Initially, the patients did not receive extra vitamin E except for a very

Size: px
Start display at page:

Download "Initially, the patients did not receive extra vitamin E except for a very"

Transcription

1 EFFECT OF VITAMIN E ON MEMBRANES OF THE INTESTINAL CELL BY I. MOLENAAR, F. A. HOMMES, W. G. BRAAMS, AND H. A. POLMAN CENTER FOR MEDICAL ELECTRON MICROSCOPY AND DEPARTMENT OF PEDIATRICS, UNIVERSITY OF GRONINGEN, SCHOOL OF MEDICINE, GRONINGEN, THE NETHERLANDS Communicated by Emil L. Smith, September 12, 1968 Despite extensive research, many aspects of the role of vitamin E in metabolism are still uncertain. The studies by Martius' and Schwarz2 have yielded evidence for a specific role of vitamin E in redox reactions, while Tappell and Horwitt4 have given strong support for the antioxidant action of vitamin E as discovered by Olcott and Matill.' Vitamin E deficiency in man is rare, and its clinical picture is not well delineated. In patients suffering from prolonged steatorrhea with its associated impaired digestion or absorption of fats and fat-soluble vitamins, symptoms of vitamin E deficiency are sometimes encountered. Then a decreased erythrocyte-survival time6 and an increased hemolysis of erythrocytes in the hydrogenperoxide test' is found. Among the conditions in which the resorption of fats is disturbed, abetalipoproteinemia, an inborn error of metabolism, is a severe but an infrequent disorder.8 In two patients suffering from this disease and initially having low vitamin E levels of the blood normalizing upon vitamin E treatment, abnormal cellular ultrastructure was found, the description of which is the subject of this communication. Materials and Methods.-Two patients with abetalipoproteinemia and aged 4 years and 3 months, respectively, to be described in detail elsewhere, were studied. During these studies the patients received a constant diet free of natural fats but containing triglycerides of medium-chain fatty acids. These triglycerides, supplemented with corn oil as a source of the essential fatty acid linoleic acid (in an amount of 1 gm of corn oil per kilogram of bodyweight), were given as an emulsion in fat-free milk. This was the only source of fats available to the patients. Plasma vitamin E levels were determined according to the method of Lehman.9 Peroxide erythrocyte hemolysis tests were performed as described by Horwitt.6 Erythrocyte lifespan was determined with the "Cr method.'0 Jejunum biopsies were taken with the Crosby capsule," fixed immediately in 2% glutaraldehyde, buffered at ph 7.4 with phosphate buffer, and divided into small fragments. These were postfixed in 1% osmium tetroxide in Veronal acetate buffer, dehydrated in alcohol and via propylene oxide embedded in epon. The area of interest for electron microscopy was selected in sections 0.5 M thick and stained with crystal violetbasic fuchsin. Ultrathin sections were stained with lead citrate and uranylacetate, and photographed with a Philips EM 200 electron microscope. Results.-Parallel studies were made of erythrocyte membrane behavior and jejunal cellular ultrastructure. In Table 1 the pertinent data on plasma vitamin E levels, peroxide hemolysis tests, and half-life times of erythrocytes are summarized. Initially, the patients did not receive extra vitamin E except for a very small amount in the corn oil. In both patients, the increased hemolysis in the peroxide hemolysis test and the decreased half-life time of the erythrocytes normalized upon vitamin E treatment (cf ref. 6), whereas the plasma vitamin E level rose from 0.30 to 1.35 mg per 100 ml (Table 1). 982

2 VgOL. 6 1, 1968 BIOCHEMISTRY: MOLENAAR ET AL. 983 TABLE 1. Data from peroxide hemolysis test, vitamin E in plasma, and half life of erythrocytes. Hemolysis (%) Vitamin E in peroxide in plasma hemolysis Half life of erythrocytes (mg/100 ml) test* (days) Patient I st jejunum biopsy (age 4 years) nd " " rd " " Patient II st " " (age 3 months) nd " rd " * Normal controls yielded an average of 0.7% hemolysis. Jejunal tissue was studied at three stages of vitamin E treatment: (a) before vitamin E treatment started-the patients had already received the constant diet for five months (first biopsy); (b) after the plasma vitamin E level had reached half the normal value, which required ten weeks of treatment (second biopsy); and (c) after the plasma vitamin E level had normalized, which took four months (third biopsy). Similar results were obtained with both patients. For reasons of space, however, only the micrographs of patient I are shown here. The macroscopical aspect of the villi was normal. Applying light microscopy, the integrity and morphology of the epithelial cells suggested the existence of a healthy mucosa. The electron microscope, however, disclosed in the first biopsy the absence of a basal feature of cellular ultrastructure: no membranes were visualized, at least not in positive contrast (Fig. 1). This was very striking in the mitochondria of the epithelial cells, showing "negatively stained" membranes surrounded by an electron-dense matrix (Fig. 2). The area of the cell where normally the rough endoplasmic reticulum can be found contained ribosomes arranged as expected in normal cells (e.g., in linear array) but without visible membranes. The perinuclear cisterna was present but without delimiting membranes. As the only exception, the plasma membrane was rather clearly visible, especially on the microvilli. Occasionally, very weakly stained Golgi membranes were also observed (Figs. 3 and 4). Vitamin E treatment, causing a rise of the vitamin E level of the blood, gave a dramatic change in the electron microscopic image of the second and third biopsies. After ten weeks, but even more clearly after four months, the epithelial cells showed their membranes, which stood out in normal contrast relations. The mitochondrial membranes seemed to respond earlier than the membranes of the endoplasmic reticulum. Finally, a completely normal cellular ultrastructure was observed; only the number of intracellular vacuoles seemed to be higher than normal (Fig. 5). In the underlying connective tissue, the cells appeared the same but in less spectacular fashion. Discussion.-The first finding to be discussed is the peculiar aspect of the membranes. Although no membranes are apparent in the electron micrographs taken before vitamin E treatment was started, this certainly is no conclusive evidence of their absence. It is more appropriate to think in terms of existing but nonosmiophilic membranes; in this respect it is to be noted that the linear

3 984 BIOCHEMISTRY: MOLENAAR ET AL. PROC. N. A. S. FIG. 1.-Jejunal epithelial cell with parts of microvilli at the top from a patient with abetalipoproteinemia, resulting in hypovitaminosis E. Note the lack of membranes in general (25,000X ). FIG. 2.-Two jejunal epithelial cells of the same patient, connected by desmosomes (d). Mitochondria (m) show their matrix, but lack positively contrasted membranes (30,000X).

4 VOL. 61, 1968 BIOCHEMISTRY: MOLENAAR ET AL. 985 FIG. 3.-Jejunal epithelial cell of the same patient. Next to "membraneless" ribosomes, a perinuclear cisterna (pc) without delimiting membranes is depicted (30,OOOX). FIG. 4.-Jejunal epithelial cell of the same patient. Ribosomes are present in linear array, but without membranes in positive contrast. Only on the microvilli a weakly stained plasma membrane (pm) is visible (40,000 X ).

5 986 BIOCHEMISTRY: MOLENAAR ET AL. PROC. N. A. S. t :. : -4F -i.'" "'i,4. :1. A 'Itz4o '. Al FIG. 5.-Jejunal epithelial cell of the same patient after 4 months of vitamin E medication. The cells have a normal ultrastructural aspect; apart from a rather large number of vacuoles, membranes are visible in normal contrast (20,000X).

6 VOL. 61, 1968 BIOCHEMISTRY. MOLENAAR ET AL. 987 array of ribosomes as well as the morphology of the mitochondrial matrix strongly suggests the presence of such membranes. It is known that membranes, notably mitochondrial membranes, contain a high amount of unsaturated fatty acids,"2 from which compounds membranes in ultrathin sections derive their contrast to a major extent.'3 Consequently, low contrast in membranes could be caused by a relatively low content of these fatty acids in the membranes. In this connection it is of interest to draw attention to the work of Morgan and Huber,'4 who studied loss of lipid during different fixation procedures. They found by chemical analysis for lung tissue, which is known to contain a relatively high content of saturated fatty acids, a considerable loss of lipid during osmification. A second finding is that all membranes are not affected in the same way. Relatively, the plasma membrane is the least vulnerable; to a lesser extent, this is true for the Golgi membranes. Much work has been done on the influence of fatty acid composition on the physiology of membranes. Much less is known about the factors determining the composition of the membrane in terms of the relative content of saturated versus unsaturated fatty acids. In bacterial membrane-lipids the kind of fatty acid depends upon the culture medium and growth phase. In late logarithmic phase the proportion of cyclopropane acids was greatly increased at the expense of the unsaturated acids.'5 In our material it has been shown that administration of unsaturated fatty acids did not enhance the contrast in cellular ultrastructure; only after vitamin E had been added to the diet did the membranes become apparent. This leads to the conclusion that vitamin E plays a decisive role in membrane metabolism. In this connection it should be noted that only membrane metabolism is at stake in the gut epithelium; its cells are renewed every four days! This can form a locus minoris resistentiae, where shortages in this respect will appear readily. There are two possibilities: (1) Vitamin E is a factor in the biosynthesis of membranes, particularly in the incorporation of unsaturated fatty acids; (2) vitamin E inhibits the breakdown of fatty acids of the membrane. This would be consistent with the previously mentioned concept of the antioxidant action of vitamin E. As to the anabolic or "catabolism inhibiting" role of vitamin E in membrane physiology, we have designed animal experiments on which we hope to report later. Summary.-In jejunal epithelial cells of two patients who initially had low vitamin E levels of the blood, intracellular membranes were not depicted in positive contrast with the electron microscope. Vitamin E treatment resulted in normal cellular ultrastructure. This leads to the conclusion that vitamin E plays a decisive role in membrane metabolism. The authors thank Prof. J. H. P. Jonxis and Dr. P. F. Ebels for critical and helpful discussion. 'Martius, C., Vitamins Hornwnes, 20, 457 (1962). 2 Schwarz, K., Vitamins Hormones, 20, 463 (1962). 3 Tappel, A. L., Vitamins Hormones, 20, 493 (1962).

7 988 BIOCHEMISTRY: MOLENAAR ET AL. PRoc. N. A. S. Horwitt, M. K., Borden's Rev. Nutr. Re8., 22, 1 (1961). Olcott, H. S., and H. A. Matill, Chem. Rev., 29, 257 (1941). 6 Horwitt, M. K., Vitamins Hormones, 20, 541 (1962). 7Horwitt, M. K., Am. J. Clin. Nutr., 4, 408 (1956). 8 Bassen, F. A., and A. L. Kornzweig, Blood, 5, 381 (1950). 9 Lehman, R. W., Methods Biochem. Anal., 2, 153 (1955). 10Mallison, P. L., and P. N. Veal, Brit. J. Haematol., 1, 62 (1955). 11 Crosby, W. H., and H. W. Kugler, Am. J. Digest. Diseases, 2, 236 (1957). 12 Kavanau, J. L., Structure and Function in Biological Membranes (San Francisco: Holden- Day, Inc., 1965), p Millonig, G., and V. Marinozzi, in Advances in Optical and Electron Microscopy, ed. R. Barer and V. E. Cosslett (New York: Academic Press, 1968), vol Morgan, T. E., and G. L. Huber, J. Cell Biol., 32, 757 (1967). 15 Rogers, H. J., and H. R. Perkins, Cell Walls and Membranes (London: Spon, Ltd., 1968), p. 361.

the structure of their ducts has been

the structure of their ducts has been Tza JOURNAL 0? INVEa'riGATrVN DEBMATOLOOT Copyright t 1966 by The Williams & Wilkins Co. Vol. 46, No. I Printed in U.S.A. AN ELECTRON MICROSCOPIC STUDY OF THE ADULT HUMAN APOCRINE DUCT* KEN HASHIMOTO,

More information

ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1

ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1 ON THE PRESENCE OF A CILIATED COLUMNAR EPITHELIAL CELL TYPE WITHIN THE BOVINE CERVICAL MUCOSA 1 R. I. Wordinger, 2 J. B. Ramsey, I. F. Dickey and I. R. Hill, Jr. Clemson University, Clemson, South Carolina

More information

Explain the reason for this difference in resolving power.

Explain the reason for this difference in resolving power. 1. (a) An electron microscope has a much greater resolving power than an optical microscope. (i) Explain the meaning of the term resolving power. Explain the reason for this difference in resolving power.

More information

COMPARATIVE DISTRIBUTION OF CARBOHYDRATES AND LIPID DROPLETS IN THE GOLGI APPARATUS OF INTESTINAL ABSORPTIVE CELLS

COMPARATIVE DISTRIBUTION OF CARBOHYDRATES AND LIPID DROPLETS IN THE GOLGI APPARATUS OF INTESTINAL ABSORPTIVE CELLS COMPARATIVE DISTRIBUTION OF CARBOHYDRATES AND LIPID DROPLETS IN THE GOLGI APPARATUS OF INTESTINAL ABSORPTIVE CELLS JEAN A. SAGE and RALPH A. JERSILD, JR. Medical Center, Indianapolis, Indiana 46202 From

More information

FIXATION BY MEANS OF GLUTARALDEHYDE-HYDROGEN PEROXIDE REACTION PRODUCTS

FIXATION BY MEANS OF GLUTARALDEHYDE-HYDROGEN PEROXIDE REACTION PRODUCTS FIXATION BY MEANS OF GLUTARALDEHYDE-HYDROGEN PEROXIDE REACTION PRODUCTS CAMILLO PERACCHIA and BRANT S. MITTLER. From the Department of Anatomy, Duke University Medical Center, Durham, North Carolina 27706,

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Cell Cell

Cell Cell Go to cellsalive.com. Select Interactive Cell Models: Plant and Animal. Fill in the information on Plant and Animal Organelles, then Click on Start the Animation Select Plant or Animal Cell below the box.

More information

Some Observations on the Fine Structure of the Goblet Cells. Special Reference to the Well-Developed Agranular Endoplasmic Reticulum

Some Observations on the Fine Structure of the Goblet Cells. Special Reference to the Well-Developed Agranular Endoplasmic Reticulum Okajimas Folia Anat. Jpn., 58(4-6) : 583-594, March 1982 Some Observations on the Fine Structure of the Goblet Cells in the Nasal Respiratory Epithelium of the Rat, with Special Reference to the Well-Developed

More information

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS Onderstepoort]. vet. Res. 40 (2), 53-58 (1973) ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS G. LECATSAS, B. J. ERASMUS and H. J. ELS, Veterinary Research Institute, Onderstepoort ABSTRACT

More information

INVESTIGATIVE OPHTHALMOLOGY. Corneal and conjunctival changes in dysproteinemia

INVESTIGATIVE OPHTHALMOLOGY. Corneal and conjunctival changes in dysproteinemia August 1969 Volume 8, Number 4 INVESTIGATIVE OPHTHALMOLOGY Corneal and conjunctival changes in dysproteinemia 7?. M. H. Pinkerton and David M. Robertson A case of dysproteinemia with corneal and conjunctival

More information

PMT. Contains ribosomes attached to the endoplasmic reticulum. Genetic material consists of linear chromosomes. Diameter of the cell is 1 µm

PMT. Contains ribosomes attached to the endoplasmic reticulum. Genetic material consists of linear chromosomes. Diameter of the cell is 1 µm 1. (a) Complete each box in the table, which compares a prokaryotic and a eukaryotic cell, with a tick if the statement is correct or a cross if it is incorrect. Prokaryotic cell Eukaryotic cell Contains

More information

R,;habdomyosarcoma, the most common

R,;habdomyosarcoma, the most common Fine-structural classification of orbital rhabdomyosarcoma Arnold J. Kroll Six cases of orbital rhabdomyosarcoma were studied with the electron microscope. Tumor cells (rhabdomyoblasts) could be classified

More information

You and plants have something in common! 1

You and plants have something in common! 1 7-2 Eukaryotic Cell Structure & Function These are micrographs of cells you will see in this week's lab. One is plant (onion epithelium), the other animal (human cheek epithelium). Determine which is which

More information

AN ELECTRON-MICROSCOPIC STUDY OF THE STARCH-CONTAINING PLASTIDS IN THE FERN TODEA BARBARA

AN ELECTRON-MICROSCOPIC STUDY OF THE STARCH-CONTAINING PLASTIDS IN THE FERN TODEA BARBARA J. Cell Sci. 4, 211-221 (1969) 211 Printed in Great Britain AN ELECTRON-MICROSCOPIC STUDY OF THE STARCH-CONTAINING PLASTIDS IN THE FERN TODEA BARBARA H. M. SMITH* AND D. S. SMITHf Department of Biology,

More information

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters

Cell Structure. Present in animal cell. Present in plant cell. Organelle. Function. strength, resist pressure created when water enters Cell Structure Though eukaryotic cells contain many organelles, it is important to know which are in plant cells, which are in animal cells and what their functions are. Organelle Present in plant cell

More information

Chapter 2 Cell. Zhou Li Prof. Dept. of Histology and Embryology

Chapter 2 Cell. Zhou Li Prof. Dept. of Histology and Embryology Chapter 2 Cell Zhou Li Prof. Dept. of Histology and Embryology The inner life of the cell Ⅰ. Plasma membrane (Plasmalemma) 1.1 The structure Unit membrane: inner layer 3-layered structure outer layer mediat

More information

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells

SBI3U7 Cell Structure & Organelles. 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells SBI3U7 Cell Structure & Organelles 2.2 Prokaryotic Cells 2.3 Eukaryotic Cells No nucleus Prokaryotic Cells No membrane bound organelles Has a nucleus Eukaryotic Cells Membrane bound organelles Unicellular

More information

Yara Saddam. Amr Alkhatib. Ihsan

Yara Saddam. Amr Alkhatib. Ihsan 1 Yara Saddam Amr Alkhatib Ihsan NOTE: Yellow highlighting=correction/addition to the previous version of the sheet. Histology (micro anatomy) :- the study of tissues and how they are arranged into organs.

More information

STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t

STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t FERTILITY AND STERILITY Copyright @ 1973 by The Williams & Wilkins Co. Vol. 24, No.8, August 1973 Printed in U.S.A. STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t C. NORIEGA, M.D., AND C. OBERTI, M.D.

More information

:1c.c :& Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* structure with rounded ends and a striated lamella

:1c.c :& Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* structure with rounded ends and a striated lamella THE JOURNAL OF INVESTIGATIVE DERMATOLOGY Copyright 1566 by The Williams & Wilkins Co. Vol. 7, No. 5 Printed in U.S.A. Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* ALVIN S. ZELICKSON,

More information

The Cell. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings

The Cell. Copyright 2003 Pearson Education, Inc. publishing as Benjamin Cummings The Cell Cell Theory The cell is the basic structural and functional unit of life The organism activity depends on individual and collective activity of cells Biochemical activities of cells are dictated

More information

Digestion and Absorption

Digestion and Absorption Digestion and Absorption Digestion and Absorption Digestion is a process essential for the conversion of food into a small and simple form. Mechanical digestion by mastication and swallowing Chemical digestion

More information

epithelial cells that are seen following infection of infant mice with have firmly established its viral etiology. The virus is a

epithelial cells that are seen following infection of infant mice with have firmly established its viral etiology. The virus is a ELECTRON-MICROSCOPIC STUDY OF THE INTESTINAL EPITHELIUM OF MICE INFECTED WITH THE AGENT OF EPIZOOTIC DIARRHEA OF INFANT MICE (EDIM VIRUS) W. ROBERT ADAMS, M.D., AND LISBETHI M. KRAFr, D.V.M.* From the

More information

Intercellular Matrix in Colonies of Candida

Intercellular Matrix in Colonies of Candida JouRNAL OF BAcTEROLOGY, Sept. 1975, p. 1139-1143 Vol. 123, No. 3 Copyright 0 1975 American Society for Microbiology Printed in U.S.A. ntercellular Matrix in Colonies of Candida K. R. JOSH, J. B. GAVN,*

More information

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome 0 m m 0. m cm mm 00 µm 0 µm 00 nm 0 nm Human height Length of some nerve and muscle cells Chicken egg Frog egg Most plant and animal cells Most bacteria Smallest bacteria Viruses Proteins Unaided eye Light

More information

Biochemical and ultrastructural alterations in platelets, reticulocytes, and lymphocytes from rats fed vitamin E-deficient diets

Biochemical and ultrastructural alterations in platelets, reticulocytes, and lymphocytes from rats fed vitamin E-deficient diets Biochemical and ultrastructural alterations in platelets, reticulocytes, and lymphocytes from rats fed vitamin E-deficient diets Joanna Lehmann and Manley McGill Agricultural Research Service, Beltsville

More information

Questions in Cell Biology

Questions in Cell Biology Name: Questions in Cell Biology Directions: The following questions are taken from previous IB Final Papers on the subject of cell biology. Answer all questions. This will serve as a study guide for the

More information

Biochemical and ultrastructural alterations in platelets, reticulocytes, and lymphocytes from rats fed vitamin E-deficient diets

Biochemical and ultrastructural alterations in platelets, reticulocytes, and lymphocytes from rats fed vitamin E-deficient diets Biochemical and ultrastructural alterations in platelets, reticulocytes, and lymphocytes from rats fed vitamin E-deficient diets Joanna Lehmann and Manley McGill Agricultural Research Service, Beltsville

More information

Questions on Digestion

Questions on Digestion Name: Questions on Digestion Directions: The following questions are taken from previous IB Final Papers on Topic 6.1 (Digestion). Answer all questions. This will serve as a study guide for the next quiz.

More information

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

The Fine Structure of the Epithelial Cells of the Mouse Prostate* II. Ventral Lobe Epithelium

The Fine Structure of the Epithelial Cells of the Mouse Prostate* II. Ventral Lobe Epithelium Published Online: 1 June, 1960 Supp Info: http://doi.org/10.1083/jcb.7.3.511 Downloaded from jcb.rupress.org on September 28, 2018 The Fine Structure of the Epithelial Cells of the Mouse Prostate* II.

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following are synthesized along various sites of the endoplasmic reticulum

More information

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes.

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes. High School Biology - Problem Drill 03: The Cell No. 1 of 10 1. Which of the following is NOT found in prokaryotic cells? #01 (A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids Both prokaryotic

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

TRANSFER OF PREMELANOSOMES INTO THE KERATINIZING CELLS OF ALBINO HAIR FOLLICLE

TRANSFER OF PREMELANOSOMES INTO THE KERATINIZING CELLS OF ALBINO HAIR FOLLICLE TRANSFER OF PREMELANOSOMES INTO THE KERATINIZING CELLS OF ALBINO HAIR FOLLICLE PAUL F. PARAKKAL. From the Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118 INTRODUCTION

More information

Ultrastructural Study of Human Natural Killer CNK) Cell*)

Ultrastructural Study of Human Natural Killer CNK) Cell*) Hiroshima Journal of Medical Sciences Vol. 31, No. 1, March, 1982 HJIM 31-6 31 Ultrastructural Study of Human Natural Killer CNK) Cell*) Yoshinori KAWAGUCHI, Eishi KITTAKA, Yoshito TANAKA, Takeo TANAKA

More information

Prokaryotic and Eukaryotic Cells Look at the diagrams below. Label the prokaryotic cell and the

Prokaryotic and Eukaryotic Cells Look at the diagrams below. Label the prokaryotic cell and the Prokaryotic and Eukaryotic Cells Look at the diagrams below. Label the prokaryotic cell and the eukaryotic cell. Cell membrane Cytoplasm Cytoplasm Nucleus Organelles Use the diagrams to answer the question.

More information

Nutrients. Chapter 25 Nutrition, Metabolism, Temperature Regulation

Nutrients. Chapter 25 Nutrition, Metabolism, Temperature Regulation Chapter 25 Nutrition, Metabolism, Temperature Regulation 25-1 Nutrients Chemicals used by body to produce energy, provide building blocks or function in other chemical reactions Classes Carbohydrates,

More information

ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS*

ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS* Onderstepoort J. vet. Res. (1968), 35 (1), 139-150 Printed in the Repub. of S. Afr. by The Government Printer, Pretoria ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS* G. LECATSAS, Veterinary

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

IN a previous publication (Hewitt, 1954) a description was given of the

IN a previous publication (Hewitt, 1954) a description was given of the i 9 9 Further Observations on the Histochemistry of Fat Absorption in the Small Intestine of the Rat By W. HEWITT, M.B., B.S. (From the Department of Anatomy, St. Thomas' Hospital Medical School, London,

More information

New aspect of hepatic nuclear glycogenosis

New aspect of hepatic nuclear glycogenosis J. clin. Path. (1968), 21, 19 New aspect of hepatic nuclear glycogenosis in diabetes1 F. CARAMIA, F. G. GHERGO, C. BRANCIARI, AND G. MENGHINI From the Institute of General Pathology, University of Rome,

More information

Chapter 3 Review Assignment

Chapter 3 Review Assignment Class: Date: Chapter 3 Review Assignment Multiple Choice 40 MC = 40 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following organelles produces transport

More information

1. or is the study of cellular structure and function. 2. What is the purpose and characteristics of the plasma membrane?

1. or is the study of cellular structure and function. 2. What is the purpose and characteristics of the plasma membrane? Chapter 3 Reading Guide The Cellular Level of Organization Name 1. or is the study of cellular structure and function. Section 3.1 Parts of a Cell 2. What is the purpose and characteristics of the plasma

More information

1. (a) (i) Ability to distinguish points (close together); 1 (ii) Electrons have a shorter wavelength; 1

1. (a) (i) Ability to distinguish points (close together); 1 (ii) Electrons have a shorter wavelength; 1 1. (a) (i) Ability to distinguish points (close together); 1 Electrons have a shorter wavelength; 1 (b) (i) Golgi / nucleus / mitochondrion / endoplasmic reticulum / chromosome / larger ribosomes; R Membrane

More information

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue

Basophilic. Basophilic structures are stained by basic dyes: Mnemonic: Basophilic = Blue Cell Overview Basophilic Basophilic structures are stained by basic dyes: Basic dyes are positive Basophilic structures are negative (ex. DNA, RNA, ribosomes, RER) Mnemonic: Basophilic = Blue Acidophilic

More information

A&P 1 Cellular Anatomy, Division & Mitosis - Pre-Lab Exercises

A&P 1 Cellular Anatomy, Division & Mitosis - Pre-Lab Exercises A&P 1 Cellular Anatomy, Division & Mitosis - Pre-Lab Exercises Have someone in your group read the following out loud, while the others read along: In this "Pre-lab Guide", we will be going over some of

More information

47 (5) : , ( Haliotis discus hannai Ino) (microvilli),, ( : 2, 3) (cisternae wit h elect ron2dense cores) , 7 cm, 215 % ,, L KB28800

47 (5) : , ( Haliotis discus hannai Ino) (microvilli),, ( : 2, 3) (cisternae wit h elect ron2dense cores) , 7 cm, 215 % ,, L KB28800 47 (5) :583 586, 2001 A cta Zoologica S inica 3 (, 315211),,,,,,,, ( Haliotis discus hannai Ino), 211,, (microvilli),, ( : 2),, 6 (, ), (apical granules), 1 1997, 7 cm 215 % (cisternae wit h elect ron2dense

More information

PMT. What evidence in the paragraph suggests that galactose is a monosaccharide? (1)

PMT. What evidence in the paragraph suggests that galactose is a monosaccharide? (1) 1. Lactose is a disaccharide found in milk. In the small intestine, it is digested into glucose and galactose by the enzyme lactase. Molecules of lactase are located in the plasma membranes of cells lining

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

8. Ultrastructural examination of the liver of the rainbow trout

8. Ultrastructural examination of the liver of the rainbow trout Józef Szarek, Izabella Babińska, Beata Szynaka, Anna Andrzejewska, Emilia Strzyżewska, Joanna Wojtacka, Krzysztof Wąsowicz, Anna Wiśniewska, Magdalena Szweda, Krystyna Dublan 8. Ultrastructural examination

More information

Ch. 6: A Tour of the Cell

Ch. 6: A Tour of the Cell Ch. 6: A Tour of the Cell 1. Compare the 2 Types of Cells PROKARYOTES BOTH EUKARYOTES Domain: Domain: Relative Size & Complexity: Relative Size & Complexity: No DNA in No Examples: Has Has Examples: 2.

More information

Lysophospholipids and fat digestibility

Lysophospholipids and fat digestibility 1 Lysophospholipids and fat digestibility Fig.1 Micelle Fat is composed mainly of triglycerides. The problem with fat digestion is that it takes place in an aqueous environment, when fat is not water soluble.

More information

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting

Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Molecular Cell Biology Problem Drill 16: Intracellular Compartment and Protein Sorting Question No. 1 of 10 Question 1. Which of the following statements about the nucleus is correct? Question #01 A. The

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

A COMPARISON OF MEMBRANE FRACTURE FACES OF FIXED AND UNFIXED GLYCERINATED TISSUE

A COMPARISON OF MEMBRANE FRACTURE FACES OF FIXED AND UNFIXED GLYCERINATED TISSUE J. Cell Set. 21, 437-448 (1976) 43-7 Printed in Great Britain A COMPARISON OF MEMBRANE FRACTURE FACES OF FIXED AND UNFIXED GLYCERINATED TISSUE A. S. BREATHNACH, M. GROSS, B. MARTIN AND C. STOLINSKI Department

More information

Electron Microscopy of Small Cells: Mycoplasma hominis

Electron Microscopy of Small Cells: Mycoplasma hominis JOURNAL of BAcTRiowOY, Dc. 1969, p. 1402-1408 Copyright 0 1969 American Society for Microbiology Vol. 100, No. 3 Printed In U.S.A. NOTES Electron Microscopy of Small Cells: Mycoplasma hominis JACK MANILOFF

More information

ADVANCED SUBSIDIARY GCE APPLIED SCIENCE Unit 4: Cells and Molecules TUESDAY 15 JANUARY 2008

ADVANCED SUBSIDIARY GCE APPLIED SCIENCE Unit 4: Cells and Molecules TUESDAY 15 JANUARY 2008 *CUP/T38123* ADVANCED SUBSIDIARY GCE APPLIED SCIENCE Unit 4: Cells and Molecules TUESDAY 15 JANUARY 2008 Candidates answer on the question paper. Additional materials: Electronic calculator Ruler (cm/mm)

More information

Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 3 Cells and Tissues. Short Answer. Figure 3.1

Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 3 Cells and Tissues. Short Answer. Figure 3.1 Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 3 Cells and Tissues Short Answer Figure 3.1 Using Figure 3.1, match the following: 1) The illustration of simple cuboidal epithelium is. Answer:

More information

Cell Structure & Function. Source:

Cell Structure & Function. Source: Cell Structure & Function Source: http://koning.ecsu.ctstateu.edu/cell/cell.html Definition of Cell A cell is the smallest unit that is capable of performing life functions. http://web.jjay.cuny.edu/~acarpi/nsc/images/cell.gif

More information

number Done by Corrected by Doctor Heyam Awad

number Done by Corrected by Doctor Heyam Awad number 4 Done by Waseem Abu Obeida Corrected by Saad Al-Hayek Doctor Heyam Awad Cell injury -in the previous lectures we talked about the causes (etiology) and the mechanism (pathogenesis) of cell injury.

More information

The fluxes are several times as great as the net movement which is their difference. ON THE PATHOGENESIS OF FATTY LIVER

The fluxes are several times as great as the net movement which is their difference. ON THE PATHOGENESIS OF FATTY LIVER January 1966 EDITORIALS 137 hexose and amino acid accumulates during absorption in vitro, with development of high concentration gradients between the cell and ECF, it is unlikely that this occurs in vivo.

More information

Lysosomes. Gr: lysis solution, soma body. Membrane bounded vesicles. Usually round ovoid or irregular electron dense bodies m.

Lysosomes. Gr: lysis solution, soma body. Membrane bounded vesicles. Usually round ovoid or irregular electron dense bodies m. Lysosomes Gr: lysis solution, soma body Membrane bounded vesicles Usually round ovoid or irregular electron dense bodies 0.05 0.5 m. Lysosomes No. varies from a few to several hundred per cell, in different

More information

7-2 : Plasma Membrane and Cell Structures

7-2 : Plasma Membrane and Cell Structures 7-2 : Plasma Membrane and Cell Structures Plasma Membrane of aveolar sac But first... Let s Review What is cell theory? Light microscopes vs. electron microscopes Prokaryotic vs. eukaryotic Basic Cell

More information

Histological and Ultrastructural studies of Caecal tonsil in Chicken (Gallus domesticus)

Histological and Ultrastructural studies of Caecal tonsil in Chicken (Gallus domesticus) ISSN: 2319-7706 Volume 4 Number 6 (2015) pp. 63-68 http://www.ijcmas.com Original Research Article Histological and Ultrastructural studies of Caecal tonsil in Chicken (Gallus domesticus) T.A.Kannan 1*,

More information

QUESTIONSHEET 1. The diagram shows some of the cell structures involved in the secretion of an extracellular enzyme. C D

QUESTIONSHEET 1. The diagram shows some of the cell structures involved in the secretion of an extracellular enzyme. C D QUESTIONSHEET 1 The diagram shows some of the cell structures involved in the secretion of an extracellular enzyme. C D A (a) Identify A,, C, and D. A:... :... C:... D:... [4] (b) Outline the role of each

More information

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz )

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Biochemistry Submitted by Marie Havlová on 8. February 2012-0:00 Syllabus of Biochemistry Mechanisms of enzyme catalysis.

More information

5/12/2015. Cell Size. Relative Rate of Reaction

5/12/2015. Cell Size. Relative Rate of Reaction Cell Makeup Chapter 4 The Cell: The Fundamental Unit of Life We previously talked about the cell membrane The cytoplasm is everything inside the membrane, except the nucleus Includes Cytosol = liquid portion

More information

Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey*

Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey* Fine Structure of the Normal Trigeminal Ganglion in the Cat and Monkey* DAVID S. MAXWELL, PH.D. Principal Contributor and Leader of Discussion HE inclusion of animal material m a y be justified as a means

More information

(From The Rockefeller Institute) Materials and Methods. Observations with the Electron Microscope

(From The Rockefeller Institute) Materials and Methods. Observations with the Electron Microscope ELECTRON MICROSCOPE STUDY OF THE DEVELOPMENT OF THE PAPILLOMA VIRUS IN THE SKIN OF THE RABBIT* BY ROBERT S. STONE,~ M.D., RICHARD E. SHOPE, M.D., DAN H. MOORE, P,~.D. (From The Rockefeller Institute) PLATES

More information

Cell Structure Text Ref Pg 4-7, 63-81

Cell Structure Text Ref Pg 4-7, 63-81 Cell Structure Text Ref Pg 4-7, 63-81 The Cellular Basis of Life Before people had a scientific explanation for where life came from, they believed in the theory of spontaneous generation, where organisms

More information

Test Review Worksheet 1 Name: Per:

Test Review Worksheet 1 Name: Per: Test Review Worksheet 1 Name: Per: 1. Put the following in order according to blood flow through the body, starting with the lungs: Lungs, right atrium, left atrium, right ventricle, left ventricle, aorta,

More information

Aldehydes in relation to Absorption of Fat from the Intestine and Metabolism of Fat in the Liver

Aldehydes in relation to Absorption of Fat from the Intestine and Metabolism of Fat in the Liver 3 9 Aldehydes in relation to Absorption of Fat from the Intestine and Metabolism of Fat in the Liver BY J. F. DANIELLI (From the Chester Beatty Research Institute, Royal Cancer Hospital, Fulham Road, London,

More information

7'cA 5P 'Z /' IA.N 5 '7S abra'ry TECHNiCAL F:-'.. THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 16

7'cA 5P 'Z /' IA.N 5 '7S abra'ry TECHNiCAL F:-'.. THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 16 7'cA 5P 'Z /' IA.N 5 '7S abra'ry TECHNiCAL F:-'.. THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 16 DIFFERENTIATION OF TANNIN, LIPID, AND STARCH IN CULTURED PLANT

More information

Factors to Consider in the Study of Biomolecules

Factors to Consider in the Study of Biomolecules Factors to Consider in the Study of Biomolecules What are the features of the basic building blocks? (ex: monosaccharides, alcohols, fatty acids, amino acids) 1) General structure and functional groups

More information

Sample Questions BSC1010C Chapters 5-7

Sample Questions BSC1010C Chapters 5-7 Sample Questions BSC1010C Chapters 5-7 1. Which type of lipid is most important in biological membranes? a. oils b. fats c. wax d. phospholipids e. triglycerides 2. Which type of interaction stabilizes

More information

7-2 : Plasma Membrane and Cell Structures

7-2 : Plasma Membrane and Cell Structures 7-2 : Plasma Membrane and Cell Structures Plasma Membrane of aveolar sac But first... Let s Review What is cell theory? Light microscopes vs. electron microscopes Prokaryotic vs. eukaryotic Basic Cell

More information

Introduction. Biochemistry: It is the chemistry of living things (matters).

Introduction. Biochemistry: It is the chemistry of living things (matters). Introduction Biochemistry: It is the chemistry of living things (matters). Biochemistry provides fundamental understanding of the molecular basis for the function and malfunction of living things. Biochemistry

More information

Chapter 12 Nutrition

Chapter 12 Nutrition Chapter 12 Nutrition Nutrients macronutrients: large required daily quantities carbohydrates, lipids, proteins micronutrients: small required daily quantities vitamins, minerals Also required: water and

More information

Using the Ch6diak-Higashi Marker

Using the Ch6diak-Higashi Marker A Study of the Origin of Pulmonary Macrophages Using the Ch6diak-Higashi Marker Kent J. Johnson, MD, Peter A. Ward, MD, Gary Striker, MD, and Robin Kunkel, MS Using bone marrow reconstitution techniques

More information

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich)

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Kasetsart J. (Nat. Sci.) 36 : 285-290 (2002) Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Viyada Seehabutr ABSTRACT The connective tissue sheath of cerebral

More information

Electron Microscopic Observations of Surface Mucous Cells in the Mouse Gastric Mucosa during Physiological Degeneration and Extrusion*

Electron Microscopic Observations of Surface Mucous Cells in the Mouse Gastric Mucosa during Physiological Degeneration and Extrusion* Arch, histol, jap., Vol. 48, No. 3 (1985) p. 327-339 Electron Microscopic Observations of Surface Mucous Cells in the Mouse Gastric Mucosa during Physiological Degeneration and Extrusion* Katsuko KATAOKA,

More information

Biology 2.4 AS Introduction Cells and cell processes. Introduction Cells and cell processes

Biology 2.4 AS Introduction Cells and cell processes. Introduction Cells and cell processes Biology 2.4 AS 91156 Demonstrate understanding of life processes at the cellular level Externally assessed 4 credits Copy correctly Up to 3% of a workbook Copying or scanning from ESA workbooks is subject

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 25 Metabolism and Nutrition Metabolic Reactions Metabolism refers to all of the chemical reactions taking place in the body. Reactions that break

More information

PREPARED BY P.DHARANI PRASAD II YEAR B.PHARM II SEM SUB:PATHOPHYSIOLOGY

PREPARED BY P.DHARANI PRASAD II YEAR B.PHARM II SEM SUB:PATHOPHYSIOLOGY CELL INJURY UNIT I PREPARED BY P.DHARANI PRASAD II YEAR B.PHARM II SEM SUB:PATHOPHYSIOLOGY DETECTION OF CELLULAR CHANGES AFTER INJURY BY: LIGHT MICROSCOPY OR GROSS EXAMINATION DETECT CHANGES HOURS TO DAYS

More information

Cells & Cell Organelles. Doing Life s Work

Cells & Cell Organelles. Doing Life s Work Cells & Cell Organelles Doing Life s Work AP Biology 2009-2010 Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal cell

More information

Lipids are used to store and excess energy from extra carbohydrates in animals

Lipids are used to store and excess energy from extra carbohydrates in animals Lipids Lipids are a major source of energy used by cells, however lipids are more difficult for your body to break down. They produce nearly twice the amount of energy than proteins or carbohydrates. Lipids

More information

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2 A Tour of the Cell reference: Chapter 6 Reference: Chapter 2 Monkey Fibroblast Cells stained with fluorescent dyes to show the nucleus (blue) and cytoskeleton (yellow and red fibers), image courtesy of

More information

10/13/11. Cell Theory. Cell Structure

10/13/11. Cell Theory. Cell Structure Cell Structure Grade 12 Biology Cell Theory All organisms are composed of one or more cells. Cells are the smallest living units of all living organisms. Cells arise only by division of a previously existing

More information

Bio Metabolism. Metabolism Life is a bag of biochemistry. Chloroplasts and mitochondria. What is food?

Bio Metabolism. Metabolism Life is a bag of biochemistry. Chloroplasts and mitochondria. What is food? Metabolism Life is a bag of biochemistry 1 Chloroplasts and mitochondria Heat Carbohydrate O 2 CO 2 + H 2 O Heat Chloroplast Mitochondria 2 What is food? Proteins - polymers of amino acids Carbohydrates

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

Importance of Nutrition

Importance of Nutrition The EAT WELL Plate Canada s food guide Food pyramid Importance of Nutrition Energy for body metabolism (nerve impulses, contraction of muscles, repair and replacement of cells Raw materials for building

More information

Cells & Cell Organelles

Cells & Cell Organelles Cells & Cell Organelles The Building Blocks of Life AP Biology 2008-2009 Types of cells bacteria cells Prokaryote - no organelles Eukaryotes - organelles animal cells plant cells Cell size comparison Animal

More information

Cell Structure Animal/Human

Cell Structure Animal/Human Cell Structure Animal/Human cell is basic unit of all life; structural and functional if its alive, must contain at least a single cell the function of an organism is the summation of functions of its

More information

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE by D. L. Lee ABSTRACT Infective stage larvae of Nippostrongylus brasiliensis are immobilized within

More information

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body.

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body. Name: Topic 3.1 Nutrients Date: IB SEHS 3.1.1. List the macronutrients and micronutrients Macronutrients: - lipid (fat) - carbohydrate - protein - water (says the book) Micronutrients: - vitamins - minerals

More information

Microscopic Study of Histological Changes the Use of Ileal Mucosa as a Bladder (Radical Cystectomy - Case Report)

Microscopic Study of Histological Changes the Use of Ileal Mucosa as a Bladder (Radical Cystectomy - Case Report) Microscopic Study of Histological Changes the Use of Ileal Mucosa as a Bladder (Radical Cystectomy - Case Report) Sareh Najaf Asaadi, Hassan Morovvati, Ahmad Reza Taftachi International Journal of Advanced

More information

Holistic Healing Professional Practitioner Diploma Course Sample Pages Page 1

Holistic Healing Professional Practitioner Diploma Course Sample Pages Page 1 The last phase is called the intestinal phase and takes place about four hours after the gastric phase. The chyme passes through the small intestine, or duodenum, through the pyloric sphincter. This is

More information

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Chapter 7: A Tour of the Cell Cytology Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges Prokaryotic cells Nucleoid No organelles with membranes Ribosomes

More information