Introduction of innovate membranes in water-treatment

Size: px
Start display at page:

Download "Introduction of innovate membranes in water-treatment"

Transcription

1 Introduction of innovate membranes in water-treatment Young June Won Water Environment-Membrane Technology Lab. School of Chemical and Biological Engineering, Seoul National University, Korea

2 세계수자원시장전망 IPCC( 유엔국제기후변화위원회 )* 는지구온난화와엘니뇨현상으로 21 세기말지구의기온은 6.4 도, 해수면은 59Cm 상승되어물부족사태가가속화될것으로전망함. Plentiful Supply Source: UNEP/ GWI *IPCC : Intergovernment Panel on Climate Change Relatively sufficient Insufficient water Water stress Water scarcity

3 WATER TREATMENT BUSINESS Schematic Diagram for Water Treatment (Global market 2005~2015,IDA report) Agricultural : 74% Municipal : 14% Industrial : 12% : Core business segment Usage Quality of Water Source Desalination Water Treatment Surface / Ground water : 3% Seawater : 97% Wastewater Advanced WWT Reuse Treatment Conventional WWT* Water Reuse Effluent Time Sequence 수처리는사용목적에맞도록물의품질을개선시키는모든처리를말하며, 고도처리를통한 Water Reuse 는해수담수화와더불어가장빠르게확보할수있는대체수자원공급방법임 고도처리의종류에는 Membrane, UV, zone, GAC 등이있음 * WWT: Waste-Water Treatment

4 Application of Membrane Processes in Water Environment Fusion Tech Hydrology Molecular biology Surface Chem Nano particles Biofilm CFD Catalyst Space station Shower water Grey water Recreation Drinking water Industrial water Ecological water Ground water recharge

5 분리막의종류 공극크기에따른구분

6 분리막의종류 외형에따른구분 Flat sheet Hollow fiber

7 분리막을이용한수처리공정구성

8 분리막을이용한공정의대표적인문제점

9 Part 1 Conventional preparation method

10 Conventional membrane preparation Process Phase inversion by Solvent evaporation Temperature change Precipitant addition Stretching sheets of partially crystalline polymers Irradiation and etching Molding and sintering of fine-grain powders Materials Polymers: Cellulose acetate, polyamide Polypropylene, polyamide Polysulfone, nitrocellulose Polymers: PTFE Polymers: Polycarbonate, polyester Polymers: PTFE, polyethylene Source: Adapted from Ripperger and Schulz, 1986

11 Polymer used in membrane preparation Material MF UF R Cellulose esters (mixed) Cellulose nitrate Polyamide, aliphatic (e.g., Nylon) Polycarbonate (track-etch) Polyester (track-etch) Polypropylene Polytetrafluoroethylene (PTFE) Cellulose (regenerated) Polyacrylonitrile (PAN) Polyvinyl alcohol (PVA) Polysulfone (PSF) Polyethersulfone (PES) Cellulose acetate (CA) Cellulose triacetate (CTA) Polyamide, aromatic (PA) Polyimide (PI) CA/CTA Blends Composites (e.g., polyacrylic acid on zirconia or stainless steel) Composites, polymeric thin film (e.g., PA or polyetherurea on PSF) Polybenzimidazole (PBI) Polyetherimide (PEI)

12 Sintering Schematic of the process Materials used heat Membrane pore size distribution m Porosity: 10-20% with polymers 80% with metals Powders of Polymers Powder of metals Powder of ceramics Powdre of graphite Powder of glass Polyethylene PTFE Polypropylene Stinless steel, tungsten Aluminium oxide Zirconium oxide Carbon Silicalite

13 Sintering Application of sintered membranes: Filtration of colloidal solution and suspensions Gas separation Separation of radioactive isotopes

14 Stretching Films of polyethylene or polytetrafluoroethylene are extruded at temperatures close to the T m (melting point). PTFE membrane obtained by stretching After annealing and cooling, the film is stretched perpendicular to the direction of drawing. Membranes with high permeability to gas and vapor but impermeable to aqueous solution can be obtained from hydrophobic polymers as PTFE. These membranes are ideal for application as Membrane Contactors

15 Track-etching It is a two step process: A film is first subjected to high energy particle radiation and, then, immersed in a etching bath

16 Track-etching Symmetric membranes having uniform and cylindrical pores can be obtained. The pore density is determined by the residence time in the irradiator. The pore diameter is controlled by the residence time in the etching bath.

17 Phase inversion method This technique is the most versatile preparation method. Membranes with different morphology (porous or dense), structures (asymmetric or symmetric) and function can be prepared. A homogeneous system, consisting of the polymer dissolved in an appropriate solvent, in a single phase (liquid), is transformed, through a process of separation/solidification, in a two phase system: A polymer rich phase, solid, which will form the membrane itself; A polymer lean phase, liquid, which will form the membrane pores.

18 The type of Phase inversion method There are several techniques of preparation of membranes by phase inversion, which are listed below: EIPS = Evaporation induced phase separation VIPS = Vapor induced phase separation TIPS = Temperature induced phase separation NIPS/DIPS = Non-Solvent induced or Diffusion induced phase separation The only thermodynamic presumption for all procedures is that the system mus t have a miscibility gap over a defined concentration/temperature range What is the miscibility gap?

19 Phase diagram in binary polymer system A casting solution B membrane porosity B polymer-lean phase B polymer-rich phase binodal Polymer B Metastabile region: No precipitation, but nucleation and growth spinodal Critical point A B Liquid phase Miscibility gap B Solvent Unstable region: Phase separation Non-Solvent

20 Phase separation caused by evaporation There are several techniques of preparation of membranes by phase inversion, which are listed below: EIPS = Evaporation induced phase separation VIPS = Vapor induced phase separation TIPS = Temperature induced phase separation NIPS/DIPS = Non-Solvent induced or Diffusion induced phase separation The only thermodynamic presumption for all procedures is that the system mu st have a miscibility gap over a defined concentration/temperature range

21 Phase separation caused by vapor There are several techniques of preparation of membranes by phase inversion, which are listed below: EIPS = Evaporation induced phase separation VIPS = Vapor induced phase separation TIPS = Temperature induced phase separation NIPS/DIPS = Non-Solvent induced or Diffusion induced phase separation The only thermodynamic presumption for all procedures is that the system mu st have a miscibility gap over a defined concentration/temperature range

22 Thermal induced phase separation There are several techniques of preparation of membranes by phase inversion, which are listed below: EIPS = Evaporation induced phase separation VIPS = Vapor induced phase separation TIPS = Temperature induced phase separation NIPS/DIPS = Non-Solvent induced or Diffusion induced phase separation The only thermodynamic presumption for all procedures is that the system mu st have a miscibility gap over a defined concentration/temperature range

23 Mechanism of TIPs A casting solution B membrane porosity T1 T B polymer-lean phase B polymer-rich phase A Liquid phase Unstable region: Phase separation Critical point binodal spinodal T2 B B B Metastabile region: No precipitation, but nucleation and growth Solid phase Solvent Polymer

24 Phase Inversion Method There are several techniques of preparation of membranes by phase inversion, which are listed below: EIPS = Evaporation induced phase separation VIPS = Vapor induced phase separation TIPS = Temperature induced phase separation NIPS/DIPS = Non-Solvent induced or Diffusion induced phase separation The only thermodynamic presumption for all procedures is that the system mu st have a miscibility gap over a defined concentration/temperature range

25 Phase diagram in binary polymer system Polymer Solidification Binodal Spinodal Polymer lean phase Polymer rich phase Cellular Tie line Unstable Stable Metastable Bicontinuous Solvent Nonsolvent Polymer lean phase Bead-like Polymer rich phase

26 Mechanisms L-L demixing Polymer Binodal Spinodal Unstable Non-solvent (Water) Inward diffusion N Diffusion Solvent (DMF) utward diffusion Solution(PVDF+DMF) S P Solvent Liquid-liquid de-mixing Non-solvent PDMS Polymeric solution was demixed into polymer, solvent, and nonsolvent

27 Structure of membrane prepared by PI 1) Sponge like structure 2) Finger like structure Symmetric structure Asymmetric structure Why?

28 Mechanisms membrane structure Pure water only Coagulation bath Homogeneous PVDF solution Substrate (PET film) Substrate (PET film) Finger like structure Water + solvent bath water DMF PVDF Substrate (PET film) Sponge

29 Mechanisms membrane structure Skin Formation : polymer solution gelation medium P + S [P] R >> 1 R > 1 NS R >> 1 R > 1 Defect-Free Skin Finger like structure Porous Skin Sponge like structure

30 Preparation steps- flat sheet membrane Polymer Additives Solvent 1) Preparation of the polymeric dope

31 Preparation steps flat sheet membrane 2) Casting Polymeric solution Casting knife Dense skin Support 3) Coagulation Porous support 4) membrane

32 Preparation steps-hollow fiber Polymer Additives Solvent 1) Preparation of the polymeric dope

33 Preparation steps-hollow fiber 2) Hollow fibers spinning Wet spinning Dry/wet spinning Polymeric dope Peristaltic pump Thermocouples Pressurized reservoir Bore fluid Bore fluid inlet Nascent fibre Spinneret Polymeric dope inlet N 2 Rotating coagulation bath Temperature controlling element

34 Interfacial polymerization PMMA plate Glass plate Rubber roller PMMA frame Silicone gasket 34

35 Interfacial polymerization step 1 Polysulfone support 35

36 Interfacial polymerization step 2 Trimesoyl chloride in hexane 36

37 Interfacial polymerization step 3 m-phenylene diamine aqueous solution 37

38 Interfacial polymerization step 4 Polyamide Active Layer 0.2 micron Polysulfone Support Layer 50 micron Polyester Backing Layer 150 micron

39 Commercial membranes prepared by conventional methods Membrane material cellulose acetate cellulose esters (mixed) polyacrylonitrile (PAN) polyamide (aromatic, aliphatic) polyimide polypropylene polyethersulfone polysulfone sulfonated polysulfone polyvinylidenefluoride Membrane process EP, MF, UF, R MF, D UF MF, UF, R, MC UF, R, GS MF, MD, MC UF, MF, GS, D UF, MF, GS,D UF, R, NF UF Electrophoresis (EP), Microfiltration (MF), Ultrafiltration (UF), Reverse smosis (R), Gas separation (GS), Nanofiltration (NF), Dialysis (D), Membrane Distillation (MD), Membrane contactor (MC). The phase inversion process can make both symmetric and asymmetric membranes with rather different structures from a variety of polymers

40 Part 2 NEW membranes to improve the performance!

41 1) Composite membrane In processes such as reverse osmosis, gas separation and pervaporation, the actual mass separation is achieved by a solution/diffusion mechanism. An asymmetric membrane structure is mandatory for these processes. Many polymers with satisfactory selectivity and permeability are not well suited for the phase inversion Composite membranes

42 1) Composite membrane Composite membranes are prepared in a two step process Manufacturing of the porous support Deposition of the barrier layer on the surface of this porous support layer a) selective layer b) porous support a) Schematic diagram of a composite membrane showing the porous support structure and the selective skin layer, and b) scanning electron micrograph of a composite membrane with polydimethylsiloxane as the selective layer on a polysulfone support structure.

43 1) Composite membrane The techniques used for the preparation of composite membranes may be grouped into four general procedures: Casting of the barrier layer, e.g. on the surface of a water bath and then laminating it on the porous support film. Coating of the porous support film by a polymer, a reactive monomer or pre polymer solution followed by drying or curing with heat or radiation. Gas phase deposition of the barrier layer on the porous support film from a glow discharge plasma. Interfacial polymerization of reactive monomers on the surface of the porous support film. Today, the most important technique for preparing composite membranes is interfacial polymerization

44 1) Schematic diagram of composite membrane 44

45 2) Membranes prepared by block copolymer Example: High-Definition Polymeric Membranes Construction of 3D Lithographed Channel Arrays through Control of Natural Building Blocks Dynamics. The fabrication of well-defined interfaces is in high demand in many fields of biotechnologies. High-definition membrane-like arrays have been developed through the selfassembly of water droplets, which work as natural building blocks for the construction of ordered channels.

46 2) Membranes prepared by block copolymer In this work, 3D well-ordered honeycomb structures patterned from PEEK-WC-N 2 have been obtained. In the figure: top view collected by AFM; layer collected in the bulk of the film by confocal microscopy; SEM micrograph elucidating the cross section. V. Speranza, F. Trotta, E. Drioli and A. Gugliuzza, Applied material and Interfaces, 2010, Vol. 2 N 2, pp

47 3) Introducing the pattern on the membrane surface The patterns on the membrane surface could disturb the deposition of microbials and enhance the effective area!

48 3) Introducing the pattern on the membrane surface Conventional immersion precipitation method Modified immersion precipitation method Non-woven Fabric(Substrate) PDMS replica mold PVDF solution PVDF solution Non-woven Fabric(Substrate) Coagulation bath Nascent membrane PVDF membrane Coagulation bath PVDF membrane

49 3) Pyramid patterned membrane Top view 10μm

50 3) Prism patterned membrane Top view 20μm

51 3) Embossing patterned membrane Top view 20μm

52 3) Introducing the pattern on the membrane surface Prism Patterned membrane Flat membrane 1213 um Green : Cell Red : Membrane 1213 um 1213 um 1213 um

53 3) Introducing the pattern on the membrane surface

54 4) MINs membrane Si substrate PS colloidal monolayer 2 plasma by reactive ion etching (Reduced diameter of colloidal particle) HF/H 2 2 etching Si μ-pillar PS colloid lift-off Ag evaporation

55 4) MINs membrane PDMS mold Flat PDMS mold (w/o pattern) Detach PDMS mold from replica mold Master mold Replica mold (Poly(styrene-co-maleic anhydride)) Replica mold Dissolved replica mold function as adhesive between skin layer and support layer UV lamp MINs solution Pore Dissolve replica mold with toluene Casting knife MINs membrane with support layer UV curing for 2 hrs 55 Remove excess MINs with top site of pattern

56 4) MINs membrane Master mold Isopore MINs membrane X X * Thickness of skin layer : < 6 μm

TABLE OF CONTENT CHAPTER CONTENT PAGE

TABLE OF CONTENT CHAPTER CONTENT PAGE vii TABLE OF CONTENT CHAPTER CONTENT PAGE TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES NOMENCLATURE LIST OF APPENDICES i ii iii iv

More information

Introduction to Membrane

Introduction to Membrane Heinrich Strathmann Introduction to Membrane Science and Technology WILEY- VCH WILEY-VCH Verlag GmbH & Co. KG aa V Preface Symbols XIII XV 1 Introduction 2 1.1 Overview of Membrane Science and Technology

More information

PROGRESS OF OF NANOFILTRATION MEMBRANES. 1 st Korea-US Nano Forum Kew-Ho Lee

PROGRESS OF OF NANOFILTRATION MEMBRANES. 1 st Korea-US Nano Forum Kew-Ho Lee PROGRESS OF OF NANOFILTRATION MEMBRANES 1 st Korea-US Nano Forum 2003. 10. 14 Kew-Ho Lee Membrane and Separation Research Center Korea Research Institute of Chemical Technology TEL) 82-42-860-7240 FAX)

More information

Fabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo Polymerization

Fabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo Polymerization Fabrication of Nanofiltration Membrane from Polysulfone Ultrafiltration Membrane Via Photo Polymerization A. Akbari 1*, M. Homayoonfal 1 Nanoscience and Nanotechnology Institute, University of Kashan,

More information

A Review of Membranes Classifications, Configurations, Surface Modifications, Characteristics and Its Applications in Water Purification

A Review of Membranes Classifications, Configurations, Surface Modifications, Characteristics and Its Applications in Water Purification Chemical and Biomolecular Engineering 2017; 2(2): 57-82 http://www.sciencepublishinggroup.com/j/cbe doi: 10.11648/j.cbe.20170202.11 A Review of Membranes Classifications, Configurations, Surface Modifications,

More information

3. Valorization of olive oil waste streams by the development of thin film composite membranes for selective removal of polyphenols BGU, Dr. C.

3. Valorization of olive oil waste streams by the development of thin film composite membranes for selective removal of polyphenols BGU, Dr. C. 3. Valorization of olive oil waste streams by the development of thin film composite membranes for selective removal of polyphenols BGU, Dr. C. Linder Development Objectives Cost effective Extraction of

More information

Development of an Organic-Inorganic PVDF/ anoclay Ultrafiltration Composite Membrane

Development of an Organic-Inorganic PVDF/ anoclay Ultrafiltration Composite Membrane Development of an Organic-Inorganic PVDF/ anoclay Ultrafiltration Composite Membrane A.C.D. Morihama 1 and J.C. Mierwza 1 1 Escola Politécnica da Universidade de São Paulo, São Paulo, São Paulo, 05508-900,

More information

International Journal of Mechanical Engineering and Technology (IJMET) IAEME Scopus

International Journal of Mechanical Engineering and Technology (IJMET) IAEME Scopus International Journal of Mechanical Engineering and Technology (IJMET) Volume 5, Issue 2, February 2014, pp. 194 206, Article ID: IJMET_05_02_022 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=5&itype=2

More information

Influence of External Coagulant Water Types on the Performances of PES Ultrafiltration Membranes

Influence of External Coagulant Water Types on the Performances of PES Ultrafiltration Membranes 30 Journal of Membrane and Separation Technology, 2012, 1, 30-34 Influence of External Coagulant Water Types on the Performances of PES Ultrafiltration Membranes Jing He, Lingyun Ji and Baoli Shi * Polymer

More information

Relating Performance of Thin-Film Composite Forward Osmosis Membranes to Support Layer Formation and Structure

Relating Performance of Thin-Film Composite Forward Osmosis Membranes to Support Layer Formation and Structure Relating Performance of Thin-Film Composite Forward Osmosis Membranes to Support Layer Formation and Structure Submitted to Journal of Membrane Science October 1, 2010 Alberto Tiraferri, Ngai Yin Yip,

More information

Mohammad Reza Moghareh Abed

Mohammad Reza Moghareh Abed IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE Faculty of Engineering Department of Chemical Engineering and Chemical Technology Poly(Vinylidene Fluoride) (PVDF) Based Hydrophilic Hollow Fibre Membranes

More information

MINIMIZING MORPHOLOGICAL DEFECTS OF PEI HOLLOW FIBRE MEMBRANE BY OPTIMIZING THE DOPE VISCOSITY

MINIMIZING MORPHOLOGICAL DEFECTS OF PEI HOLLOW FIBRE MEMBRANE BY OPTIMIZING THE DOPE VISCOSITY MINIMIZING MORPHOLOGICAL DEFECTS OF PEI HOLLOW FIBRE MEMBRANE BY OPTIMIZING THE DOPE VISCOSITY Asif Jamil, Oh Pei Ching and Azmi M. Shariff Department of Chemical Engineering, Universiti Teknologi PETRONAS,

More information

Effect of Rejection Performance on Hollow Fiber Composite Reverse Osmosis Membrane by Alcohols Additives

Effect of Rejection Performance on Hollow Fiber Composite Reverse Osmosis Membrane by Alcohols Additives Effect of Rejection Performance on Hollow Fiber Composite Reverse Osmosis Membrane by Alcohols Additives Xinghua Wang & Wei Wang Key Laboratory of Hollow Fiber Membrane Material and Membrane Process Tianjin

More information

United States Patent (19) Jacobs et al.

United States Patent (19) Jacobs et al. United States Patent (19) Jacobs et al. 54 METHOD OF MAKING A HOLLOW FIBRE MEMBRANE 75 Inventors: Edmund Petrus Jacobs; Ronald Douglas Sanderson, both of Stellenbosch, South Africa 73 Assignee: Water Research

More information

Effect of Membrane Properties on Performance of Membrane Distillation for Ammonia Removal

Effect of Membrane Properties on Performance of Membrane Distillation for Ammonia Removal Effect of Membrane Properties on Performance of Membrane Distillation for Ammonia Removal Zongli Xie CSIRO Materials Science and Engineering, Private Bag 33, Clayton South, Vic.3169, Australia E-mail:

More information

Characterization of Polyamide 66 Membranes Prepared by Phase Inversion Using Formic Acid and Hydrochloric Acid Such as Solvents

Characterization of Polyamide 66 Membranes Prepared by Phase Inversion Using Formic Acid and Hydrochloric Acid Such as Solvents Materials Research. 2011; 14(4): 547-551 2011 DDOI: 10.1590/S1516-14392011005000087 Characterization of Polyamide 66 Membranes Prepared by Phase Inversion Using Formic Acid and Hydrochloric Acid Such as

More information

1. Introduction SICEST 2016

1. Introduction SICEST 2016 Effect of combination dope composition and evaporation time on the separation performance of cellulose acetate membrane for demak brackish water treatment Tutuk Djoko Kusworo 1,*, Budiyono 1, Diyono Ikhsan

More information

Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics

Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics Investigators P.I: Alberto Salleo, Assistant Professor, Materials Science and Engineering Dr. Ludwig

More information

Australian Journal of Basic and Applied Sciences. Effect of PEG Additive on the Morphology and Permeability of Polysulfone-based Membranes

Australian Journal of Basic and Applied Sciences. Effect of PEG Additive on the Morphology and Permeability of Polysulfone-based Membranes AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Effect of PEG Additive on the Morphology and Permeability of Polysulfone-based Membranes

More information

Control of irreversible fouling by application of dynamic membranes

Control of irreversible fouling by application of dynamic membranes Desalination 192 (2006) 63 67 Control of irreversible fouling by application of dynamic membranes M.T. Pessoa de Amorim*, Ilia Rosa Afonso Ramos Department of Textile Engineering, University of Minho,

More information

Preparation and Application of SPPEES-TiO 2 Composite Micro-porous UF Membrane for Refinery Effluent Treatment

Preparation and Application of SPPEES-TiO 2 Composite Micro-porous UF Membrane for Refinery Effluent Treatment International Journal of Environmental Research and Development. ISSN 2249-3131 Volume 4, Number 2 (2014), pp. 147-152 Research India Publications http://www.ripublication.com/ijerd.htm Preparation and

More information

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane Environ. Eng. Res. 2014 Research Paper http://dx.doi.org/10.4491/eer.2014.045 pissn 1226-1025 eissn 2005-968X In Press, Uncorrected Proof Optimized Synthesis Conditions of Polyethersulfone Support Layer

More information

KURARAY POVAL & EXCEVAL

KURARAY POVAL & EXCEVAL Characteristics Polyvinyl alcohol (PVOH) having varying degree of polymerization and. Recommended Uses Ranging from emulsion polymerization aid to binder for pigments in paper applications. Form supplied

More information

Compatibility of Nonionic Surfactants with Membrane Materials and their Cleaning Performance

Compatibility of Nonionic Surfactants with Membrane Materials and their Cleaning Performance Compatibility of Nonionic Surfactants with Membrane Materials and their Cleaning Performance Sepawa Nordic 2014 Malmö, May 5 th Dr. Arend J. Kingma, Home Care and Formulation Technologies Europe BASF SE,

More information

Encapsulation techniques

Encapsulation techniques Loughborough University Institutional Repository Encapsulation techniques This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation: VLADISAVLJEVIC, G.T.,

More information

Improved permeation performance and fouling-resistance of Poly(vinyl chloride)/polycarbonate blend membrane with added Pluronic F127

Improved permeation performance and fouling-resistance of Poly(vinyl chloride)/polycarbonate blend membrane with added Pluronic F127 Songklanakarin J. Sci. Technol. 36 (2), 209-215, Mar. - Apr. 2014 http://www.sjst.psu.ac.th Original Article Improved permeation performance and fouling-resistance of Poly(vinyl chloride)/polycarbonate

More information

The Influence of PEG400 and Acetone on Polysulfone Membrane Morphology and Fouling Behaviour

The Influence of PEG400 and Acetone on Polysulfone Membrane Morphology and Fouling Behaviour J. Eng. Technol. Sci., Vol. 48, No. 2, 2016, 135-149 135 The Influence of PEG400 and Acetone on Polysulfone Membrane Morphology and Fouling Behaviour P.T.P. Aryanti, Shelli R. Joscarita, Anita K. Wardani,

More information

Chemical Surface Transformation 1

Chemical Surface Transformation 1 Chemical Surface Transformation 1 Chemical reactions at Si H surfaces (inorganic and organic) can generate very thin films (sub nm thickness up to µm): inorganic layer formation by: thermal conversion:

More information

THE USE OF ARABIC GUM AS AN ADDITIVE TO POLYSULFONE MEMBRANES. Abstract

THE USE OF ARABIC GUM AS AN ADDITIVE TO POLYSULFONE MEMBRANES. Abstract THE USE OF ARABIC GUM AS AN ADDITIVE TO POLYSULFONE MEMBRANES Yehia Manawi, Viktor Kochkodan, Muataz Atieh* Qatar Environment and Energy Research Institute (QEERI), Hamad bin Khalifa University (HBKU),

More information

Exchangeable Thermocouple Probes

Exchangeable Thermocouple Probes 106 Exchangeable Thermocouple Probes For each application, ebro provides the right thermometer and also offers a wide selection of precise and robust probes for the following thermometers: TTX 120 (see

More information

Lubricants for plastic processing licowax, Licolub, Licocene, licomont

Lubricants for plastic processing licowax, Licolub, Licocene, licomont Lubricants for plastic processing licowax, Licolub, Licocene, licomont Lubricants for plastic processing LICOWAX, LICOLUB, LICOCENE, LICOMONT Montan waxes For highly demanding plastic applications, our

More information

Membranes for Textile and Garment Applications

Membranes for Textile and Garment Applications Membranes for Textile and Garment Applications Dr Mark Whiskens PIL Membranes Ltd Stand number: A 39 Why use Membranes Membranes are used inside a garments Typically they are laminated to the outer fabric

More information

Keywords: Additives, asymmetric membrane, cellulose acetate, PEG

Keywords: Additives, asymmetric membrane, cellulose acetate, PEG Research Journal of Applied Sciences, Engineering and Technology 7(18): 3852-3859, 2014 DOI:10.19026/rjaset.7.742 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

Synthesis of organophilic ZIF-71 membranes for pervaporation. solvent separation

Synthesis of organophilic ZIF-71 membranes for pervaporation. solvent separation Supporting Information Synthesis of organophilic ZIF-71 membranes for pervaporation solvent separation Xueliang Dong, Y. S. Lin* School for Engineering of Matter, Transport and Energy, Arizona State University,

More information

Fabrication of ZnO nanotubes using AAO template and sol-gel method

Fabrication of ZnO nanotubes using AAO template and sol-gel method Journal of Optoelectronic and Biomedical Materials Volume 1, Issue 1, March 2009, p. 15-19 Fabrication of ZnO nanotubes using AAO template and sol-gel method S. Öztürk a, N. Taşaltin a, n. Kilinç a, Z.

More information

Influence of Additives on Polysulfone-Based Ultrafiltration Membrane Performance during Peat Water Filtration

Influence of Additives on Polysulfone-Based Ultrafiltration Membrane Performance during Peat Water Filtration 1 Journal of Water Sustainability, P. T. P. Aryanti Volume et 3, al. Issue / Journal 2, June of 2013, Water 85 96 Sustainability 2 (2013) 85-96 University of Technology Sydney & Xi an University of Architecture

More information

Jurnal Teknologi EFFECT OF PIPERAZINE (PIP) CONCENTRATION AND REACTION TIME ON THE FORMATION OF THIN FILM COMPOSITE FORWARD OSMOSIS (FO) MEMBRANE

Jurnal Teknologi EFFECT OF PIPERAZINE (PIP) CONCENTRATION AND REACTION TIME ON THE FORMATION OF THIN FILM COMPOSITE FORWARD OSMOSIS (FO) MEMBRANE 60s 1%PIP 30s 1%PIP 10s 1%PIP 60s 2%PIP 30s 2%PIP 10s 2%PIP UF Membrane Contact angle ( o ) Jurnal Teknologi EFFECT OF PIPERAZINE (PIP) CONCENTRATION AND REACTION TIME ON THE FORMATION OF THIN FILM COMPOSITE

More information

NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR

NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR International Journal of Modern Physics B Vol. 18, No. 0 (2004) 1 8 c World Scientific Publishing Company NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR C. X. XU, X. W. SUN, B. J. CHEN,

More information

KURARAY POVAL & EXCEVAL

KURARAY POVAL & EXCEVAL Characteristics Polyvinyl alcohol (PVOH) having varying degree of polymerization and. Recommended Uses Ranging from emulsion polymerization aid to binder for pigments in paper applications. Form supplied

More information

Journal of Membrane Science

Journal of Membrane Science Journal of Membrane Science 365 (2010) 319 328 Contents lists available at ScienceDirect Journal of Membrane Science journal homepage: www.elsevier.com/locate/memsci A comparative study on the structure

More information

High pressure injection technique for hypochlorite treatment of polysulfone hollow fibre membranes

High pressure injection technique for hypochlorite treatment of polysulfone hollow fibre membranes Indian Journal of Fibre & Textile Research Vol. 40, December 2015, pp. 405-413 High pressure injection technique for hypochlorite treatment of polysulfone hollow fibre membranes Mohammed Zarrebini 1,a,

More information

HIGH PERFORMANCE OF POLYSULFONE ULTRAFILTRATION MEMBRANE: EFFECT OF POLYMER CONCENTRATION

HIGH PERFORMANCE OF POLYSULFONE ULTRAFILTRATION MEMBRANE: EFFECT OF POLYMER CONCENTRATION HIGH PERFORMANCE OF POLYSULFONE ULTRAFILTRATION MEMBRANE: EFFECT OF POLYMER CONCENTRATION Sofiah Hamzah 1, Nora aini Ali 1, Marinah Mohd Ariffin 2, Asmadi Ali 1 and Abdul Wahab Mohammad 3 1 Department

More information

Electron Beam Curable Varnishes Rapid Processing of Planarization Layers

Electron Beam Curable Varnishes Rapid Processing of Planarization Layers Electron Beam Curable Varnishes Rapid Processing of Planarization Layers Juliane Fichtner, Michaela Hagenkamp, Markus Noss, Steffen Günther AIMCAL R2R Conference USA 2017 Naples, Florida, October 15-18,

More information

GE Healthcare Life Sciences. Quality matters. Whatman TM filters for air monitoring

GE Healthcare Life Sciences. Quality matters. Whatman TM filters for air monitoring GE Healthcare Life Sciences Quality matters Whatman TM filters for air monitoring Quality matters Why does quality matter? Particulate testing Examples include PM 10 & PM 2.5 particulate monitoring. Quality

More information

Exchangeable Thermocouple Probes

Exchangeable Thermocouple Probes 118 Temperature Exchangeable Thermocouple Probes Exchangeable Thermocouple Probes For each application, ebro provides the right thermometer and also offers a wide selection of precise and robust probes

More information

PERP/PERP ABSTRACTS Acrylic Fiber PERP 09/10S7

PERP/PERP ABSTRACTS Acrylic Fiber PERP 09/10S7 PERP/PERP ABSTRACTS 2010 Acrylic Fiber PERP 09/10S7 Report Abstract February 2012 December 2011 Alexander Coker, Jun Goh and Matthew Hartley CHEMSYSTEMS PERP PROGRAM Nexant s ChemSystems Process Evaluation/Research

More information

Separation of caprolactam from water by membrane processes

Separation of caprolactam from water by membrane processes Separation of caprolactam from water by membrane processes by Min Guan A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Applied Science

More information

The preparation and performance characteristics of polyvinyl chloride-co-vinyl acetate modified membranes

The preparation and performance characteristics of polyvinyl chloride-co-vinyl acetate modified membranes Available online at www.sciencedirect.com Energy Procedia 5 (211) 8 1162 IAEED21 The preparation and performance characteristics of polyvinyl chloride-co-vinyl acetate modified membranes Li Wenjuan a,

More information

membrane from 3,5-diaminobenzoic acid

membrane from 3,5-diaminobenzoic acid ORIGINAL ARTICLE Preparation and characterization of interfacial polymerised membrane from 3,5-diaminobenzoic acid Abdul Latif Ahmad 1, Boon Seng Ooi 2, and Jyoti Prosad Choudhury 3 Abstract Ahmad, A.L.,

More information

Supplementary data. High-Performance Ultrafiltration Membranes Based on Polyethersulfone/Graphene Oxide Composites

Supplementary data. High-Performance Ultrafiltration Membranes Based on Polyethersulfone/Graphene Oxide Composites Supplementary data High-Performance Ultrafiltration Membranes Based on Polyethersulfone/Graphene Oxide Composites Fengmin Jin a, Wei Lv b,a, Chen Zhang a, Zhengjie Li a, Rongxin Su a, Wei Qi a, Quan-Hong

More information

Anti-(bio)fouling composite membranes by Polyacrylic acid/poly(vinyl alcohol) electrospun layer

Anti-(bio)fouling composite membranes by Polyacrylic acid/poly(vinyl alcohol) electrospun layer Anti-(bio)fouling composite membranes by Polyacrylic acid/poly(vinyl alcohol) electrospun layer Berta Díez Odriozola Chemical Engineering Department Universidad de Alcalá Madrid Spain Introduction NEW

More information

Effect of the temperature of polyurethane dissolution on the mechanism of wet-casting membrane formation

Effect of the temperature of polyurethane dissolution on the mechanism of wet-casting membrane formation European Polymer Journal 39 (2003) 601 607 www.elsevier.com/locate/europolj Effect of the temperature of polyurethane dissolution on the mechanism of wet-casting membrane formation Liao-Ping Cheng a, Yen-Shih

More information

Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by

Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by Supplementary Figure 1. Sample preparation schematic. First (Stage I), square islands of MoO 3 are prepared by either photolithography followed by thermal evaporation and liftoff or by a process where

More information

1 OVERVIEW OF MEMBRANE SCIENCE AND TECHNOLOGY

1 OVERVIEW OF MEMBRANE SCIENCE AND TECHNOLOGY 1 OVERVIEW OF MEMBRANE SCIENCE AND TECHNOLOGY Introduction Membranes have gained an important place in chemical technology and are used in a broad range of applications. The key property that is exploited

More information

Anil Saddat Date: 04/25/2011

Anil Saddat Date: 04/25/2011 Preparation, Characterization and performance optimization of Ultrafiltration membranes produced with polymeric and inorganic additives A Major Qualifying Project Report Submitted to the Faculty of the

More information

Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics

Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics ICONN 214, Adelaide Dr. Enrico Della Gaspera CSIRO MATERIALS SCIENCE AND ENGINEERING / FUTURE MANUFACTURING

More information

Cellulose Fibers and Microcellular Foam Starch Composites

Cellulose Fibers and Microcellular Foam Starch Composites Cellulose Fibers and Microcellular Foam Starch Composites Richard A. Venditti*, Joel J. Pawlak, Andrew R. Rutledge, Janderson L. Cibils Forest Biomaterials Science and Engineering NC State University,

More information

Membrane Chip Interface and Accessories

Membrane Chip Interface and Accessories Unit 1, Anglian Business Park, Orchard Road, Royston, Hertfordshire, SG8 5TW, UK T: +44 (0)1763 242491 F: +44 (0)1763 246125 E: sales@dolomite-microfluidics.com W: www.dolomite-microfluidics.com Dolomite

More information

Basic Principles of Membrane Technology

Basic Principles of Membrane Technology Basic Principles of Membrane Technology Basic Principles of Membrane Technology by Marcel Mulder Center for Membrane Science and Technology, University oftwente, Enschede, The Netherlands KLUWER ACADEMIC

More information

Easy Cleaning Thermo-Responsive Polysulfone Ultrafiltration Membrane for Fouling Mitigation by Natural Organic Material

Easy Cleaning Thermo-Responsive Polysulfone Ultrafiltration Membrane for Fouling Mitigation by Natural Organic Material Easy Cleaning Thermo-Responsive Polysulfone Ultrafiltration Membrane for Fouling Mitigation by Natural Organic Material Manish Kumar Sinha a * and M. K. Purkait b a * School of Technology, Pandit Deendayal

More information

Available online at ScienceDirect. Procedia Engineering 148 (2016 )

Available online at  ScienceDirect. Procedia Engineering 148 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 148 (2016 ) 176 183 4th International Conference on Process Engineering and Advanced Materials Characterization and Performance

More information

Optical Properties of Aligned Zinc Oxide Nanorods

Optical Properties of Aligned Zinc Oxide Nanorods Optical Properties of Aligned Zinc Oxide Nanorods For use in Extremely Thin Absorber Solar Cells Kieren Bradley Prof. Dave Cherns, Dr. David Fermin, Dr. Martin Cryan 1 Project Aims To be able to grow zinc

More information

KURARAY POVAL TM & EXCEVAL TM

KURARAY POVAL TM & EXCEVAL TM Characteristics Polyvinyl alcohol (PVOH) having varying degree of polymerization and. Recommended Uses Ranging from emulsion polymerization aid to binder for pigments in paper applications. Form supplied

More information

PRODUCTS CATALOG. MY Polymers Ltd. 3 Golda Meir St., Ness Ziona , Israel UPD

PRODUCTS CATALOG. MY Polymers Ltd. 3 Golda Meir St., Ness Ziona , Israel UPD PRODUCTS CATALOG OF Products: Optical Fibers Primary Coatings.2 LM Products: Low Coating/Adhesives, Refractive Index 1.36 to 1.50..3 -NI Products: Low Coatings/Adhesives with reduced sensitivity to O2

More information

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors Electronic Supplementary Information (ESI): A Facile Method for Enhancing the Sensing Performance of Zinc Oxide Nanofibers Gas Sensors Pei-Pei Wang a, Qi Qi a, Rui-Fei Xuan a,b, Jun Zhao a, Li-Jing Zhou

More information

Increasing the Interfacial Adhesion in Poly(methyl methacrylate)/carbon Fibre Composites by Laser Surface Treatment

Increasing the Interfacial Adhesion in Poly(methyl methacrylate)/carbon Fibre Composites by Laser Surface Treatment Increasing the Interfacial Adhesion in Poly(methyl methacrylate)/carbon Fibre Composites by Laser Surface Treatment A. Nematollahzadeh 1, S.A. Mousavi S. 1, R.M. Tilaki 2 and M. Frounchi 1 * 1 Department

More information

Membrane Hydrophilization: Towards Low Fouling Polymeric Membranes

Membrane Hydrophilization: Towards Low Fouling Polymeric Membranes Jurnal Teknologi Full paper Membrane Hydrophilization: Towards Low Fouling Polymeric Membranes Heru Susanto a* a Department of Chemical Engineering, Diponegoro University, Jl. Prof. Sudarto-Tembalang,

More information

DEVELOPMENT OF IMPROVED CONTROLLED-RELEASE POLYMERS FOR SILICONE RELEASE COATINGS

DEVELOPMENT OF IMPROVED CONTROLLED-RELEASE POLYMERS FOR SILICONE RELEASE COATINGS DEVELOPMENT OF IMPROVED CONTROLLED-RELEASE POLYMERS FOR SILICONE RELEASE COATINGS David Newsham Ph.D., Product Development Chemist, Momentive Performance Materials, Waterford, NY Roy Griswold, Griswold

More information

GOO CHEMICAL CO., LTD. Water soluble Polyester co-polymer. PLAS COAT series

GOO CHEMICAL CO., LTD. Water soluble Polyester co-polymer. PLAS COAT series GOO CHEMICAL CO., LTD. Water soluble Polyester co-polymer PLAS COAT series GOO CHEMICAL CO., LTD. Regarding PLAS COAT PLAS COAT is the aqueous Polyester resin that is made from our company s unique technology

More information

Journal of Membrane Science

Journal of Membrane Science Journal of Membrane Science 437 (2013) 141 149 Contents lists available at SciVerse ScienceDirect Journal of Membrane Science journal homepage: www.elsevier.com/locate/memsci Novel hydrophilic nylon 6,6

More information

Advances in Environmental Biology

Advances in Environmental Biology AENSI Journals Advances in Environmental Biology ISSN-1995-0756 EISSN-1998-1066 Journal home page: http://www.aensiweb.com/aeb/ Investigation of Optimum Drying Conditions for Pure PES Membranes for Gas

More information

Introduction of Tangential Flow Filtration (TFF) Karen Chan 16 May 2017

Introduction of Tangential Flow Filtration (TFF) Karen Chan 16 May 2017 Introduction of Tangential Flow Filtration (TFF) Karen Chan 16 May 2017 What you will learn TFF principles and applications in mammalian cell processes TFF vocabulary definitions and key process parameters

More information

Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: Ultrafiltration and nanofiltration performance

Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: Ultrafiltration and nanofiltration performance Korean J. Chem. Eng., 28(1), 261-266 (2011) DOI: 10.1007/s11814-010-0350-0 INVITED REVIEW PAPER Preparation and modification of nano-porous polyimide (PI) membranes by UV photo-grafting process: Ultrafiltration

More information

Thin films of cellulose derivatives

Thin films of cellulose derivatives LIGNCELLVALUE-ADDED MATERIALS AND FUNCTINAL STRUCTURES FRM LIGNCELLULSICS Thin films of cellulose derivatives Steering group meeting 20.5.2011 Laura Taajamaa UTLINE Background - Thin films - Polymer blends

More information

Femtosecond Laser Applications in NiTi

Femtosecond Laser Applications in NiTi Femtosecond Laser Applications in NiTi Professor Luísa Coutinho IST-UTL Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal Objectives Analyze beam/material interaction of femtosecond

More information

TRANSPORT OF PHARMACEUTICAL AND NOM

TRANSPORT OF PHARMACEUTICAL AND NOM TRANSPORT OF PHARMACEUTICAL AND NOM IN NF AND TIGHT UF MEMBRANES Gun-Young Park *, Jaeweon Cho * Department of environmental science and engineering GIST, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Korea

More information

DEVELOPMENT OF POLYVINYLIDENE FLUORIDE - POLYDIMETHYLSILOXANE (PVDF-PDMS) THIN FILM COMPOSITE (TFC) MEMBRANE FOR CO 2 / N 2 GAS SEPARATION

DEVELOPMENT OF POLYVINYLIDENE FLUORIDE - POLYDIMETHYLSILOXANE (PVDF-PDMS) THIN FILM COMPOSITE (TFC) MEMBRANE FOR CO 2 / N 2 GAS SEPARATION DEVELOPMENT OF POLYVINYLIDENE FLUORIDE - POLYDIMETHYLSILOXANE (PVDF-PDMS) THIN FILM COMPOSITE (TFC) MEMBRANE FOR CO 2 / N 2 GAS SEPARATION ABDUL KARIM BIN SHAIKH ABDUL NASIR A thesis submitted to the Faculty

More information

Vegetables by Edible coatings."

Vegetables by Edible coatings. "New Tendencies in Preservation of Fruits and Vegetables by Edible coatings." Laboratoire Maîtrise des Technologies Agro-Industrielles ( LMTAI ) Pôle sciences et Technologie - Université La Rochelle Presented

More information

UK National Aerospace NDT Board

UK National Aerospace NDT Board UK National Aerospace NDT Board c/o The British Institute of NDT Midsummer House, Riverside Way Bedford Road, Northampton, NN1 5NX United Kingdom Tel: +44(0)1604-438250 Fax: +44(0)1604-438300 E-mail: nicole.banks@bindt.org

More information

FOULING RESISTANT REVERSE OSMOSIS MEMBRANES. Ja-young Koo, Sung Pyo Hong, Hoon Hyung, Young Hun Kim, Sungro Yoon, Soon Sik Kim

FOULING RESISTANT REVERSE OSMOSIS MEMBRANES. Ja-young Koo, Sung Pyo Hong, Hoon Hyung, Young Hun Kim, Sungro Yoon, Soon Sik Kim FOULING RESISTANT REVERSE OSMOSIS MEMBRANES Ja-young Koo, Sung Pyo Hong, Hoon Hyung, Young Hun Kim, Sungro Yoon, Soon Sik Kim Filter Business Division Saehan Industries, Inc, 1 Jungsandong, Kyungsan city,

More information

TECHNICAL DATA SHEET GROWCLEAR PLUS

TECHNICAL DATA SHEET GROWCLEAR PLUS TECHNICAL DATA SHEET GROWCLEAR PLUS CATHODIC ELECTROPHORETIC CLEAR / TINTED LACQUERING PROCESS Introduction Growclear Plus is an advanced version of the earlier popular electrophoretic Clearlyte lacquer.

More information

Suitability of (Meth)acrylates for Use in Sealant Applications

Suitability of (Meth)acrylates for Use in Sealant Applications Suitability of (Meth)acrylates for Use in Sealant Applications James E. Goodrich Sartomer USA, LLC 2 Thomas Jones Way Exton, PA, USA 19341 Abstract The use of (meth)acrylates in peroxide or amine cured

More information

MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES

MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES Malaysian Journal of Analytical Sciences, Vol 20 No 6 (2016): 1524-1529 DOI: http://dx.doi.org/10.17576/mjas-2016-2006-34 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES Published by The Malaysian Analytical

More information

MEMBRANE TECHNOLOGY AND APPLICATIONS

MEMBRANE TECHNOLOGY AND APPLICATIONS MEMBRANE TECHNOLOGY AND APPLICATIONS Second edition Richard W. Baker Membrane Technology and Research, Inc. Menlo Park, California CONTENTS Preface Acknowledgments for the first edition Acknowledgments

More information

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution Journal of Materials Science and Engineering B 6 (3-4) (2016) 68-73 doi: 10.17265/2161-6221/2016.3-4.002 D DAVID PUBLISHING Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is The Royal Society of Chemistry 2014 Supporting Information Three-dimensional Flash Flow Microreactor for Scale-up Production of

More information

P2-P3 P3-P4 P4-P5 P5-P6 P6-P7 P7 P8 P8-P9 P9-P11 P11-P13

P2-P3 P3-P4 P4-P5 P5-P6 P6-P7 P7 P8 P8-P9 P9-P11 P11-P13 Nylon Membrane Filter PTFE Membrane Filter PES Membrane Filter MCE Membrane Filter Microbiology Test Membrane Filter Absorbent Pad PVDF Membrane Filter CA Membrane Filter PC Membrane Filter Glass Fiber

More information

Control of Size and Charge Selectivity in Amphiphilic Graft Copolymer Nanofiltration Membranes

Control of Size and Charge Selectivity in Amphiphilic Graft Copolymer Nanofiltration Membranes Control of Size and Charge Selectivity in Amphiphilic Graft Copolymer Nanofiltration Membranes by Nathan Gary Lovell B.S. Chemistry, University of Utah, 2001 B.C.S. Computer Science, University of Utah,

More information

Chapter CHAPTER 7. ELECTRICAL PROPERTIES OF ZnO DOPED MAGESIUM ALUMIUM SILICATE GLASS-CERAMICS

Chapter CHAPTER 7. ELECTRICAL PROPERTIES OF ZnO DOPED MAGESIUM ALUMIUM SILICATE GLASS-CERAMICS Chapter 7 102 CHAPTER 7 ELECTRICAL PROPERTIES OF ZnO DOPED MAGESIUM ALUMIUM SILICATE GLASS-CERAMICS Chapter 7 103 CHAPTER 7 ELECTRICAL PROPERTIES OF ZnO DOPED MAGNESIUM ALUMINUM SILICATE GLASS-CERAMICS

More information

Morphology, Performance and Application of carboxylated polyethersulfone incorporated cellulose acetate ultrafiltration membrane

Morphology, Performance and Application of carboxylated polyethersulfone incorporated cellulose acetate ultrafiltration membrane Morphology, Performance and Application of carboxylated polyethersulfone incorporated cellulose acetate ultrafiltration membrane 1 R. Kalaivizhi, 2 D. Mohan 1 Department of chemistry, SRM University, Kattankulathur,

More information

Introduction to Adhesives

Introduction to Adhesives Introduction to Adhesives UPACO Division of Worthen Industries Barbara Strickland April 11, 2013 20,000 BC Cavemen Beeswax, Pine Sap feathers on arrows 1500 BC Egyptians Animal glues repair Asphalt mosaics

More information

GE Healthcare Life Sciences. Quality matters. Whatman TM filters for air monitoring

GE Healthcare Life Sciences. Quality matters. Whatman TM filters for air monitoring GE Healthcare Life Sciences Quality matters Whatman TM filters for air monitoring Quality matters Why does quality matter? Particulate testing Examples include PM 10 & PM 2.5 particulate monitoring. Quality

More information

What is superhydrophobicity? How it is defined? What is oleophobicity?

What is superhydrophobicity? How it is defined? What is oleophobicity? Avijit Baidya 12.11.2016 What is superhydrophobicity? How it is defined? What is oleophobicity? Introduction : Hydrophobic and amphiphobic surfaces have been studied in great depth over the past couple

More information

PERMA S PURPOSE SUSTAINABILITY ECO-INNOVATION. Commitment to create a better world for tomorrow. Imagination for life

PERMA S PURPOSE SUSTAINABILITY ECO-INNOVATION. Commitment to create a better world for tomorrow. Imagination for life Who is PERMA PERMA CORPORATION is a leading corporate focuses on providing customers with solutions through a permanent functional textiles. Our laboratory research and provide the resources required to

More information

Plastic Storage Bottles. Product Selection Guide

Plastic Storage Bottles. Product Selection Guide Plastic Product Selection Guide Contents Page Introduction... 1 Physical Properties of Plastic Bottles... 1 Comparison of Plastic.... 2 Polystyrene (PS).... 3 Accessories for PS.... 3 Square Polycarbonate

More information

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures Undergraduate Researcher Saranya Sathananthan University of Tennessee, Knoxville Faculty Mentor Vinayak P. Dravid Department

More information

ANALYSIS OF MICROSTRUCTURE OF FUMED SILICA REINFORCED POLYESTER COMPOSITES

ANALYSIS OF MICROSTRUCTURE OF FUMED SILICA REINFORCED POLYESTER COMPOSITES International Journal of Advanced Research in Engineering and Technology (IJARET) Volume 6, Issue 7, July (2015), pp. 32-38, Article ID: Article ID: 20120150607005 Available online at http://www.iaeme.com/currentissue.asp?jtype=ijaret&vtype=6&itype=7

More information

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE THE CHARACTERIZATION OF ZINC PLATED SURFACES AFTER AGED ADHESİVES

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE THE CHARACTERIZATION OF ZINC PLATED SURFACES AFTER AGED ADHESİVES SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 19 (2014) THE CHARACTERIZATION OF ZINC PLATED SURFACES AFTER AGED ADHESİVES Alp ÖZDEMİR, Pavel ŠVANDA Department

More information

Micellar-Enhanced Ultrafiltration for phosphates removal

Micellar-Enhanced Ultrafiltration for phosphates removal ºETSECCPB Micellar-Enhanced Ultrafiltration for phosphates removal 2012-2013 Index: Main contaminants in water -4-1 Phosphates -4-2 Nitrates -5- Membrane separation processes -6-1 Microfiltration -6-2

More information

Environment Protection Engineering ULTRAFILTRATION OF DYE SOLUTIONS IN THE PRESENCE OF CATIONIC AND ANIONIC SURFACTANTS

Environment Protection Engineering ULTRAFILTRATION OF DYE SOLUTIONS IN THE PRESENCE OF CATIONIC AND ANIONIC SURFACTANTS Environment Protection Engineering Vol. 35 9 No. KATARZYNA MAJEWSKA-NOWAK* ULTRAFILTRATION OF DYE SOLUTIONS IN THE PRESENCE OF CATIONIC AND ANIONIC SURFACTANTS The objective of the study was to investigate

More information