome Analysis by Shotgun Lipidomics on a Hybrid

More information

Simple and Robust Measurement of Blood Plasma Lysophospholipids Using Liquid Chromatography Mass Spectrometry

Simple and Robust Measurement of Blood Plasma Lysophospholipids Using Liquid Chromatography Mass Spectrometry LETTER Vol. 8, No. 4, 2017 ISSN 2233-4203/ e-issn 2093-8950 www.msletters.org Mass Spectrometry Letters Simple and Robust Measurement of Blood Plasma Lysophospholipids Using Liquid Chromatography Mass

More information

Go beyond. to realities unexplored. Comprehensive workflows, integrated solutions

Go beyond. to realities unexplored. Comprehensive workflows, integrated solutions Go beyond to realities unexplored Comprehensive workflows, integrated solutions We re committed to helping researchers and scientists in academia and industry harness the power of metabolomics to gain

More information

Michal Godula Thermo Fisher Scientific. The world leader in serving science

Michal Godula Thermo Fisher Scientific. The world leader in serving science Resolving the food authenticity challenges using advanced isotopic ratio and Thermo Scientific Orbitrap high resolution mass spectrometry tools in practice Michal Godula Thermo Fisher Scientific The world

More information

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS New Solvent Grade Targeted for Trace Analysis by UHPLC-MS Subhra Bhattacharya, Deva H. Puranam, and Stephen C. Roemer Thermo Fisher Scientific Fisher Chemical, One Reagent Lane, Fair Lawn, NJ Material

More information

New Frontiers for MS in Metabolipidomics

New Frontiers for MS in Metabolipidomics New Frontiers for MS in Metabolipidomics Giuseppe Astarita, PhD Principal Scientist Discovery & Life Sciences Milford, MA USA 2011 Waters Corporation 1 Why Metabolipidomics? Biomedical Sciences o Biomarker

More information

Thermo Scientific LCMS Solutions for Pesticide Analysis

Thermo Scientific LCMS Solutions for Pesticide Analysis Thermo Scientific LCMS Solutions for Pesticide Analysis Dipankar Ghosh, Ph.D Director, Environmental & Food Safety - LSMS San Jose, CA April 20, 2015 1 The world leader in serving science 2 Routine Testing

More information

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Joanne ( 乔安妮 ) Mather Senior Scientist Waters Corporation Data courtesy of Erin Chambers and Mary

More information

LC-MS/MS Method for the Determination of Tenofovir from Plasma

LC-MS/MS Method for the Determination of Tenofovir from Plasma LC-MS/MS Method for the Determination of Tenofovir from Plasma Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 687 Key Words SPE, SOLA CX, Hypersil GOLD, tenofovir Abstract

More information

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer Robert Plumb, Michael D. Jones, and Marian Twohig Waters Corporation, Milford, MA, USA INTRODUCTION The detection and characterization of impurities and degradation products of an active pharmaceutical

More information

New Methodologies for POPs Analysis using Orbitrap GC-MS in Official Food Control

New Methodologies for POPs Analysis using Orbitrap GC-MS in Official Food Control New Methodologies for POPs Analysis using Orbitrap GC-MS in Official Food Control Dr. Nuria Cortés-Francisco Servei de Química Laboratori Agència Salut Pública Barcelona Vancouver, August 22 nd, 217 Summary

More information

Lipid Class Separation Using UPC 2 /MS

Lipid Class Separation Using UPC 2 /MS Michael D. Jones, 1,3 Giorgis Isaac, 1 Giuseppe Astarita, 1 Andrew Aubin, 1 John Shockcor, 1 Vladimir Shulaev, 2 Cristina Legido-Quigley, 3 and Norman Smith 3 1 Waters Corporation, Milford, MA, USA 2 Department

More information

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides Mohammed Abrar Unilabs York Bioanalytical Solutions Outline Introduction Why LC-MS/MS? Limitations of

More information

SUPPORTING INFORMATION FOR: CONCENTRATIONS OF POLYBROMINATED DIPHENYL ETHERS, HEXABROMOCYCLODODECANES AND TETRABROMOBISPHENOL-A IN BREAST MILK FROM

SUPPORTING INFORMATION FOR: CONCENTRATIONS OF POLYBROMINATED DIPHENYL ETHERS, HEXABROMOCYCLODODECANES AND TETRABROMOBISPHENOL-A IN BREAST MILK FROM SUPPORTING INFORMATION FOR: CONCENTRATIONS OF POLYBROMINATED DIPHENYL ETHERS, HEXABROMOCYCLODODECANES AND TETRABROMOBISPHENOL-A IN BREAST MILK FROM UNITED KINGDOM WOMEN DO NOT DECREASE OVER TWELVE MONTHS

More information

Integrated Targeted Quantitation Method for Insulin and its Therapeutic Analogs

Integrated Targeted Quantitation Method for Insulin and its Therapeutic Analogs Integrated Targeted Quantitation Method for Insulin and its Therapeutic Analogs Eric Niederkofler, 1 Dobrin Nedelkov, 1 Urban Kiernan, 1 David Phillips, 1 Kemmons Tubbs, 1 Scott Peterman, 2 Bryan Krastins,

More information

Amadeo R. Fernández-Alba

Amadeo R. Fernández-Alba % of compounds % of compounds % of compounds % of compounds Amadeo R. Fernández-Alba LC-Orbitrap QExactive Focus Instrumental LOQ 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Tomato.5 mg/g ddms2 Target

More information

Target Analyses in Parallel Reaction Monitoring Mode (PRM)

Target Analyses in Parallel Reaction Monitoring Mode (PRM) Target Analses in Parallel Reaction Monitoring Mode (PRM) Skline Webinar Januar 13, 2015 Bruno Domon, PhD Head Luxembourg Clinical Proteomics Center Invited Professor Universit of Luxembourg INTRODUCTION

More information

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS TECHNICAL NOTE 21882 Robust extraction, separation, and quantitation of structural isomer steroids human plasma by SPE-UHPLC-MS/MS Authors Jon Bardsley 1, Kean Woodmansey 1, and Stacy Tremintin 2 1 Thermo

More information

Moving from targeted towards non-targeted approaches

Moving from targeted towards non-targeted approaches Gesundheitsdirektion Moving from targeted towards non-targeted approaches Anton Kaufmann Official Food Control Authority of the Canton of Zurich () Switzerland 2 Overview I From single residue to multi

More information

Welcome! Mass Spectrometry meets Cheminformatics WCMC Metabolomics Course 2014 Tobias Kind. Course: Search of MS/MS files with the NIST MS Search GUI

Welcome! Mass Spectrometry meets Cheminformatics WCMC Metabolomics Course 2014 Tobias Kind. Course: Search of MS/MS files with the NIST MS Search GUI Biology Informatics Chemistry Welcome! Mass Spectrometry meets Cheminformatics WCMC Metabolomics Course 2014 Tobias Kind Course: Search of MS/MS files with the NIST MS Search GUI http://fiehnlab.ucdavis.edu/staff/kind

More information

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring and in Urine Xiaolei Xie, Joe DiBussolo, Marta Kozak; Thermo Fisher Scientific, San Jose, CA Application Note 627 Key Words, norbuprenorphine,

More information

Sample Concentration and Analysis of Human Hormones in Drinking Water

Sample Concentration and Analysis of Human Hormones in Drinking Water Sample Concentration and Analysis of Human Hormones in Drinking Water Carl Fisher Applications Chemist Ion Chromatography/Sample Preparation Thermo Fisher Scientific March 1, 215 1 The world leader in

More information

Obtaining Answers to Biological Questions Sample Prep to Data Analysis. Jeremiah D. Tipton, Ph.D. SCIEX Advanced Workflow Specialist in OMICS

Obtaining Answers to Biological Questions Sample Prep to Data Analysis. Jeremiah D. Tipton, Ph.D. SCIEX Advanced Workflow Specialist in OMICS Obtaining Answers to Biological Questions Sample Prep to Data Analysis Jeremiah D. Tipton, Ph.D. SCIEX Advanced Workflow Specialist in OMICS OMICS Research Why Quantitative OMICS? 2 2015 AB Sciex SCIEX

More information

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section Emmanuelle Claude, Mark Towers, and Kieran Neeson Waters Corporation, Manchester,

More information

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS Yun Wang Alelyunas, Henry Shion, Mark Wrona Waters Corporation, Milford, MA, USA APPLICATION BENEFITS mab LC-MS method which enables users to achieve highly sensitive bioanalysis of intact trastuzumab

More information

Supplementary Information

Supplementary Information Supplementary Information Nano-LC/NSI MS refines lipidomics by enhancing lipid coverage, measurement sensitivity, and linear dynamic range Niklas Danne-Rasche 1, Cristina Coman 1, Robert Ahrends 1 1) Leibniz-Institut

More information

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications Triple Stage Quadrupole API MS / MS Full Scan Products / - IONS AND NEUTRALS FORMED IN API SOURCE Q0 LENS TRANSPORTS

More information

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition Evelyn Goh Waters Pacific, Singapore APPLICATION BENEFITS This method allows for the simultaneous analysis of 12 water-soluble

More information

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Neosolaniol. [Methods listed in the Feed Analysis Standards] Neosolaniol [Methods listed in the Feed Analysis Standards] 1 Simultaneous analysis of mycotoxins by liquid chromatography/ tandem mass spectrometry [Feed Analysis Standards, Chapter 5, Section 1 9.1 ]

More information

Annotation of potential isobaric and isomeric lipid species measured with the AbsoluteIDQ p180 Kit (and p150 Kit)

Annotation of potential isobaric and isomeric lipid species measured with the AbsoluteIDQ p180 Kit (and p150 Kit) We provide the Phenotype to the Genotype! DocNr. 35017 V 2 2017-02 Annotation of potential isobaric and isomeric lipid species measured with the (and p150 Kit) Introduction Lipidomics, a branch of metabolomics

More information

Join the mass movement towards mass spectrometry

Join the mass movement towards mass spectrometry Join the mass movement towards mass spectrometry Thermo Scientific ISQ EC single quadrupole mass spectrometer Embrace the power of mass spectrometry Achieving a comprehensive understanding of the samples

More information

Improving Coverage of the Plasma Lipidome Using Iterative MS/MS Data Acquisition Combined with Lipid Annotator Software and 6546 LC/Q-TOF

Improving Coverage of the Plasma Lipidome Using Iterative MS/MS Data Acquisition Combined with Lipid Annotator Software and 6546 LC/Q-TOF Application Note Lipidomics Improving Coverage of the Plasma Lipidome Using Iterative MS/MS Data Acquisition Combined with Lipid Annotator Software and 6546 LC/Q-TOF Authors Jeremy Koelmel Department of

More information

a RT:. - 1.1 1 95 9 85 8 27.64 27.87 28.1 27.42 28.24 38.98 Low ph RPLC NL: 2.29E9 TIC MS TrypticBSA_Dig est_replicate1_ 2Mar18_Preci ous_18-1-6 75 7 65 48.75 65.8 Relative Abundance 6 55 5 45 28.54 48.98

More information

Determination of Chlorophenoxyacetic Acid and Other Acidic Herbicides Using a QuEChERS Sample Preparation Approach and LC-MS/MS Analysis

Determination of Chlorophenoxyacetic Acid and Other Acidic Herbicides Using a QuEChERS Sample Preparation Approach and LC-MS/MS Analysis Determination of Chlorophenoxyacetic Acid and Other Acidic Herbicides Using a QuEChERS Sample Preparation Approach and LC-MS/MS Analysis UCT Product Number: ECQUEU75CT-MP - Mylar pouch containing extraction

More information

Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid

Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid Automated Lipid Identification Using UPLC/HDMS E in Combination with SimLipid Giorgis Isaac, Stephen McDonald, Giuseppe Astarita Waters Corporation, Milford, MA, USA A P P L I C AT ION B E N E F I T S

More information

Rapid and Sensitive Screening of Benzodiazepines in Serum Using Liquid Chromatography-APCI-Linear Ion Trap System

Rapid and Sensitive Screening of Benzodiazepines in Serum Using Liquid Chromatography-APCI-Linear Ion Trap System T2007 Seattle, Washington Rapid and Sensitive Screening of Benzodiazepines in Serum Using Liquid hromatography-api-linear Ion Trap System Viktor Vorisek *, Vilma Habrdova, Pavel Zivny and Vladimir Palicka

More information

Quantification with Proteome Discoverer. Bernard Delanghe

Quantification with Proteome Discoverer. Bernard Delanghe Quantification with Proteome Discoverer Bernard Delanghe Overview: Which approach to use? Proteome Discoverer Quantification Method What When to use Metabolic labeling SILAC Cell culture systems Small

More information

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes Catalin E. Doneanu, Weibin Chen, and Jeffrey R. Mazzeo Waters Corporation, Milford, MA, U.S. A P P L I C AT ION B E N E F

More information

Suppl. Table 1: CV of pooled lipoprotein fractions analysed by ESI-MS/MS

Suppl. Table 1: CV of pooled lipoprotein fractions analysed by ESI-MS/MS Supplement VLDL LDL HDL PC 3.3 1.77 1.3 LPC 4.82 2.5.35 SM 3.1 4.6 1.92 CER 2.17 6.3 4.15 PE 3.18 1.93 2.79 PE-pl 13.18 1.9 2.32 CE 2.9.65.4 FC.36 3.5 2.54 Suppl. Table 1: CV of pooled lipoprotein fractions

More information

Quantification of PtdInsP 3 molecular species in cells and tissues by mass spectrometry

Quantification of PtdInsP 3 molecular species in cells and tissues by mass spectrometry Nature Methods Quantification of PtdInsP 3 molecular species in cells and tissues by mass spectrometry Jonathan Clark, Karen E Anderson, Veronique Juvin, Trevor S Smith, Fredrik Karpe, Michael J Wakelam,

More information

Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry Meets a Key Challenge in Lipidomics

Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry Meets a Key Challenge in Lipidomics Metabolites 2011, 1, 21-40; doi:10.3390/metabo1010021 Review OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Accurate Quantification of Lipid Species by Electrospray Ionization

More information

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis Ying Qing Yu Waters Corporation, Milford, MA, USA APPLICATION BENEFITS

More information

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research Dominic Foley, Michelle Wills, and Lisa Calton Waters Corporation, Wilmslow, UK APPLICATION

More information

Determination of Amantadine Residues in Chicken by LCMS-8040

Determination of Amantadine Residues in Chicken by LCMS-8040 Liquid Chromatography Mass Spectrometry Determination of Amantadine Residues in Chicken by LCMS-8040 A method for the determination of amantadine in chicken was established using Shimadzu Triple Quadrupole

More information

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Application Note Clinical Research Authors Derick Lucas and Limian Zhao Agilent Technologies, Inc. Abstract Lipids from

More information

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1 Development of an SPE-LC/MS/MS Assay for the Simultaneous Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid in Support of Alzheimer s Research Dr. Erin E. Chambers Waters Corporation Presented

More information

Characterization of an Unknown Compound Using the LTQ Orbitrap

Characterization of an Unknown Compound Using the LTQ Orbitrap Characterization of an Unknown Compound Using the LTQ rbitrap Donald Daley, Russell Scammell, Argenta Discovery Limited, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK bjectives unknown

More information

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan PREMIER Biosoft Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan Ne uaca2-3galb1-4glc NAcb1 6 Gal NAca -Thr 3 Ne uaca2-3galb1 Ningombam Sanjib

More information

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform Abstract Targeted proteomics for biomarker verification/validation

More information

MASS SPECTROMETRY STRATEGIES FOR COMPREHENSIVE LIPIDOME ANALYSIS OF COLORECTAL CANCER CELLS AND THEIR SECRETED EXOSOMES. Cassie J.

MASS SPECTROMETRY STRATEGIES FOR COMPREHENSIVE LIPIDOME ANALYSIS OF COLORECTAL CANCER CELLS AND THEIR SECRETED EXOSOMES. Cassie J. MASS SPECTROMETRY STRATEGIES FOR COMPREHENSIVE LIPIDOME ANALYSIS OF COLORECTAL CANCER CELLS AND THEIR SECRETED EXOSOMES By Cassie J. Fhaner A DISSERTATION Submitted to Michigan State University in partial

More information

Dry eye disease commonly known as atopic keratoconjunctivitis is an autoimmune disease of

Dry eye disease commonly known as atopic keratoconjunctivitis is an autoimmune disease of 4.1. Introduction Dry eye disease commonly known as atopic keratoconjunctivitis is an autoimmune disease of eyes. The disease is characterized by lesser or some time no-significant production of tear;

More information

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations For Research Use Only. Not for use in diagnostic procedures. 1 2015 AB Sciex RUO-MKT-11-1018-A For research

More information

SUPPLEMENTARY DATA. Materials and Methods

SUPPLEMENTARY DATA. Materials and Methods SUPPLEMENTARY DATA Materials and Methods HPLC-UV of phospholipid classes and HETE isomer determination. Fractionation of platelet lipid classes was undertaken on a Spherisorb S5W 150 x 4.6 mm column (Waters

More information

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Julie A. Horner 1, Marta Kozak 1, Subodh Nimkar 1, and August A. Specht 1 1 Thermo Fisher Scientific, San Jose,

More information

LC-MS/MS quantitative analysis of Polyunsaturated Omega 3, 6,7 and 9 Fatty Acids in Serum for

LC-MS/MS quantitative analysis of Polyunsaturated Omega 3, 6,7 and 9 Fatty Acids in Serum for POSTER NOTE 64921 LC-MS/MS quantitative analysis of Polyunsaturated Omega 3, 6,7 and 9 Fatty Acids in Serum for Research Use LC-MS/MS quantitative analysis of Poly Rory M Doyle*, Thermo Scientific, Inc,

More information

Testing robustness: Immunosuppressant drugs in blood with a TSQ Quantis MS for clinical research

Testing robustness: Immunosuppressant drugs in blood with a TSQ Quantis MS for clinical research TEHNIL NOTE 64969 Testing robustness: Immunosuppressant drugs in blood with a TSQ Quantis MS for clinical research uthors Kristine Van Natta, Neloni Wijeratne, laudia Martins Thermo Fisher Scientific,

More information

Agilent Solutions for Lipidomics. Greater Insight into

Agilent Solutions for Lipidomics. Greater Insight into Agilent Solutions for Lipidomics Greater Insight into Lipid Metabolism Understanding Lipidomics What is Lipidomics? The term "lipidome" refers to all the lipids that exist in an organism and their effects

More information

Supporting Information

Supporting Information Supporting Information Anion-exchange chromatography coupled to high resolution mass spectrometry: a powerful tool for merging targeted and non-targeted metabolomics Michaela Schwaiger, Evelyn Rampler,

More information

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 709 Key Words SPE, SOLA

More information

Orbitrap ID-X Tribrid mass spectrometer. Transforming small molecule identification and characterization

Orbitrap ID-X Tribrid mass spectrometer. Transforming small molecule identification and characterization rbitrap ID-X Tribrid mass spectrometer Transforming small molecule identification and characterization A leap ahead for small molecule analyses Acquisition and interpretation of mass spectra to characterize

More information

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ Application Note Clinical Research Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ Authors Jennifer Hitchcock 1, Lauren Frick 2, Peter Stone 1, and Vaughn Miller 2 1 Agilent

More information

1. Sample Introduction to MS Systems:

1. Sample Introduction to MS Systems: MS Overview: 9.10.08 1. Sample Introduction to MS Systems:...2 1.1. Chromatography Interfaces:...3 1.2. Electron impact: Used mainly in Protein MS hard ionization source...4 1.3. Electrospray Ioniztion:

More information

Comprehensive Lipid Profiling of Human Liver Tissue Extracts of Non-Alcoholic Fatty Liver Disease

Comprehensive Lipid Profiling of Human Liver Tissue Extracts of Non-Alcoholic Fatty Liver Disease Comprehensive Lipid Profiling of Human Liver Tissue Extracts of Non-Alcoholic Fatty Liver Disease Multiplexed Precursor Ion Scanning and LipidView Software Brigitte Simons 1 and Bianca Arendt 2 1 AB SCIEX,

More information

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry M. Montana Quick, Christopher M. Crittenden, Jake A. Rosenberg, and Jennifer S. Brodbelt

More information

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05. NIH Public Access Author Manuscript Published in final edited form as: J Proteome Res. 2013 July 5; 12(7): 3071 3086. doi:10.1021/pr3011588. Evaluation and Optimization of Mass Spectrometric Settings during

More information

Discovery Metabolomics - Quantitative Profiling of the Metabolome using TripleTOF Technology

Discovery Metabolomics - Quantitative Profiling of the Metabolome using TripleTOF Technology ANSWERS FOR SCIENCE. KNOWLEDGE FOR LIFE. Discovery Metabolomics - Quantitative Profiling of the Metabolome using TripleTOF Technology Baljit Ubhi Ph.D ASMS Baltimore, June 2014 What is Metabolomics? Also

More information

SUPPORTING INFORMATION. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid

SUPPORTING INFORMATION. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid SUPPORTING INFORMATION Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography - electrospray ionization mass spectrometry with single internal standard and response

More information

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research Stephen Balloch and Gareth Hammond Waters Corporation, Wilmslow, UK APPLICATION BENEFITS Analytical selectivity afforded by mass selective detection Wide linear measuring range Simple, inexpensive sample

More information