11/5/ Oxidation of Alkenes: Cleavage to Carbonyl Compounds. Oxidation of Alkenes: Cleavage to Carbonyl Compounds

Size: px
Start display at page:

Download "11/5/ Oxidation of Alkenes: Cleavage to Carbonyl Compounds. Oxidation of Alkenes: Cleavage to Carbonyl Compounds"

Transcription

1 8.8 Oxidation of Alkenes: Cleavage to Carbonyl Compounds Ozone (O 3 ) is useful double-bond cleavage reagent Ozone is generated by passing a stream of oxygen through a highvoltage electrical discharge Ozone adds rapidly to C=C bond at low temperature to give molozonide which spontaneously rearranges to ozonide Ozonide is treated with reducing agent to convert it to carbonyl compounds Oxidation of Alkenes: Cleavage to Carbonyl Compounds If tetrasubstituted double bond is ozonized, two ketone fragments result If a carbon of the alkene is bonded to hydrogen, ozonolysis will cleave the double bond to yield an aldehyde Oxidation of Alkenes: Cleavage to Carbonyl Compounds Potassium permanganate (KMnO 4 ) in neutral or acidic solution cleaves alkenes to give carbonyl-containing products If a carbon of the alkene is bonded to hydrogen a carboxylic acid is produced If a carbon of the alkene is bonded to two hydrogens, CO 2 is formed 1

2 Oxidation of Alkenes: Cleavage to Carbonyl Compounds Alkenes are also cleaved by hydroxylation to a 1,2-diol followed by treatment with periodic acid, HIO 4. If the two OH groups of the diol are in an open chain, two carbonyl compounds result If the two OH groups of the diol are on a ring, a single, open-chain dicarbonyl compound is formed Worked Example 8.3 Predicting the Reactant in an Ozonolysis Reaction What alkene would yield a mixture of cyclopentanone and propanal on treatment with ozone followed by reduction with zinc? 8.9 Addition of Carbenes to Alkenes: Cyclopropane Synthesis A carbene, R 2 C:, is a neutral molecule containing a divalent carbon with only six electrons in its valence shell One simple method for generating dichlorocarbene is by treatment of CHCl 3 with KOH Carbenes behave as electrophiles, adding to alkenes to yield cyclopropanes 2

3 Addition of Carbenes to Alkenes: Cyclopropane Synthesis Mechanism of the formation of dichlorocarbene Addition of Carbenes to Alkenes: Cyclopropane Synthesis Dichlorocarbene carbon atom is sp 2 -hybridized with a vacant p orbital extending above and below the plane of the three atoms with an unshared pair of electrons occupying the third sp 2 lobe Addition of Carbenes to Alkenes: Cyclopropane Synthesis Reaction of dichlorocarbene with an alkene results in a dichlorocyclopropane Addition is stereospecific, meaning that only a single stereoisomer is formed as product 3

4 8.10 Radical Addition to Alkenes: Alkene Polymers Radicals add to alkene double bonds Radicals remove one electron from double bond One electron left behind yielding a new radical Polymer A large molecule built up by repetitive bonding together of many smaller molecules called monomers Cellulose (glucose polymer) Proteins (amino acid polymers) Nucleic acid (nucleotide polymer) Simplest polymerization Result when an alkene is treated with a small amount of a radical as an initiator 4

5 Initiation 1. Small amount of benzoyl peroxide catalyst is heated breaking weak O-O bonds and yielding radicals 2. Benzoyloxy radical adds to C=C bond of ethylene forming a carbon radical 3. a) One electron from C=C bond pairs up with electron of benzoyloxy radical to form C-O bond b) Other electron remains on carbon (a carbon-centered radical) Propagation Polymerization occurs when the carbon radical adds to another ethylene molecule to yield another radical Termination Chain process ends by a reaction that consumes a radical Combination of two growing chains 2-R CH 2 CH 2 R CH 2 CH 2 CH 2 CH 2 R Vinyl monomers Substituted ethylene Undergo polymerization to yield polymer with substituted groups regularly spaced in alternating carbon atom long chain Polypropylene Styrene 5

6 Polymerization of unsymmetrically substituted vinyl monomers Propylene or Styrene Radical addition steps can take place at either end of the double bond to yield: A primary radical intermediate (RCH 2. ) A secondary radical (R 2 CH. ) Similar to electrophilic addition reaction More highly substituted, secondary radical is formed Worked Example 8.4 Predicting the Structure of a Polymer Show the structure of poly(vinyl chloride), a polymer made from H 2 C=CHCl, by drawing several repeating units 8.11 Biological Additions of Radicals to Alkenes Radical vs. Electrophilic Addition Reactions Electrophilic addition Reaction occurs once Intermediate is then quenched and reaction stops. 6

Chapter 8 Lecture Reactions of Alkenes

Chapter 8 Lecture Reactions of Alkenes Organic Chemistry, 9 th Edition L. G. Wade, Jr. Chapter 8 Lecture Reactions of Alkenes 2017 Pearson Education, Inc. Catalytic Hydrogenation of Alkenes Hydrogen (H 2 ) can be added across the double bond

More information

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups.

Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups. Chapter 7: Alkenes: reactions and synthesis Alkenes are very useful in syntheses -they allow us to convert into many of the other types of functional groups. 7.1 Preparation of alkenes: preview Addition

More information

Diverse Reactions of Alkenes

Diverse Reactions of Alkenes Chapter 8- Alkenes: Reactions and Synthesis Ashley Piekarski, Ph.D. Diverse Reactions of Alkenes Alkenes react with many electrophiles to give useful products by addiaon (ocen through special reagents)

More information

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic.

This is an addition reaction. (Other types of reaction have been substitution and elimination). Addition reactions are typically exothermic. Reactions of Alkenes Since bonds are stronger than bonds, double bonds tend to react to convert the double bond into bonds + X-Y X Y This is an addition reaction. (Other types of reaction have been substitution

More information

به نام خدا شیمی آلی 1. Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran

به نام خدا شیمی آلی 1. Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran به نام خدا 7 شیمی آلی 1 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran 7 Alkenes: Reactions and Synthesis آلکن ها: واکنش ها و سنتز Based on McMurry s Organic Chemistry, 7 th edition

More information

4 Types of Organic Polar Reactions

4 Types of Organic Polar Reactions Objective 12 Apply Reactivity Principles to Electrophilic Addition Reactions 1: Alkenes Identify structural features (pi bond) and electrophiles Use curved arrows to predict product 4 Types of Organic

More information

Radicals. Structure and Stability of Radicals. Radicals are formed from covalent bonds by adding energy in the form of heat (Δ) or light (hν).

Radicals. Structure and Stability of Radicals. Radicals are formed from covalent bonds by adding energy in the form of heat (Δ) or light (hν). Radicals Chapter 15 A small but significant group of reactions involve radical intermediates. A radical is a reactive intermediate with a single unpaired electron, formed by homolysis of a covalent bond.

More information

Oregon State University

Oregon State University H 223 Worksheet 9 Notes Oregon State University 1. Draw a primary alcohol and name it. OH 1-propanol Note: A primary alcohol has the form RH 2 OH; a secondary alcohol has the form R 2 H OH; and a tertiary

More information

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms

Carbon. p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms Organic Compounds Carbon p Has four valence electrons p Can bond with many elements p Can bond to other carbon atoms n Gives carbon the ability to form chains that are almost unlimited in length. p Organic

More information

Carboxylic Acids and their Derivatives I

Carboxylic Acids and their Derivatives I 2302272 Org Chem II Part I Lecture 5 Carboxylic Acids and their Derivatives I Instructor: Dr. Tanatorn Khotavivattana E-mail: tanatorn.k@chula.ac.th Recommended Textbook: Chapter 20 in Organic Chemistry,

More information

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit organic molecule carbon based compound inorganic molecule hydrocarbon functional group hydrophilic NON-carbon based compound organic molecule made of only carbon and hydrogen group of atoms bonded to a

More information

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS 1. 2. 3. 4. CARBOHYDRATES LIPIDS (fats) PROTEINS NUCLEIC ACIDS We call these four main types of carbon- based molecules

More information

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

Carbon. Has four valence electrons Can bond with many elements. Can bond to other carbon atoms. Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Organic Compounds Carbon Has four valence electrons Can bond with many elements Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen Can bond to other carbon atoms Gives carbon the ability to form chains

More information

Guided Inquiry Skills Lab. Additional Lab 1 Making Models of Macromolecules. Problem. Introduction. Skills Focus. Materials.

Guided Inquiry Skills Lab. Additional Lab 1 Making Models of Macromolecules. Problem. Introduction. Skills Focus. Materials. Additional Lab 1 Making Models of Macromolecules Guided Inquiry Skills Lab Problem How do monomers join together to form polymers? Introduction A small number of elements make up most of the mass of your

More information

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1.

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. Macromolecules The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1. CARBOHYDRATES 1. LIPIDS 1. NUCLEIC ACIDS Carbon Compounds All compounds

More information

unit 9 practice test (organic and biochem)

unit 9 practice test (organic and biochem) Name: Class: Date: unit 9 practice test (organic and biochem) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What s the correct formula for the simplest

More information

Name: Class: Honors Biology Period: Question: What is the molecular formula of this molecule?

Name: Class: Honors Biology Period: Question: What is the molecular formula of this molecule? Chapter 3: The Chemistry of Organic Molecules Exercise 1 Diversity of Carbon-Based Molecules (3.1) The great variety of organic compounds results from the ability of carbon atoms to bond with four other

More information

13. ORGANIC CHEMISTRY

13. ORGANIC CHEMISTRY 1. ORGANIC EMISTRY III) ALKENES SYNOPSIS Alkenes are unsaturated hydrocarbons. These contain a C =C. They contain two hydrogens less than corresponding alkanes. Double bonded carbon undergoes hybridisation.

More information

The. Crash Course. Basically, almost all living things are made up of these 4 Elements: - Carbon (C) - Nitrogen (N) - Hydrogen (H) - Oxygen (O)

The. Crash Course. Basically, almost all living things are made up of these 4 Elements: - Carbon (C) - Nitrogen (N) - Hydrogen (H) - Oxygen (O) The Biochemistry Crash Course Basically, almost all living things are made up of these 4 Elements: - Carbon (C) - Nitrogen (N) - Hydrogen (H) - Oxygen (O) This exercise is designed to familiarize you with

More information

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester 1 Name the ester produced when methanol and pentanoic acid react methyl pentanoate 2 Name the type of reaction used to make an ester condensation reaction 3 Name the by-product of the reaction used to

More information

SORACHAI SAE-LIM SORACHAI SAE-LIM

SORACHAI SAE-LIM SORACHAI SAE-LIM 1 Alkenes 2 1.Dehydrohalogenation ของ alkyl halide ซ งเก ดปฏ ก ร ยาผ าน ซงเกดปฏกรยาผาน E2 ซ งปฏ ก ร ยาด งกล าวเก ดข นโดยใช เบส 3 Ex 1. H 3 C H C CH 3 C Br C 2 H 5 ONa / C 2 H 5 OH H CH 3 C 2 H 5 O CH 3

More information

B07 Alcohols, Corboxylic Acids & Esters.notebook. November 19, Alcohols

B07 Alcohols, Corboxylic Acids & Esters.notebook. November 19, Alcohols Alcohols There is more to alcohol than just beverages. In fact, most alcohols are poisonous. THis is what makes them effective as disinfectants and cleaners. 1 What makes an alcohol and alcohol? If a hydrocarbon

More information

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes

10/29/ Stability of Alkenes. Stability of Alkenes. Stability of Alkenes 7.5 Stability of cis and trans isomers Interconversion does not occur spontaneously Cis isomers are less stable than trans isomers because of the steric strain between the two larger substituents on the

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 2 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. 3 of 37 Macromolecules Macromolecules Macromolecules

More information

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H)

Carboxylic Acids. The Importance of Carboxylic Acids (RCO 2 H) Carboxylic Acids The Importance of Carboxylic Acids (RCO 2 H) Starting materials for acyl derivatives (esters, amides, and acid chlorides) Abundant in nature from oxidation of aldehydes and alcohols in

More information

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H)

Chapter 10. Carboxylic Acids and Derivatives. Naming Carboxylic Acids and Derivatives. Carboxylic Acids: RCOOH (RCO 2 H) Chapter 10 Carboxylic Acids and Derivatives Naming Carboxylic Acids and Derivatives Carboxylic Acids: RCH (RC 2 H) The functional group of a carboxylic acid is a carboxyl group (carbonyl & hydroxyl group)

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

CHAPTER 3. Carbon & the Molecular Diversity of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life CHAPTER 3 Carbon & the Molecular Diversity of Life Carbon: The Organic Element Compounds that are synthesized by cells and contain carbon are organic So what is inorganic? Why are carbon compounds so prevalent?

More information

-are poly-hydroxylated aldehydes and ketones -can cyclise -can form polymeric chains

-are poly-hydroxylated aldehydes and ketones -can cyclise -can form polymeric chains CARBOHYDRATES -compounds of C, H and O -originally thought of as hydrates of carbon e.g. glucose C 6 H 12 O 6 thought to be C(H 2 O) carbohydrates: -are poly-hydroxylated aldehydes and ketones -can cyclise

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

A general depiction of olefin metathesis is shown below, where you have two olefins that literally switch partners:

A general depiction of olefin metathesis is shown below, where you have two olefins that literally switch partners: Class 6 This starts the second 1/3 of our semester, where we talk in detail about a few select reactions. We will spend two classes talking about OLEFIN METATHESIS, mostly because it is a fairly important

More information

2 3 Carbon Compounds (Macromolecules)

2 3 Carbon Compounds (Macromolecules) 2 3 Carbon Compounds (Macromolecules) Slide 1 of 37 Organic Chemistry Organic chemistry is the study of all compounds that contain bonds between carbon atoms. Slide 2 of 37 Carbon Living organisms are

More information

Prerequisite Knowledge: Students should have already been introduced to the inputs and outputs of photosynthesis.

Prerequisite Knowledge: Students should have already been introduced to the inputs and outputs of photosynthesis. www.ngsslifescience.com. Topic: Metabolism Chemistry Model Summary: Students will learn act out polymerization by performing dehydration synthesis and hydrolysis using chemistry models. Students will also

More information

Molecules of Life. Chapter 22. Great Idea: A cell s major parts are constructed from a few simple molecular building blocks 1

Molecules of Life. Chapter 22. Great Idea: A cell s major parts are constructed from a few simple molecular building blocks 1 Molecules of Life Chapter 22 Great Idea: A cell s major parts are constructed from a few simple molecular building blocks 1 Chapter Outline Organic Molecules Organic Chemistry Proteins: The Workhorses

More information

Chapter 7- Alkenes: Structure and Reactivity. Ashley Piekarski, Ph.D. Alkene

Chapter 7- Alkenes: Structure and Reactivity. Ashley Piekarski, Ph.D. Alkene Chapter 7- Alkenes: Structure and Reactivity Ashley Piekarski, Ph.D. Alkene What is an alkene func

More information

Analysis & Interpretation. Analysis Questions answer questions on a separate sheet of paper. Name(s): Period: Date:

Analysis & Interpretation. Analysis Questions answer questions on a separate sheet of paper. Name(s): Period: Date: Name(s): Period: Date: Dehydration Synthesis and Hydrolysis The chemical reactions that bond together macromolecules are similar and require water. When macromolecules are consumed, they must be broken

More information

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins Inorganic compounds = compounds that DO NOT contain carbon Ex: Vitamins, minerals,

More information

Carbon s unique bonding pattern arises from the hybridization of the electrons.

Carbon s unique bonding pattern arises from the hybridization of the electrons. Unit 8 Neptune, the 8 th planet of our solar system Organic Chemistry Organic: compound containing carbon, excluding oxides and carbonates Carbon is an allotrope, meaning it has different bonding patterns.

More information

Polymers: large molecules made up of repeating smaller units (monomer) peptides and proteins (Chapter 25) nucleic acids (Chapter 26)

Polymers: large molecules made up of repeating smaller units (monomer) peptides and proteins (Chapter 25) nucleic acids (Chapter 26) Chapter 23: Carbohydrates hydrates of carbon: general formula C n (H 2 O) n Plants: photosynthesis 6 CO 2 + 6 H 2 O hν C 6 H 12 O 6 + 6 O 2 Polymers: large molecules made up of repeating smaller units

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

SY 2017/ nd Final Term Revision. Student s Name: Grade: 12 B & C. Subject: Chemistry. Teacher Signature

SY 2017/ nd Final Term Revision. Student s Name: Grade: 12 B & C. Subject: Chemistry. Teacher Signature SY 2017/2018 2 nd Final Term Revision Student s Name: Grade: 12 B & C Subject: Chemistry Teacher Signature Revision Sheet Chemistry Gr 12B Ch-22-23 Organic reaction 1-Choose correct answer. 1) Cellulose

More information

Structure of Alkenes In ethene (ethylene) each carbon is bonded to 3 other atoms, with zero nonbonding electrons => sp 2 hybridization.

Structure of Alkenes In ethene (ethylene) each carbon is bonded to 3 other atoms, with zero nonbonding electrons => sp 2 hybridization. Structure and Synthesis of Alkenes Alkenes (olefins) are hydrocarbons which have carbon carbon double bonds. A double bond is a bond and a bond. Double bond B.D.E. bond B.D.E. = 146 kcal/mol = 83 kcal/mol

More information

Macromolecule stations. 6 stations

Macromolecule stations. 6 stations Macromolecule stations 6 stations 1. Sugar and protein paper pieces to build (with waters) 2. Fatty acid and nucleic acid paper pieces to build with (and water) 3. DNA model with several pieces removed

More information

3.1 Carbon is Central to the Living World

3.1 Carbon is Central to the Living World BIOL 100 Ch. 3 1 3.1 Carbon is Central to the Living World Carbon Central element to life Most biological molecules are built on a carbon framework. Organic molecules Humans 18.5% Carbon Why is Carbon

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

INTRODUCTION TO BIOCHEMISTRY/POLYMERS. 3. With respect to amino acids, polypeptides, and proteins, know:

INTRODUCTION TO BIOCHEMISTRY/POLYMERS. 3. With respect to amino acids, polypeptides, and proteins, know: INTRDUCTIN T BICEMISTRY/PLYMERS A STUDENT SULD BE ABLE T: 1. With respect to lipids, know: The characteristic common to members of the class (solubility in nonpolar solvents) The functional groups most

More information

Carbohydrates. Chapter 12

Carbohydrates. Chapter 12 Carbohydrates Chapter 12 Educational Goals 1. Given a Fischer projection of a monosaccharide, classify it as either aldoses or ketoses. 2. Given a Fischer projection of a monosaccharide, classify it by

More information

Prelab 6: Carboxylic Acids

Prelab 6: Carboxylic Acids The Structure of Carboxylic Acids Prelab 6: Carboxylic Acids Carboxylic acids contain a carboxyl functional group attached to a hydrocarbon (alkyl group) part. Carboxyl groups contain both a carbonyl group,

More information

Chapter 13: Alcohols, Phenols, and Ethers

Chapter 13: Alcohols, Phenols, and Ethers Chapter 13: Alcohols, Phenols, and Ethers ALCOHOLS, PHENOLS, AND ETHERS Hydroxy group the OH functional group An alcohol has an OH group attached to an aliphatic carbon. General formula: R-OH A phenol

More information

Chemistry 1120 Exam 1 Study Guide

Chemistry 1120 Exam 1 Study Guide Chemistry 1120 Exam 1 Study Guide Chapter 3 3.1 a) Know that alcohols contain a hydroxy (-OH) group. Determine the IUPAC name for a given structure by determining the longest chain. b) Determine the number

More information

OCR A GCSE Chemistry. Topic 6: Global challenges. Organic chemistry. Notes.

OCR A GCSE Chemistry. Topic 6: Global challenges. Organic chemistry. Notes. OCR A GCSE Chemistry Topic 6: Global challenges Organic chemistry Notes C6.2a recognise functional groups and identify members of the same homologous series Prefixes (beginning of the name) o remember

More information

Molecule - two or more atoms held together by covalent bonds. Ex. = water, H O

Molecule - two or more atoms held together by covalent bonds. Ex. = water, H O ORGANIC CHEMISTRY NOTES Why study carbon? ORGANIC CHEMISTRY NOTES Why study carbon? * All of life is built on carbon * Cells are made up of about 72% water 3% salts (NaCl, and K) 25% carbon compounds which

More information

Level 3 Chemistry, 2007

Level 3 Chemistry, 2007 Level 3 hemistry, 2007 Annotated answers to this organic paper. Q1 QUESTIN NE Give the proper name that gives the structure a unique name (a) Give the systematic IUPA names for the following molecules

More information

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic compounds. What are inorganic molecules? Molecules that CANNOT

More information

BIOMOLECULES. Ms. Bosse Fall 2015

BIOMOLECULES. Ms. Bosse Fall 2015 BIOMOLECULES Ms. Bosse Fall 2015 Biology Biology is the study of the living world. Bio = life Major Molecules of Life Macromolecules giant molecules found in living cells; made from thousands of smaller

More information

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain Carbon Compounds Life s molecular diversity is based on the properties of carbon Chain Ring Branching chain The Chemistry of Carbon : carbon based Carbon can make 4 covalent bonds The foundation of organic

More information

Name: Period: Date: Testing for Biological Macromolecules Lab

Name: Period: Date: Testing for Biological Macromolecules Lab Testing for Biological Macromolecules Lab Introduction: All living organisms are composed of various types of organic molecules, such as carbohydrates, starches, proteins, lipids and nucleic acids. These

More information

2 3 Carbon Compounds Slide 1 of 37

2 3 Carbon Compounds Slide 1 of 37 1 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. Carbon atoms have four valence electrons that can join with

More information

A BEGINNER S GUIDE TO BIOCHEMISTRY

A BEGINNER S GUIDE TO BIOCHEMISTRY A BEGINNER S GUIDE TO BIOCHEMISTRY Life is basically a chemical process Organic substances: contain carbon atoms bonded to other carbon atom 4 classes: carbohydrates, lipids, proteins, nucleic acids Chemical

More information

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds Lesson Overview 2.3 The Chemistry of Carbon What elements does carbon bond with to make up life s molecules? Carbon can bond with many elements, including Hydrogen, Oxygen, Phosphorus, Sulfur, and Nitrogen

More information

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates Chapter 23 Carbohydrates and Nucleic Acids Carbohydrates Synthesized by plants using sunlight to convert CO 2 and H 2 O to glucose and O 2. Polymers include starch and cellulose. Starch is storage unit

More information

Chemistry of Carbon. Building Blocks of Life

Chemistry of Carbon. Building Blocks of Life Chemistry of Carbon Building Blocks of Life 2013-2014 Why study Carbon? All of life is built on carbon Cells ~72% H 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl,

More information

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012

IB Biology BIOCHEMISTRY. Biological Macromolecules SBI3U7. Topic 3. Thursday, October 4, 2012 + IB Biology SBI3U7 BIOCHEMISTRY Topic 3 Biological Macromolecules Essential Questions: 1.What are the 4 main types of biological macromolecules and what is their function within cells? 2.How does the

More information

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2 Dr M. Mehrdad University of Guilan, Department of Chemistry, Rasht, Iran m-mehrdad@guilan.ac.ir Based on McMurry s Organic Chemistry, 7 th edition The

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water. Biology 4A Laboratory Biologically Important Molecules Objectives Perform tests to detect the presence of carbohydrates, lipids, proteins, and nucleic acids Recognize the importance of a control in a biochemical

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

3/27/2011. Chapter 8 Reactions of Alkenes and Alkynes. Alkene Addition Reactions. 8.1 Preparing Alkenes: A Preview of Elimination Reactions

3/27/2011. Chapter 8 Reactions of Alkenes and Alkynes. Alkene Addition Reactions. 8.1 Preparing Alkenes: A Preview of Elimination Reactions John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 8 Reactions of Alkenes and Alkynes Richard Morrison University of Georgia, Athens Alkene Addition Reactions Alkene addition reactions Addition

More information

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n

Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n Ch 21 Carboxylic Acid Derivatives and Nu Acyl Subst n Acid Derivatives and their Names - Acid Halides have a Cl or Br instead of OH. Replace ic acid with yl halide, such as propionyl chloride (a common

More information

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6 Page 1 of 6 Missing Complete Protein and Question #45 Key Terms: Fill in the blank in the following 25 statements with one of the key terms in the table. Each key term may only be used once. Print legibly.

More information

BIOLOGY 111. CHAPTER 3: Life's Components: Biological Molecules

BIOLOGY 111. CHAPTER 3: Life's Components: Biological Molecules BIOLOGY 111 CHAPTER 3: Life's Components: Biological Molecules Life s Components: Biological Molecules 3.1 Carbon's Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules I. Polymers What is a polymer? Poly = many; mer = part. A polymer is a large molecule consisting of many smaller sub-units bonded together. What is a monomer?

More information

Proteins. Biomolecules. Nucleic Acids. The Building Blocks of Life

Proteins. Biomolecules. Nucleic Acids. The Building Blocks of Life Proteins Biomolecules Nucleic Acids The Building Blocks of Life Carbohydrates Lipids Biomolecules are Organic Molecules 1. Organic molecules that are Carbon based (at least 1 Carbon molecule and often

More information

2.3: Carbon-Based Molecules Notes

2.3: Carbon-Based Molecules Notes 2.3: Carbon-Based Molecules Notes Carbon-based molecules are the of life. Bonding Properties of Carbon Carbon forms bonds with up to other atoms, including other carbon atoms. QUESTION: What types of elements

More information

3/14/2011. Worked Example Stability of Alkenes. 7.4 Alkene Stereochemistry and the E,Z Designation

3/14/2011. Worked Example Stability of Alkenes. 7.4 Alkene Stereochemistry and the E,Z Designation 7.4 Alkene Stereochemistry and the E,Z Designation E,Z system Sequence rules used to assign priorities to the substituent groups on the double-bond carbons (alkenes) E double bond For German entgegen meaning

More information

Macromolecules. Small molecules that join together to form one large polymer molecules.

Macromolecules. Small molecules that join together to form one large polymer molecules. Macromolecules Polymerisation: Polymerisation is the joining of small molecules (monomers), into chains of a very large molecule (polymer). The monomers can be as atoms, simple molecules of ethen as in

More information

4/7/2011. Chapter 13 Organic Chemistry. Structural Formulas. 3. Petroleum Products

4/7/2011. Chapter 13 Organic Chemistry. Structural Formulas. 3. Petroleum Products Chapter 13 Organic Chemistry 13-1. Carbon Bonds 13-2. Alkanes 13-3. Petroleum Products 13-5. Isomers 13-6. Unsaturated Hydrocarbons 13-7. Benzene 13-9. 13-10. Polymers 13-11. Carbohydrates 13-12. Photosynthesis

More information

13. Carboxylic Acids (text )

13. Carboxylic Acids (text ) 2009, Department of Chemistry, The University of Western ntario 13.1 13. Carboxylic Acids (text 14.1 14.9) A. Structure and Nomenclature The carboxylic acid functional group results from the connection

More information

Bio 12 Chapter 2 Test Review

Bio 12 Chapter 2 Test Review Bio 12 Chapter 2 Test Review 1.Know the difference between ionic and covalent bonds In order to complete outer shells in electrons bonds can be Ionic; one atom donates or receives electrons Covalent; atoms

More information

Macromolecules Chapter 2.3

Macromolecules Chapter 2.3 Macromolecules Chapter 2.3 E.Q. What are the 4 main macromolecues found in living things and what are their functions? Carbon-Based Molecules Why is carbon called the building block of life? Carbon atoms

More information

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON

CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON CARBOXYLIC ACIDS AND THEIR DERIVATIVES: NUCLEOPHILIC ADDITION-ELIMINATION AT THE ACYL CARBON RED ANT WAS SOURCE OF FORMIC ACID (RCOOH) Lecture 8 ORGANIC CHEMISTRY 2 Introduction The carboxyl group (-CO

More information

Identifying Functional Groups. (Chapter 2 in the Klein text)

Identifying Functional Groups. (Chapter 2 in the Klein text) Identifying Functional Groups (Chapter 2 in the Klein text) Basic Ideas A functional group is a substructure within a molecule that will have the potential to undergo chemical change, i.e. the group has

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

WHAT IS A PROTEIN? OBJECTIVES The objective of this worksheet is to understand the structure and function of proteins. PART A: Understanding Proteins

WHAT IS A PROTEIN? OBJECTIVES The objective of this worksheet is to understand the structure and function of proteins. PART A: Understanding Proteins WHAT IS A PROTEIN? OBJECTIVES The objective of this worksheet is to understand the structure and function of proteins PART A: Understanding Proteins As you may already know proteins are an essential part

More information

CHEM 203 HOMEWORK 4 Chemistry of Alkenes - II. Answer the above questions by writing a detailed mechanism for the conversion of A into lanosterol.

CHEM 203 HOMEWORK 4 Chemistry of Alkenes - II. Answer the above questions by writing a detailed mechanism for the conversion of A into lanosterol. EM 203 MEWK 4 hemistry of Alkenes - II 1. The following questions may have occurred to you: (i) do carbocations occur in living systems? (ii) an an olefin (a Lewis base) react with a carbocation (a Lewis

More information

Lecture 10. October 18, We are going to spend the first part of today s class going over the test.

Lecture 10. October 18, We are going to spend the first part of today s class going over the test. Lecture 10 We are going to spend the first part of today s class going over the test. ctober 18, 2011 In the second half of the class we will talk about LEFIN METATHESIS, mostly because it is a fairly

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

Chapter 23. Functional Groups. Halogen Side Chains What is a halocarbon? How are organic compounds classified?

Chapter 23. Functional Groups. Halogen Side Chains What is a halocarbon? How are organic compounds classified? 23.1 Chapter 23 From a distance, the musicians in an orchestra may look alike, but each musician contributes a unique sound. In a similar way, one hydrocarbon is nearly identical to another until it picks

More information

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro.

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro. Ch. 5 The S & F of Macromolecules They may be extremely small but they are still macro. Background Information Cells join small molecules together to form larger molecules. Macromolecules may be composed

More information

Carbohydrates. Monosaccharides

Carbohydrates. Monosaccharides Carbohydrates Carbohydrates (also called saccharides) are molecular compounds made from just three elements: carbon, hydrogen and oxygen. Monosaccharides (e.g. glucose) and disaccharides (e.g. sucrose)

More information

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds Lesson Overview 2.3 THINK ABOUT IT In the early 1800s, many chemists called the compounds created by organisms organic, believing they were fundamentally different from compounds in nonliving things. We

More information

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group.

Esters of Carboxylic Acids These are derivatives of carboxylic acids where the hydroxyl group is replaced by an alkoxy group. Carboxylic acid Derivatives Carboxylic acid derivatives are described as compounds that can be converted to carboxylic acids via simple acidic or basic hydrolysis. The most important acid derivatives are

More information

For more important question's visit :

For more important question's visit : For more important question's visit : www.4ono.com Unit - 14 BIOMOLECULES POINTS TO REMEMBER 1. Carbohydrates are optically active polyhydroxy aldehydes or ketones or molecules which provide such units

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Alkenes. IB Chemistry Topic 10.2

Alkenes. IB Chemistry Topic 10.2 Alkenes IB Chemistry Topic 10.2 What is the difference between alkanes and alkenes? Which do you think would be more reactive? The relationship between the number of bonds, bond length and bond strength

More information

Proteins. Biomolecules. Nucleic Acids. The Building Blocks of Life

Proteins. Biomolecules. Nucleic Acids. The Building Blocks of Life Proteins Biomolecules Nucleic Acids The Building Blocks of Life Carbohydrates Lipids Biomolecules are 1. Organic molecules that are (at least 1 Carbon molecule and often chains of Carbon) They all contain.

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information