Endocrinology - Reproduction Introduction Mohammed Y. Kalimi, Ph.D.

Size: px
Start display at page:

Download "Endocrinology - Reproduction Introduction Mohammed Y. Kalimi, Ph.D."

Transcription

1 Endocrinology - Reproduction Introduction Mohammed Y. Kalimi, Ph.D. Objectives: After studying this material, the student will: 1. Identify the chemical nature of thyroid hormones, TRH, TSH, GH, somatoatatin, prolactin, insulin, glucagon and growth factors. 2. Recognize the concept of hormonal biosynthesis, storage, release, plasma half life, degradation and control mechanisms. 3. Understand the physiological effects and mechanisms of hormonal actions. 4. Understand the concept of endocrine diseases in terms of hyper (over secretion) and hypo (deficiency) functioning of the endocrine glands. I. Basic Concepts Endocrine Gland: A ductless gland whose secretions (hormones) are released into the vascular system for an action on distant cells (target cells). Hormones: Chemical agents synthesized by ductless glands and released into the blood stream where they evoke a physiological response by acting on specific tissues/organs by way of specific receptors. Paracrine secretion: Secretory product is released into intercellular space to influence immediately neighboring cells. Neurocrine: A hormone secreted by a nerve cell, released from nerve endings into the blood stream, and carried to another area where it exerts specific effects on target cells. The chemical substance released from nerve endings which exert effects on the adjacent nerve cells across a short synapse is called a neurotransmitter. Autocrine: Secretory product (hormone) acts back on the cell of origin or adjacent identical cells.

2 Target organ: The organ or cells on which a particular hormone elicits a response. May be another endocrine organ. Feedback: The response of a particular target organ may feedback to an endocrine gland and may modify the output of that gland. Feedback may be either stimulatory (positive) or inhibitory (negative). II. Hormones A. Classification of Hormones: The chemical nature of hormones varies widely but three major categories are recognized. 1. Peptide hormone: Ranging from simple dipeptides (two amino acids) to large proteins containing over 200 amino acids. Examples: Hypothalamic, anterior pituitary, posterior pituitary and pancreatic hormones. 2. Biogenic amines - Amino acid derivatives. Examples: Thyroid hormones and catecholamines (both derived from modification of the amino acid tyrosine). 3. Steroid hormones: A large family of molecules based on the 17 carbon aromatic cyclopentanoperhydrophenanthrene nucleus, among which relatively minor chemical differences are associated with marked differences in biological activity. Examples: Adrenal cortex, reproductive gland hormones and the active metabolites of vitamin D. B. Nomenclature and acronyms: Hormones are named for either their gland of origin (thyroxine, testosterone), function (calcitonin, progesterone, prolactin), or chemical structure (triiodothyronine, aldosterone). Abbreviations are often used in preference to the complete name for a hormone (follicle-stimulating hormone = FSH; luteinizing hormone releasing hormone = LHRH ; parathyroid hormone = PTH; estradiol = E 2 ).

3 C. Biosynthesis of hormones: 1. Biosynthesis of peptide hormones: The peptide hormones are synthesized by rough endoplasmic reticulum as a pre-pro-hormone. 2. Biosynthesis of steroid and amine hormones: The steroid and amine hormones are synthesized from cholesterol and tyrosine respectively through a series of enzymatic reactions by smooth endoplasmic reticulum, and mitochondria. D. Storage of hormones: In comparison with exocrine glands, storage is minimal with the exception of the thyroid gland. E. Release of hormones: Excitation-secretion coupling and release Intracellular calcium camp Activation of microtubular and microfilament system Fusion of membrane of the secretory granule with that of the cell Secretion of hormone by exocytosis 1. Hormone concentration in the various effluents from a particular endocrine gland should exceed that of arterial blood supplying the gland. 2. Secretion or production rate of a hormone, nmoles/minute, ng/minute. 3. Plasma concentration of a hormone, nmoles/ml, ng/ml. F. Transport of hormones in blood: 1. Bound to carrier proteins: Steroid and thyroid hormones circulate bound to specific globulins. In general there is a good correlation between the amount of bound hormone in circulation and the plasma half-life of a hormone; the more bound the longer the half-life. 2. Unbound or free: With few exceptions (IGF-I), peptides and protein hormones circulate unbound (also catecholamines). G. Clearance of hormones from the circulation: 1. Biological half life (t ½)

4 2. Metabolic clearance rate (MCR) H. Inactivation of hormones: 1. By specific target tissues (internalization and lysosomal degradation). 2. By liver and kidneys. 3. By both 1 and 2. I. Measurement of hormones: 1. Radioimmunoassay 2. Localization of hormones in tissues of origin and action: Immunocytochemistry. J. Control of hormonal secretion: 1. Feedback (positive or negative) 2. Integration between endocrine and nervous system 3. Neural control (dopaminergic, adrenergic, cholinergic etc.). 4. Others such as sleep-wake cycle, menstrual cycle, diurnal rhythm. K. Mechanism of action (covered separately): L. Major function of hormones: 1. Endocrine system helps initiate, mediate and regulate the processes of growth, differentiation, development, maturation and senescence. 2. Maintenance of homeostasis, fluid and electrolyte balance (Na +, K +, Ca ++, glucose, water ) 3. Regulation of cellular metabolism (fats, carbohydrates, proteins) 4. Sexual development and function, lactation and behavior. M. Malfunctioning of the endocrine system: Primarily caused by: 1. Overproduction of a hormone (hyperfunction) 2. Underproduction of a hormone (hypofunction) 3. Unresponsiveness of target organ (lack of receptor, etc.) = down-regulation 4. Production of abnormal hormone N. Neuroendocrinology: Control systems of the body

5 III. The Nervous System and the Endocrine System A. Similarities between the two: 1. Each synthesizes and releases specific chemical agents which are capable of influencing other cells by interacting with specific receptors. 2. Both neurons and endocrine cells generate electrical potentials and can be depolarized. B. Differences between the two: 1. Nervous system: a. Specific chemical agents released are disseminated only a very short distance. b. System is fast acting. c. Actions are relatively short-lived. d. Operates with point to point precision. e. Affects only glandular secretions and muscular contractions. 2. Endocrine system: a. Specific chemical agents are released and carried via the blood stream throughout the whole body. b. System is slow acting. c. Actions are relatively long-lived. d. Theoretically, has the potential of affecting every cell in the body. e. Affects a whole variety of cell types. C. More generalized definition is descriptive of cells that release a hormone in response to a neural stimulation. 1. Adrenal medulla under the influence of the sympathetic nervous system. 2. Some cells of the islets of Langerhans are affected in part by the autonomic nervous system. 3. Some cells in the CNS synthesize "hormones" that act as neurotransmitters.

6 Figure 1 IV. Hormones Origin A. Hypothalamus: Thyroid-stimulating-hormone-releasing-hormone (TRH) Corticotrophin-releasing-hormone (CRH) Luteinizing-hormone-releasing-hormone (LHRH) Growth-hormone-releasing-hormone (GHRH) Somatostatin Dopamine

7 B. Anterior Pituitary: Growth Hormone (GH) Prolactin Thyroid-Stimulating-Hormone (TSH) Adrenocorticotrophic-Hormone (ACTH) Luteinizing Hormone (LH) Follicle-Stimulating-Hormone (FSH) Melanocyte- Stimulating-Hormone (MSH) C. Posterior Pituitary: Vasopressin or Antidiuretic Hormone (ADH) Oxytocin D. Thyroid Gland: Thyroid Hormones (T3 and T4) : Follicular cells Calcitonin: Parafollicular cells E. Parathyroid gland: Parathyroid Hormone F. Adrenal Cortex: Glucocorticoids Aldosterone G. Adrenal Medulla: Epinephrine and Norepinephrine H. Pancreas: Insulin Glucagon Somatostatin I. Gonads (testes-male; ovary-female) Androgens Estrogens Progestins

8 J. Skin, Liver, and Kidney: Vitamin D K. Placenta: Human Chorionic Gonadotropin (hcg) Human Placental Lactogen (hpl) V. Mechanism of Hormone Action A. Mechanism of Steroid Hormone Action (Fig. 2): Used by steroid hormones such as estrogens, androgens, progesterone, aldosterone, glucocorticoids and vitamin D. In addition, thyroid hormones and vitamin A have a similar mechanism. The estrogen, progesterone, androgen, vitamin D and vitamin A receptors are primarily localized in the cell nucleus. Steps: 1. Endocrine gland + stimulus steroid release. 2. Steroid diffuses through the cell membrane into the cytoplasm of target cells. 3. Steroid binds to cytoplasmic and /or nuclear receptors forming a steroidreceptor complex. Steroid binding results in conformational changes called activation. The subsequent dimerization of the liganded receptor enables the steroid-receptor complex dimer to bind tightly to specific DNA sequences, called Steroid Responsive Elements(SRE), and interact with coregulator proteins thus activating or suppressing transcription (mrna) of genes under the control of steroid hormones.

9 Figure 2.

10 Figure 3. In general, agonist ligands of receptors promote binding of coactivator proteins that promote transcription initiation while binding of antagonists promotes interaction with corepressor proteins that facilitate transcription repression.the modular nature of receptors allows ligand, tissue and promoter specific interaction with select subsets of coregulators capable of elaborating distinct transcriptional and hence physiological responses to steroid signal. 4. mrna is translated into specific proteins (such as metabolic enzymes). 5. specific proteins, physiological responses. B. Cyclic AMP (camp) Mechanism (Fig. 3): The camp mechanism appears to be used by most (not all) peptide hormones (such as LH, FSH, TSH, ACTH, ADH via V 2 receptor, hcg, MSH, GHRH, CRH, catecholamines [ß 1, ß 2 receptors], calcitonin, glucagon and PTH).

11 Steps: 1. Endocrine gland + stimulus Release of Hormone (1st messenger). 2. Hormone + target cell membrane receptor Hormone - Receptor Complex. Peptide hormone receptors are membrane bound, mobile, glycosylated, large peptides. 3. Hormone-Receptor complex, activation of G-protein, adenylyl cyclase activity. Hormone binding to receptor releases guanine diphosphate (GDP) from a binding site on the heterotrimeric G-protein permitting guanine triphosphate (GTP) to bind to the G- protein (GDP-GTP exchange). Heterotrimeric G-proteins are made up of three subunits α, β and γ, in order of decreasing mass. The binding of GTP to α subunit results in dissociation of Gα from βγ. The GTP bound - Gα-protein interacts with the adenylyl cyclase catalytic unit. This results in the activation of enzyme adenylyl cyclase, and production of camp from intracellular ATP. ATP + adenylyl cyclase camp + Pi The Gα-subunit serves as a coupling protein between receptor and adenyl cyclase, facilitating transmission of the hormonal signal. There are two types of G-proteins (i) stimulatory (G s ) and (ii) inhibitory (G i ). camp inhibitory hormones (somatostatin, dopamine) bind to Gi-protein and suppress adenylyl cyclase activity while camp dependent hormones (LH, FSH, TSH, ACTH, PTH, ADH via V2 receptor, GHRH, CRH, MSH, calcitonin, glucagon, epinephrine, hcg ) bind to Gs-protein and activate adenylyl cyclase. 4. ATP + adenylyl cyclase camp + Pi 5. Specific protein kinase(s) are activated by camp Protein Kinase (inactive)+ camp Protein Kinase (active) 6. The activated protein kinases catalyze phosphorylation of enzymes by ATP resulting in physiological responses. Protein +ATP + Activated protein kinase = Phosphoprotein + ADP

12 Inactivation of camp and phosphoproteins 1. camp is inactivated by the enzyme phosphodiesterase camp + phosphodiestrase 5' AMP (inactive). 2. Phosphoproteins are inactivated by the enzyme phosphatase Phosphoprotein + phosphatase = Protein + Pi C. The Calcium-phospholipid mechanism (Fig.4): Figure 4: Calcium-Phospholipid Pathway The calcium-phospholipid mediated mechanism is used by GnRH (LHRH), TRH, Angiotensin II, and ADH via the V 1 receptor. 1. Hormone + membrane receptor, Hormone - receptor complex. Formation of high affinity hormone - receptor complex results in transmission of the signal through a G-protein (Gq) to the enzyme phospholipase c'. 2. Activation of the cell membrane enzyme phospholipase 'c.' 3. Conversion of plasma membrane phospholipid, phosphatidyl inositol 4,5, biphosphate(pip 2 ) by activated enzyme phospholipase 'c' to inositol 1,4 5 triphosphate (IP 3 ) and 1,2 diacylglycerol. Inositol - 1,4,5 triphosphate (IP 3 ) enhances intracellular calcium and calciumcalmodulin processes. 1,2 diacylglycerol activates the enzyme protein kinase 'c' (PKC) which catalyzes the phosphorylation of proteins by ATP.

13 Figure 5: Internalization of Hormones The overall effects of protein kinase 'c' activation and elevated calcium ion concentrations include the opening and closing of ion channels, and increased gene transcription by phosphorylating gene regulatory proteins directly or indirectly by cascade. It is quite common for hormone actions (TSH, GHRH, etc.) to depend upon the camp mechanism together with the phospholipid - calcium mechanism (crosstalk). D. Internalization of Peptide Hormones (Fig.5). Many peptide hormones are known to be internalized. Steps of internalization mechanism: 1. Endocrine gland + stimulus hormone 2. Hormone binds to cell membrane receptor 3. Hormone-receptor complexes are clustered on the membrane 4. Membrane containing aggregated hormone-receptor complexes begin to fold inward forming a coated pit. 5. Coated pits are internalized into the cell forming endocytic vesicles called endosomes.

14 6. Endosomes (by an ATP-dependent process) may facilitate the release of ligand from receptor. Ligand and receptor are sorted, and the ligand is degraded by lysosomal enzymes (hydrolases). The internalized receptor may be recycled to the cell surface or degraded by lysosomal enzymes. VI. Hormone Action: Summary A. Steroid hormone (estrogen, androgen, progesterone, aldosterone, glucocorticoids, thyroid hormones, vitamin D, vitamin A) Mechanism: Binding of steroid to the cytoplasmic and/or nuclear receptors, dimerization of the hormone-receptor complexes, transcription (mrna synthesis),translation (enzyme or protein synthesis), and physiological responses. B. camp mechanism: 1. activation of adenylyl cyclase, camp, activation of phosphokinasea LH, FSH, TSH, ACTH, hcg, PTH, Calcitonin, Glucagon, CRH, GHRH, Epinephrine, ADH via V 2 receptor. 2. adenylyl cyclase, camp Dopamine, Somatostatin C. Calcium-phospholipid mechanism: activation of phospholipase C, conversion of PIP2 to IP3 and diacylglycerol. 1. IP3, intracellular calcium, 2. diacylglycerol, PKC. LHRH, TRH, Angiotensin II, ADH via V1 receptor. D. Associated tyrosine kinase-linked hormone action: Prolactin, GH E. Intrinsic tyrosine kinase-linked hormone action: Insulin, IGF-I

BIOLOGY - CLUTCH CH.45 - ENDOCRINE SYSTEM.

BIOLOGY - CLUTCH CH.45 - ENDOCRINE SYSTEM. !! www.clutchprep.com Chemical signals allow cells to communicate with each other Pheromones chemical signals released to the environment to communicate with other organisms Autocrine signaling self-signaling,

More information

BIOL 2458 A&P II CHAPTER 18 SI Both the system and the endocrine system affect all body cells.

BIOL 2458 A&P II CHAPTER 18 SI Both the system and the endocrine system affect all body cells. BIOL 2458 A&P II CHAPTER 18 SI 1 1. Both the system and the endocrine system affect all body cells. 2. Affect on target cells by the system is slow. Affect on target cells by the system is fast. INTERCELLULAR

More information

Chapter 16: Endocrine System 1

Chapter 16: Endocrine System 1 Ch 16 Endocrine System Bi 233 Endocrine system Endocrine System: Overview Body s second great controlling system Influences metabolic activities of cells by means of hormones Slow signaling Endocrine glands

More information

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1

GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1 GENERAL CHARACTERISTICS OF THE ENDOCRINE SYSTEM FIGURE 17.1 1. The endocrine system consists of glands that secrete chemical signals, called hormones, into the blood. In addition, other organs and cells

More information

General Principles of Endocrine Physiology

General Principles of Endocrine Physiology General Principles of Endocrine Physiology By Dr. Isabel S.S. Hwang Department of Physiology Faculty of Medicine University of Hong Kong The major human endocrine glands Endocrine glands and hormones

More information

Endocrine System Hormones (Ch. 45)

Endocrine System Hormones (Ch. 45) Endocrine System Hormones (Ch. 45) Regulation Why are hormones needed? chemical messages from one body part to another communication needed to coordinate whole body daily homeostasis & regulation of large

More information

Endocrine secretion cells secrete substances into the extracellular fluid

Endocrine secretion cells secrete substances into the extracellular fluid Animal Hormones Concept 30.1 Hormones Are Chemical Messengers Endocrine secretion cells secrete substances into the extracellular fluid Exocrine secretion cells secrete substances into a duct or a body

More information

Receptors Functions and Signal Transduction L1- L2

Receptors Functions and Signal Transduction L1- L2 Receptors Functions and Signal Transduction L1- L2 Faisal I. Mohammed, MD, PhD University of Jordan 1 Introduction to Physiology (0501110) Summer 2012 Subject Lecture No. Lecturer Pages in the 11 th edition.

More information

Receptors Functions and Signal Transduction L1- L2

Receptors Functions and Signal Transduction L1- L2 Receptors Functions and Signal Transduction L1- L2 Faisal I. Mohammed, MD, PhD University of Jordan 1 Introduction to Physiology (0501110) Spring 2013 Subject Receptors: types and adaptation - Membrane

More information

Chapter 11 - Endocrine System

Chapter 11 - Endocrine System Chapter 11 - Endocrine System 11.1 Introduction A. The endocrine system is made up of the cells, tissues, and organs that secrete hormones into body fluids. B. The body has two kinds of glands, exocrine

More information

Revision. camp pathway

Revision. camp pathway االله الرحمن الرحيم بسم Revision camp pathway camp pathway Revision camp pathway Adenylate cyclase Adenylate Cyclase enzyme Adenylate cyclase catalyses the formation of camp from ATP. Stimulation or inhibition

More information

The Endocrine System. I. Overview of the Endocrine System. II. Three Families of Hormones. III. Hormone Receptors. IV. Classes of Hormone Receptor

The Endocrine System. I. Overview of the Endocrine System. II. Three Families of Hormones. III. Hormone Receptors. IV. Classes of Hormone Receptor The Endocrine System I. Overview of the Endocrine System A. Regulates long term metabolic processes B. Releases hormones from endocrine cells 1. Hormones are chemicals 2. Alter metabolism of cells 3. Release

More information

Omran Saeed. Mamoon Mohammad alqtamin. Ebaa ALzayadneh

Omran Saeed. Mamoon Mohammad alqtamin. Ebaa ALzayadneh 52 Omran Saeed Mamoon Mohammad alqtamin Ebaa ALzayadneh Revision: *classification the signals according to the location of their receptors: (signals have receptors either) 1 transmembrane receptors ( integral

More information

Endocrine System Hormones. AP Biology

Endocrine System Hormones. AP Biology Endocrine System Hormones 2007-2008 Regulation Why are hormones needed? u chemical messages from one body part to another u communication needed to coordinate whole body u daily homeostasis & regulation

More information

Chapter 11. Endocrine System

Chapter 11. Endocrine System Chapter 11 Endocrine System 1 Introduction A. The endocrine system is made up of the cells, tissues, and organs that secrete hormones into body fluids. B. Hormones diffuse into the bloodstream to act target

More information

Endocrine System Hormones

Endocrine System Hormones Endocrine System Hormones 2007-2008 Regulation Why are hormones needed? chemical messages from one body part to another communication needed to coordinate whole body homeostasis & regulation metabolism

More information

HORMONES (Biomedical Importance)

HORMONES (Biomedical Importance) hormones HORMONES (Biomedical Importance) Hormones are the chemical messengers of the body. They are defined as organic substances secreted into blood stream to control the metabolic and biological activities.

More information

Chapter 20 Endocrine System

Chapter 20 Endocrine System Chapter 20 Endocrine System The endocrine system consists of glands and tissues that secrete Hormones are chemicals that affect other glands or tissues, many times far away from the site of hormone production

More information

ENDOCRINOLOGY COORDINATION OF PHYSIOLOGICAL PROCESSES:

ENDOCRINOLOGY COORDINATION OF PHYSIOLOGICAL PROCESSES: ENDOCRINOLOGY COORDINATION OF PHYSIOLOGICAL PROCESSES: -In a living organism there must be coordination of number of physiological activities taking place simultaneously such as: movement, respiration,

More information

Chp. 17 FUNCTIONAL ORG. Char.of the Endocrine System

Chp. 17 FUNCTIONAL ORG. Char.of the Endocrine System Chp. 17 FUNCTIONAL ORG. Char.of the Endocrine System Glands that secrete chemical signals (hormones) into circulatory system Hormone characteristics Produced in small quantities Secreted into intercellular

More information

4/23/2018. Endocrine System: Overview. Endocrine System: Overview

4/23/2018. Endocrine System: Overview. Endocrine System: Overview Endocrine System: Overview With nervous system, coordinates and integrates activity of body cells Influences metabolic activities via hormones transported in blood Response slower but longer lasting than

More information

Endocrine Notes Mrs. Laux AP Biology I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones

Endocrine Notes Mrs. Laux AP Biology I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones I. Endocrine System consists of endocrine glands (ductless), cells, tissues secrete hormones regulates metabolism, fluid balance, growth, reproduction A. Hormones 1. chemical signals-cell to cell communication

More information

Monday, 7 th of July 2008 ( ) University of Buea MED30. (GENERAL ENDOCRINOLOGY) Exam ( )

Monday, 7 th of July 2008 ( ) University of Buea MED30. (GENERAL ENDOCRINOLOGY) Exam ( ) .. Monday, 7 th of July 2008 (8 30-11. 30 ) Faculty of Health Sciences University of Buea MED30 304 Programme in Medicine (GENERAL ENDOCRINOLOGY) Exam (2007-2008).. Multiple Choice Identify the letter

More information

Chapter 17. Lecture and Animation Outline

Chapter 17. Lecture and Animation Outline Chapter 17 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please Note: Once you have

More information

Art labeling Activity: Figure 16.1

Art labeling Activity: Figure 16.1 ANP 1105D Winter 2013 Assignment 6 part I: The Endocrine Sy... Assignment 6 part I: The Endocrine System, Chapter 16 Due: 11:59pm on Monday, March 4, 2013 Note: To understand how points are awarded, read

More information

Chapter 20. Endocrine System Chemical signals coordinate body functions Chemical signals coordinate body functions. !

Chapter 20. Endocrine System Chemical signals coordinate body functions Chemical signals coordinate body functions. ! 26.1 Chemical signals coordinate body functions Chapter 20 Endocrine System! Hormones Chemical signals Secreted by endocrine glands Usually carried in the blood Cause specific changes in target cells Secretory

More information

The Endocrine System. The Endocrine System

The Endocrine System. The Endocrine System The Endocrine System Like nervous system, endocrine system provides communication and control. Messages are relayed from one cell to another via chemical messengers (hormones). Unlike nervous system which

More information

Endocrine system. General principle of endocrinology. Mode of hormone delivery to target. Mode of hormone delivery to target

Endocrine system. General principle of endocrinology. Mode of hormone delivery to target. Mode of hormone delivery to target Endocrine system General principle of endocrinology Co-ordinating system to regulate and integrate function of different cells - Nervous system -Endocrine system Neuro-endocrine system Hormone Molecules

More information

Exercise Physiology: Theory and Application to Fitness and Performance By Scott Powers & Edward Howley

Exercise Physiology: Theory and Application to Fitness and Performance By Scott Powers & Edward Howley Exercise Physiology: Theory and Application to Fitness and Performance By Scott Powers & Edward Howley Ch 5 Cell Signaling and the Hormonal Responses to Exercise Summary Created by Dan Hechler Class Lecture

More information

Human Anatomy and Physiology - Problem Drill 16: The Endocrine System

Human Anatomy and Physiology - Problem Drill 16: The Endocrine System Human Anatomy and Physiology - Problem Drill 16: The Endocrine System Question No. 1 of 10 The endocrine system is made up of a number of organs and glands. Which one of the following is not an organ or

More information

Endocrine System. Chapter 20. Endocrine Glands and Hormones. The Endocrine System. Endocrine glands

Endocrine System. Chapter 20. Endocrine Glands and Hormones. The Endocrine System. Endocrine glands Chapter 20 Endocrine System Endocrine Glands and Hormones The endocrine system consists of glands and tissues that secrete hormones Hormones are chemicals that affect other glands or tissues, many times

More information

CATEGORY Endocrine System Review. Provide labels for the following diagram CHAPTER 13 BLM

CATEGORY Endocrine System Review. Provide labels for the following diagram CHAPTER 13 BLM CHAPTER 13 BLM 13.1.1 CATEGORY Endocrine System Review Provide labels for the following diagram. 1. 6. 2. 7. 3. 8. 4. 9. 5. 10. CHAPTER 13 BLM 13.1.2 OVERHEAD Glands and Their Secretions Endocrine gland

More information

Testosterone and other male hormones seem to be related to aggressive behavior in some species

Testosterone and other male hormones seem to be related to aggressive behavior in some species Testosterone and Male Aggression Testosterone and other male hormones seem to be related to aggressive behavior in some species In the fish species Oreochromis mossambicus, elevated levels have been found

More information

Chemical Regulation. Chapter 26. Testosterone and Male Aggression: Is There a Link? THE NATURE OF CHEMICAL REGULATION

Chemical Regulation. Chapter 26. Testosterone and Male Aggression: Is There a Link? THE NATURE OF CHEMICAL REGULATION Chapter 6 Chemical Regulation PowerPoint Lectures for Biology: Concepts and Connections, Fifth Edition Campbell, Reece, Taylor, and Simon Testosterone and Male Aggression: Is There a Link? Among male animals,

More information

Hormones. Bởi: OpenStaxCollege

Hormones. Bởi: OpenStaxCollege Bởi: OpenStaxCollege Although a given hormone may travel throughout the body in the bloodstream, it will affect the activity only of its target cells; that is, cells with receptors for that particular

More information

Homeostasis. Endocrine System Nervous System

Homeostasis. Endocrine System Nervous System Homeostasis Endocrine System Nervous System 2004-2005 Regulation Why are hormones needed? chemical messages from one body part to another communication needed to coordinate whole body homeostasis & regulation

More information

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate?

Goals and Challenges of Communication. Communication and Signal Transduction. How Do Cells Communicate? Goals and Challenges of Communication Reaching (only) the correct recipient(s) Imparting correct information Timeliness Causing the desired effect Effective termination Communication and Signal Transduction

More information

Chapter 9 The Endocrine System and Hormone Activity

Chapter 9 The Endocrine System and Hormone Activity Chapter 9 The Endocrine System and Hormone Activity Overview Coordinates and directs the activity of cells. Interacts with the nervous system Uses chemical messengers called hormones released by organs

More information

Living Control Mechanisms

Living Control Mechanisms Living Control Mechanisms Dr Kate Earp MBChB MRCP Specialty Registrar Chemical Pathology & Metabolic Medicine kate.earp@sth.nhs.uk 15/10/2015 Contents Aims & objectives Homeostasis Cell communication Introduction

More information

Hormones and the Endocrine System Chapter 45. Intercellular communication. Paracrine and Autocrine Signaling. Signaling by local regulators 11/26/2017

Hormones and the Endocrine System Chapter 45. Intercellular communication. Paracrine and Autocrine Signaling. Signaling by local regulators 11/26/2017 Hormones and the Endocrine System Chapter 45 Intercellular communication Endocrine signaling Local regulators Paracrine and autocrine signaling Neuron signaling Synaptic and neuroendocrine signaling Paracrine

More information

BIOLOGY. CONCEPTS & CONNECTIONS Fourth Edition. Neil A. Campbell Jane B. Reece Lawrence G. Mitchell Martha R. Taylor. CHAPTER 26 Chemical Regulation

BIOLOGY. CONCEPTS & CONNECTIONS Fourth Edition. Neil A. Campbell Jane B. Reece Lawrence G. Mitchell Martha R. Taylor. CHAPTER 26 Chemical Regulation BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Neil A. Campbell Jane B. Reece Lawrence G. Mitchell Martha R. Taylor CHAPTER 26 Chemical Regulation Modules 26.1 26.5 From PowerPoint Lectures for Biology:

More information

Endocrine System. Chemical Control

Endocrine System. Chemical Control Endocrine System Chemical Control Endocrine System - the system that secretes hormones in the body - hormones can last for minutes or for hours - a major gland, once called the master gland, is the pituitary

More information

Lipids and Membranes

Lipids and Membranes Lipids and Membranes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Membrane transport D. Endocytosis and Exocytosis

More information

Homeostasis. Agenda. Preserving homeostasis requires long term co-ordination of cell activity throughout the body. Homeostasis

Homeostasis. Agenda. Preserving homeostasis requires long term co-ordination of cell activity throughout the body. Homeostasis Agenda Introduction & Syllabus (always exciting!) Chapter 18: Endocrine System Lab 33 Looking ahead-wed: Chapter 18 Homeostasis Homeostasis refers to a state of relative balance within the body, and the

More information

The Endocrine System. Endocrine System. 1

The Endocrine System. Endocrine System. 1 The Endocrine System The Endocrine System Second-messenger system of the body Uses chemical messengers (hormones) that are released into the blood Hormones control several major processes Reproduction

More information

Unit 9 - The Endocrine System 1

Unit 9 - The Endocrine System 1 Unit 9 - The Endocrine System 1 I. Unit 9: The Endocrine System A. The Endocrine System 1. Second-messenger system of the body 2. Uses chemical messengers (hormones) that are released into the blood 3.

More information

Endocrine System. Endocrine vs. Exocrine. Bio 250 Human Anatomy & Physiology

Endocrine System. Endocrine vs. Exocrine. Bio 250 Human Anatomy & Physiology Endocrine System Bio 250 Human Anatomy & Physiology Endocrine vs. Exocrine Endocrine glands secrete their products called hormones into body fluids (the internal environment) Exocrine glands secrete their

More information

Endocrine pharmacology (3)

Endocrine pharmacology (3) بسم رلا هللا Endocrine pharmacology (3) Natural hormone characterized by short of action : a lot of them ineffective orally ( for example ), but when we give it from outside it enters the body exactly

More information

Endocrine System. Always willing to lend a helping gland

Endocrine System. Always willing to lend a helping gland Endocrine System Always willing to lend a helping gland Functions of the Endocrine System Regulates metabolic activities through hormones Controls reproduction, growth and development, cellular metabolism,

More information

Endocrine System. Modified by M. Myers

Endocrine System. Modified by M. Myers Endocrine System Modified by M. Myers 1 The Endocrine System 2 Endocrine Glands The endocrine system is made of glands & tissues that secrete hormones. Hormones are chemicals messengers influencing a.

More information

Principles of Endocrinology

Principles of Endocrinology Principles of Endocrinology 凌雁 Yan Ling Department of Endocrinology and Metabolism Zhongshan Hospital Fudan University Scope of endocrinology Endocrinology is a branch of biology and medicine dealing with

More information

8/26/13. Announcements

8/26/13. Announcements Announcements THM questions will start for points on Wednesday. Make sure you are registered correctly! Problems registering for BioPortal? Make sure you are using the link from the syllabus or FAQ. 30

More information

Chapter 17 The Endocrine System

Chapter 17 The Endocrine System Chapter 17 The Endocrine System Endocrine Systems n Endocrine system Hormone mediator molecule released in 1 part of the body but regulates activity of cells in other parts Slower responses, effects last

More information

Endocrinology Introductory Lectures

Endocrinology Introductory Lectures Endocrinology Introductory Lectures What do You Want to Become? Veysman, B. BMJ 2005;331:1529 Definitions Endocrine Gland: secretes a hormone into the circulation Hormone: Chemical substance produced by

More information

Close to site of release (at synapse); binds to receptors in

Close to site of release (at synapse); binds to receptors in Chapter 18: The Endocrine System Chemical Messengers 1. Neural 2. Endocrine 3. Neuroendocrine 4. Paracrine 5. Autocrine Endocrine System --Endocrine and nervous systems work together --Endocrine vs. Nervous

More information

Hormones, Receptors and Receptor-Hormone Interactions

Hormones, Receptors and Receptor-Hormone Interactions Classification of Hormones Hormones, Receptors and Receptor-Hormone Interactions Synthesis of Protein Hormones and Amine Hormones Hormone Activity Locations of Receptors Mechanisms of Hormone Action Types

More information

Ch45: Endocrine System

Ch45: Endocrine System Ch45: Endocrine System Endocrine System Homeostasis is the tendency to maintain a stable internal environment. Function = coordinate and control the body with hormones to maintain homeostasis Works with

More information

Model Answer. M.Sc. Zoology (First Semester) Examination Paper LZT 103 (Endocrinology)

Model Answer. M.Sc. Zoology (First Semester) Examination Paper LZT 103 (Endocrinology) Model Answer M.Sc. Zoology (First Semester) Examination-2013 Paper LZT 103 (Endocrinology) Section A 1. (i) d (ii) b (iii) b (iv) c (v) c (vi) a (vii) c (viii) a (ix) d (x) b Section B Q.2 Answer Hormonal

More information

Chapter 26. Hormones and the Endocrine System. Lecture by Edward J. Zalisko

Chapter 26. Hormones and the Endocrine System. Lecture by Edward J. Zalisko Chapter 26 Hormones and the Endocrine System PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education, Inc. Lecture

More information

INTRODUCTION TO THE BIOCHEMISTRY OF HORMONES AND THEIR RECPTORS

INTRODUCTION TO THE BIOCHEMISTRY OF HORMONES AND THEIR RECPTORS INTRODUCTION TO THE BIOCHEMISTRY OF HORMONES AND THEIR RECPTORS 1 Introduction to the Biochemistry of Hormones and their Receptors Lectuctre1 Sunday 17/2/ Objectives: 1. To understand the biochemical nature

More information

Chapter 13 Endocrine System. Endocrine System. Endocrine System Functions

Chapter 13 Endocrine System. Endocrine System. Endocrine System Functions Chapter 13 Endocrine System Endocrine glands are ductless Exocrine glands have ducts 1 Endocrine System composed of cells, tissues and organs that secrete substances into the internal environment Hormones

More information

Chapter 15: Signal transduction

Chapter 15: Signal transduction Chapter 15: Signal transduction Know the terminology: Enzyme-linked receptor, G-protein linked receptor, nuclear hormone receptor, G-protein, adaptor protein, scaffolding protein, SH2 domain, MAPK, Ras,

More information

2) Storehouse for the hormones produced by the hypothalamus of the brain. 2)

2) Storehouse for the hormones produced by the hypothalamus of the brain. 2) AP 2 Exam Chapter 16 Endocrie Due Wed. night 4/22 or Thurs. morning 4/23 Name: Matching; match the labeled organ with the most appropriate response or identification. Figure 16.1 Using Figure 16.1, match

More information

human anatomy & physiology sampler questions

human anatomy & physiology sampler questions human anatomy & physiology sampler questions Please note that there are questions within this set that test material that may not have been covered in your lecture; unless otherwise specified, lecture

More information

Lecture 11, 27 Sept 2005 Chapter 14 & 15. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005

Lecture 11, 27 Sept 2005 Chapter 14 & 15. Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 Lecture 11, 27 Sept 2005 Chapter 14 & 15 Vertebrate Physiology ECOL 437 (aka MCB 437, VetSci 437) University of Arizona Fall 2005 instr: Kevin Bonine t.a.: Kristen Potter 1 Vertebrate Physiology 437 Chapter

More information

By the name of Allah

By the name of Allah By the name of Allah Receptors function and signal transduction ( Hormones and receptors Types) We were talking about receptors of the neurotransmitters; we have 2 types of receptors: 1- Ionotropic receptors

More information

/30/17 Ch 8: Muscular System 1. Table of Contents # Date Title Page # 03/13/17 Ch 10: Somatic and Special Senses 53

/30/17 Ch 8: Muscular System 1. Table of Contents # Date Title Page # 03/13/17 Ch 10: Somatic and Special Senses 53 Table of Contents # Date Title Page # 1. 01/30/17 Ch 8: Muscular System 1 2. 3. 4. 5. 6. 7. 02/14/17 Ch 9: Nervous System 12 03/13/17 Ch 10: Somatic and Special Senses 53 03/27/17 Ch 11: Endocrine System

More information

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling

Chapter 20. Cell - Cell Signaling: Hormones and Receptors. Three general types of extracellular signaling. endocrine signaling. paracrine signaling Chapter 20 Cell - Cell Signaling: Hormones and Receptors Three general types of extracellular signaling endocrine signaling paracrine signaling autocrine signaling Endocrine Signaling - signaling molecules

More information

Endocrine system. Coordination & regulation Glands Hormones

Endocrine system. Coordination & regulation Glands Hormones Endocrine system Coordination & regulation Glands Hormones Endocrine system structures Anatomy - Dispersed system of glands that communicate with each other & all body cells via hormones. Endocrine glands:

More information

ENDOCRINOLOGY. Dr.AZZA SAJID ALKINANY 2 nd STAGE

ENDOCRINOLOGY. Dr.AZZA SAJID ALKINANY 2 nd STAGE ENDOCRINOLOGY Dr.AZZA SAJID ALKINANY 2 nd STAGE THE RELATIONSHIP AMONG THE HYPOTHALMUS,POSTERIOR PITUITARY AND TARGET TISSUES. The posterior pituitary does not produce its own hormones, but stores and

More information

Endocrine system. Coordination & regulation Glands Hormones

Endocrine system. Coordination & regulation Glands Hormones Endocrine system Coordination & regulation Glands Hormones Endocrine system structures Anatomy - Dispersed system of glands that communicate with each other & all body cells via hormones. Endocrine glands:

More information

Chapter 13 Endocrine System. Endocrine System. Endocrine Glands. Comparison of Nervous System and Endocrine System

Chapter 13 Endocrine System. Endocrine System. Endocrine Glands. Comparison of Nervous System and Endocrine System Endocrine glands are ductless Exocrine glands have ducts Chapter 13 Endocrine System 1 Endocrine System composed of cells, tissues and organs that secrete substances into the internal environment Hormones

More information

Endocrine System Notes

Endocrine System Notes Endocrine System Notes is the tendency to maintain a stable internal environment. - parts of the body that secrete hormones directly into the body. - parts of the body that make secretions which travel

More information

Chapter 18: Endocrine Glands

Chapter 18: Endocrine Glands Chapter 18: Endocrine Glands I. Functions of the Endocrine System A. List and describe the eight major functions of the endocrine system: 1. 2. 3. 4. 5. 6. 7. 8. Page 1 of 19 C II. Pituitary Gland and

More information

The endocrine system -- a brief overview.

The endocrine system -- a brief overview. The endocrine system -- a brief overview. I. Introduction - the endocrine system is an integration system that influences the metabolic activities of cells. - acts via hormones, chemical messengers produced

More information

Biology 2100 Human Physiology C. Iltis SLCC March 8, Midterm Examination #2

Biology 2100 Human Physiology C. Iltis SLCC March 8, Midterm Examination #2 Biology 2100 Human Physiology Name: KEY C. Iltis SLCC March 8, 2000 Midterm Examination #2 Multiple Choice Questions (2 POINTS EACH) 1. When glucose levels are above 100 mg/dl, which of the following is

More information

CHEMICAL COORDINATION & INTEGRATION

CHEMICAL COORDINATION & INTEGRATION CHEMICAL COORDINATION & INTEGRATION 1. The hormone responsible for Fight and Flight response is a) Adrenalin** b) Thyroxine c) ADH d) Oxytocin 2. The primary androgen produced by males is. a) Epinephrine

More information

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 18 The Endocrine System

BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 18 The Endocrine System Name: Date: BIO 210: Anatomy and Physiology Text: Fundamentals of Anatomy and Physiology 9ed. Chapter 18 The Endocrine System We typically think of the Nervous System as being the control center for all

More information

Major endocrine glands and their hormones

Major endocrine glands and their hormones Chapter 18 Major endocrine glands and their hormones Endocrine glands Pituitary gland Has two major parts Anterior lobe called the adenohypophysis is epithelial in origin Posterior lobe called the neurohypophysis

More information

Endocrine Control. Chapter 35

Endocrine Control. Chapter 35 Endocrine Control Chapter 35 Impacts, Issues Hormones in Balance Many chemicals we release into the environment (such as the herbicide atrazine) have disruptive hormonal effects 35.1 Introducing the Vertebrate

More information

Page 1. Skill: Knowledge/Comprehension

Page 1. Skill: Knowledge/Comprehension Chapter 45 Hormones and the Endocrine System Multiple-Choice Questions 1) Which of the following statements about hormones is incorrect? A) They are produced by endocrine glands. B) They are modified amino

More information

Anatomy and Physiology. The Endocrine System

Anatomy and Physiology. The Endocrine System Anatomy and Physiology The Endocrine System The endocrine system includes anything that secretes hormones directly into body fluids. Endocrine glands include: the thyroid, parathyroid, adrenal, kidney,

More information

Hormones and the Endocrine System

Hormones and the Endocrine System Chapter 45 Hormones and the Endocrine System PowerPoint Lectures for Biology, Eighth Edition Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp and Janette Lewis Copyright

More information

NROSCI/BIOSC 1070 and MSNBIO 2070 September 11, 2017 Control Mechanisms 2: Endocrine Control

NROSCI/BIOSC 1070 and MSNBIO 2070 September 11, 2017 Control Mechanisms 2: Endocrine Control NROSCI/BIOSC 1070 and MSNBIO 2070 September 11, 2017 Control Mechanisms 2: Endocrine Control Hormones are chemical messengers that are secreted into the blood by endocrine cells or specialized neurons.

More information

Ch45: Endocrine System

Ch45: Endocrine System Ch45: Endocrine System Endocrine System Homeostasis is the tendency to maintain a stable internal environment. Function = with hormones to maintain homeostasis Works with nervous system Anatomy Location:

More information

HORMONES AND CELL SIGNALLING

HORMONES AND CELL SIGNALLING HORMONES AND CELL SIGNALLING TYPES OF CELL JUNCTIONS CHEMICAL SIGNALS AND MODES OF ACTION Endocrine system produces chemical messages = hormones that are transported from endocrine gland to target cell

More information

Hormones. Prof. Dr. Volker Haucke Institut für Chemie-Biochemie Takustrasse 6

Hormones. Prof. Dr. Volker Haucke Institut für Chemie-Biochemie Takustrasse 6 Hormones Prof. Dr. Volker Haucke Institut für Chemie-Biochemie Takustrasse 6 Tel. 030-8385-6920 (Sekret.) 030-8385-6922 (direkt) e-mail: vhaucke@chemie.fu-berlin.de http://userpage.chemie.fu-berlin.de/biochemie/aghaucke/teaching.html

More information

Receptors Functions and Signal Transduction- L4- L5

Receptors Functions and Signal Transduction- L4- L5 Receptors Functions and Signal Transduction- L4- L5 Faisal I. Mohammed, MD, PhD University of Jordan 1 PKC Phosphorylates many substrates, can activate kinase pathway, gene regulation PLC- signaling pathway

More information

Endocrine System. Chapter 18. Introduction. How Hormones Work. How Hormones Work. The Hypothalamus & Endocrine Regulation

Endocrine System. Chapter 18. Introduction. How Hormones Work. How Hormones Work. The Hypothalamus & Endocrine Regulation Introduction Endocrine System Chapter 18 The endocrine system consists of cells, tissues, & organs that secrete into the blood Hormone an organic substance secreted by a cell that has an effect on the

More information

Hormones and the Endocrine System

Hormones and the Endocrine System Chapter 45 Hormones and the Endocrine System PowerPoint Lectures for Biology, Eighth Edition Overview: The Body s Long-Distance Regulators Animal hormones are chemical signals that are secreted into the

More information

ENDOCRINE SYSTEM CLASS NOTES

ENDOCRINE SYSTEM CLASS NOTES ENDOCRINE SYSTEM CLASS NOTES The endocrine system is a collection of glands that secrete hormones directly into the circulatory system to be carried toward a distant target organ. These hormones will be

More information

Human Biochemistry. Hormones

Human Biochemistry. Hormones Human Biochemistry Hormones THE ENDOCRINE SYSTEM THE ENDOCRINE SYSTEM THE ENDOCRINE SYSTEM The ENDOCRINE SYSTEM = the organ system that regulates internal environment conditions by secreting hormones into

More information

CHAPTER 41: Animal Hormones

CHAPTER 41: Animal Hormones CHAPTER 41: Animal Hormones 1. List a few similarities and differences comparing: a. endocrine system b. nervous system 2. What is the difference between endocrine and exocrine glands? 3. What is the difference

More information

Endocrine System. Human Physiology Unit 3

Endocrine System. Human Physiology Unit 3 Endocrine System Human Physiology Unit 3 Endocrine System Various glands located throughout the body Some organs may also have endocrine functions Endocrine glands/organs synthesize and release hormones

More information

Chapter 26 Hormones and the

Chapter 26 Hormones and the Chapter 6 Hormones and the Endocrine System Introduction In lions, the hormone testosterone promotes the development and maintenance of male traits including growth and maintenance of the mane and increased

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

Chapter 18: The Endocrine System. Copyright 2009, John Wiley & Sons, Inc.

Chapter 18: The Endocrine System. Copyright 2009, John Wiley & Sons, Inc. Chapter 18: The Endocrine System Nervous and Endocrine Systems Act together to coordinate functions of all body systems Nervous system Nerve impulses/ Neurotransmitters Faster responses, briefer effects,

More information

The Endocrine System 7/6/2015. Outline. Function of the Endocrine System

The Endocrine System 7/6/2015. Outline. Function of the Endocrine System The Endocrine System Biology 105 Lecture 13 Chapter 10 Outline I. Function of endocrine system II. Hormones and neurotransmitters III. Types of hormones and their actions IV. Endocrine glands/organs and

More information

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil

Receptors and Drug Action. Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Dr. Subasini Pharmacology Department Ishik University, Erbil Receptors and Drug Action Receptor Receptor is defined as a macromolecule or binding site located on the surface or

More information

Adrenal Glands. Adrenal Glands. Adrenal Glands. Adrenal Glands. Adrenal Glands 4/12/2016. Controlled by both nerves and hormones.

Adrenal Glands. Adrenal Glands. Adrenal Glands. Adrenal Glands. Adrenal Glands 4/12/2016. Controlled by both nerves and hormones. Glands http://www.hawaiilife.com/articles/2012/03/good-news-vacation-rental-owners/ 70 Figure 10.14a gland Glands cortex Mineralocorticoids Gonadocorticoids Glucocorticoids medulla Epinephrine Norepinephrine

More information